1
|
Fuentes-Quiroz A, Herrera H, Alvarado R, Rabert C, Arriagada C, Valadares RBDS. Functional differences of cultivable leaf-associated microorganisms in the native Andean tree Gevuina avellana Mol. (Proteaceae) exposed to atmospheric contamination. J Appl Microbiol 2024; 135:lxae041. [PMID: 38364303 DOI: 10.1093/jambio/lxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
AIMS This study aimed to evaluate and describe the functional differences of cultivable bacteria and fungi inhabiting the leaves of Gevuina avellana Mol. (Proteaceae) in an urban area with high levels of air pollution and in a native forest in the southern Andes. METHODS AND RESULTS Phyllosphere microorganisms were isolated from the leaves of G. avellana, their plant growth-promoting capabilities were estimated along with their biocontrol potential and tolerance to metal(loid)s. Notably, plants from the urban area showed contrasting culturable leaf-associated microorganisms compared to those from the native area. The tolerance to metal(loid)s in bacteria range from 15 to 450 mg l-1 of metal(loid)s, while fungal strains showed tolerance from 15 to 625 mg l-1, being especially higher in the isolates from the urban area. Notably, the bacterial strain Curtobacterium flaccumfaciens and the fungal strain Cladosporium sp. exhibited several plant-growth-promoting properties along with the ability to inhibit the growth of phytopathogenic fungi. CONCLUSIONS Overall, our study provides evidence that culturable taxa in G. avellana leaves is directly influenced by the sampling area. This change is likely due to the presence of atmospheric pollutants and diverse microbial symbionts that can be horizontally acquired from the environment.
Collapse
Affiliation(s)
- Alejandra Fuentes-Quiroz
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Roxana Alvarado
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 01090, Temuco, Chile
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| | | |
Collapse
|
2
|
Airborne Prokaryotic, Fungal and Eukaryotic Communities of an Urban Environment in the UK. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioaerosols often contain human pathogens and allergens affecting public health. However, relatively little attention has been given to bioaerosols compared with non-biological aerosols. In this study, we aimed to identify bioaerosol compositions in Manchester, UK by applying high throughput sequencing methods and to find potential sources. Samples were collected at Manchester Air Quality Super Site at the Firs Environmental Research Station in November 2019 and in February 2020. Total DNA has been extracted and sequenced targeting the 16S rRNA gene of prokaryotes, ITS region of fungal DNA and 18S rRNA gene of eukaryotes. We found marine environment-associated bacteria and archaea were relatively more abundant in the February 2020 samples compared with the November 2019 samples, consistent with the North West marine origin based on wind back-trajectory analysis. In contrast, an OTU belonging to Methylobacterium, which includes many species resistant to heavy metals, was relatively more abundant in November 2019 when there were higher metal concentrations. Fungal taxa that fruit all year were relatively more abundant in the February 2020 samples while autumn fruiting species generally had higher relative abundance in the November 2019 samples. There were higher relative abundances of land plants and algae in the February 2020 samples based on 18S rRNA gene sequencing. One of the OTUs belonging to the coniferous yew genus Taxus was more abundant in the February 2020 samples agreeing with the usual pollen season of yews in the UK which is from mid-January until late April. The result from this study suggests a potential application of bioaerosol profiling for tracing the source of atmospheric particles.
Collapse
|
3
|
Ważny R, Rozpądek P, Jędrzejczyk RJ, Domka A, Nosek M, Kidd P, Turnau K. Phytohormone based biostimulant combined with plant growth promoting endophytic fungus enhances Ni phytoextraction of Noccaea goesingensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147950. [PMID: 34082195 DOI: 10.1016/j.scitotenv.2021.147950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
To improve the efficiency of Ni phytoextraction, the metal hyperaccumulator N. goesingensis was subject to treatment with a combination of a Ni uptake stimulating microorganism and the commercially available, IAA- based biostimulating seaweed extract - Kelpak. Additionally, we compared the plant growth promoting and Ni uptake capabilities of the two biofertilizers. Treatment with the Kelpak alone had no significant effect on plant growth or Ni accumulation. Inoculation of N. goesingensis with Phomopsis columnaris significantly improved the biomass of the hyperaccumulating plant and Ni yield per plant and improved several plant biometric features such as fresh and dry weight and several others related to leaf and root size. However, the combination of the two treatments yielded the best results; plants treated with the two growth promoting agents yielded 85% more biomass compared to not treated plants and accumulated 48% more Ni per plant. To verify plant inoculation with the fungus we generated a GFP expressing strain of P. columnaris and visualized the fungus in both plant leaves and roots. To trace the development of the fungus in planta and to evaluate the effect of biostimulant treatment on mycelium development fungal translational elongation factor 1α (tef1α) DNA was quantified with qPCR. Upon biofertilizer the abundance P. columnaris in plant leaves increased nearly 5-fold. The utilization of plant growth stimulating microorganisms, endophytic fungi in particular, can significantly improve Ni phytoextraction in hyperaccumulator N. goesingensis.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland.
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Michał Nosek
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Ważny R, Rozpądek P, Domka A, Jędrzejczyk RJ, Nosek M, Hubalewska-Mazgaj M, Lichtscheidl I, Kidd P, Turnau K. The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144666. [PMID: 33736318 DOI: 10.1016/j.scitotenv.2020.144666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 05/05/2023]
Abstract
The role of endophytic fungi isolated from different populations of European Ni hyperaccumulators was investigated in regard to the microorganisms' ability to enhance the hyperaccumulation of Ni in Noccaea caerulescens. Effects of particular species of endophytic fungi on adaptation of N. caerulescens to excess Ni were tested by co-cultivation with single strains of the fungi. Seven of these had a positive effect on plant biomass production, whereas two of the tested species inhibited plant growth; biomass production of inoculated plants was significantly different compared to non-inoculated control. Inoculation with six fungal strains: Embellisia thlaspis, Pyrenochaeta cava, Phomopsis columnaris, Plectosphaerella cucumerina, Cladosporium cladosporioides and Alternaria sp. stimulated the plant to uptake and accumulate more Ni in both roots and shoots, compared to non-inoculated control. P. columnaris was isolated from all plant species sampled. Strains isolated from Noccaea caerulescens and Noccaea goesingensis increased Ni root and shoot accumulation of their native hosts (compared to non-inoculated control). Inoculation of different populations of Noccaea with P. columnaris of foreign origin did not cause its host to accumulate more Ni, with the exception of the Ni-unadapted ecotype of N. goesingensis. Inoculation with P. columnaris from N. caerulescens significantly improved Ni uptake, but the effect of the fungus was not as prominent as in the case of N. caerulescens. By comparing the transcriptomes of N. caerulescens and N. goesingensis from Flatz inoculated with P. columnaris, we showed that enhanced uptake and accumulation of Ni in the plants is accompanied by an upregulation of several genes mainly involved in plant stress protection and metal uptake and compartmentation.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland.
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Michał Nosek
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
| | | | - Irene Lichtscheidl
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, Austria
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Av. de Vigo, 15705 Santiago de Compostela, Spain
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Roodi D, Millner JP, McGill C, Johnson RD, Jauregui R, Card SD. Methylobacterium, a major component of the culturable bacterial endophyte community of wild Brassica seed. PeerJ 2020; 8:e9514. [PMID: 32728495 PMCID: PMC7357558 DOI: 10.7717/peerj.9514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/18/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Plants are commonly colonized by a wide diversity of microbial species and the relationships created can range from mutualistic through to parasitic. Microorganisms that typically form symptomless associations with internal plant tissues are termed endophytes. Endophytes associate with most plant species found in natural and managed ecosystems. They are extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Plant domestication has reduced endophyte diversity and therefore the wild relatives of many crop species remain untapped reservoirs of beneficial microbes. Brassica species display immense diversity and consequently provide the greatest assortment of products used by humans from a single plant genus important for agriculture, horticulture, bioremediation, medicine, soil conditioners, composting crops, and in the production of edible and industrial oils. Many endophytes are horizontally transmitted, but some can colonize the plant's reproductive tissues, and this gives these symbionts an efficient mechanism of propagation via plant seed (termed vertical transmission). METHODS This study surveyed 83 wild and landrace Brassica accessions composed of 14 different species with a worldwide distribution for seed-originating bacterial endophytes. Seed was stringently disinfected, sown within sterile tissue culture pots within a sterile environment and incubated. After approximately 1-month, direct isolation techniques were used to recover bacterial endophytes from roots and shoots of symptomless plants. Bacteria were identified based on the PCR amplification of partial 16S rDNA gene sequences and annotated using the BLASTn program against the NCBI rRNA database. A diversity index was used as a quantitative measure to reflect how many different bacterial species there were in the seed-originating microbial community of the Brassica accessions sampled. RESULTS Bacterial endophytes were recovered from the majority of the Brassica accessions screened. 16S rDNA gene sequencing identified 19 different bacterial species belonging to three phyla, namely Actinobacteria, Firmicutes and Proteobacteria with the most frequently isolated species being Methylobacterium fujisawaense, Stenotrophomonas rhizophila and Pseudomonas lactis. Methylobacterium was the dominant genus composing 56% of the culturable isolated bacterial community and was common in 77% of accessions possessing culturable bacterial endophytes. Two selected isolates of Methylobacterium significantly promoted plant growth when inoculated into a cultivar of oilseed rape and inhibited the growth of the pathogen Leptosphaeria maculans in dual culture. This is the first report that investigates the seed-originating endophytic microorganisms of wild Brassica species and highlights the Brassica microbiome as a resource for plant growth promoting bacteria and biological control agents.
Collapse
Affiliation(s)
- Davood Roodi
- School of Agriculture & Environment, Massey University, Palmerston North, Manawatu, New Zealand
- Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institute, Karaj, Alborz, Iran
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Manawatu, New Zealand
| | - James P Millner
- School of Agriculture & Environment, Massey University, Palmerston North, Manawatu, New Zealand
| | - Craig McGill
- School of Agriculture & Environment, Massey University, Palmerston North, Manawatu, New Zealand
| | - Richard D Johnson
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Manawatu, New Zealand
| | - Ruy Jauregui
- Knowledge & Analytics, AgResearch Limited, Grasslands Research Centre, Palmerston North, Manawatu, New Zealand
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Manawatu, New Zealand
| |
Collapse
|
6
|
Draft Genome Sequence of the Psychrotolerant Bacterium Methylobacterium sp. Strain BTF04, Isolated from Freshwater in Antarctica. Microbiol Resour Announc 2020; 9:9/21/e00171-20. [PMID: 32439661 PMCID: PMC7242663 DOI: 10.1128/mra.00171-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylobacterium sp. strain BTF04, a pink-pigmented psychrotolerant bacterium, was isolated from freshwater on Barton Peninsula, King George Island, Antarctica. Here, we report the assembled draft genome sequence of Methylobacterium sp. strain BTF04.
Collapse
|
7
|
Phytostabilization of Polluted Military Soil Supported by Bioaugmentation with PGP-Trace Element Tolerant Bacteria Isolated from Helianthus petiolaris. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Lead (Pb) and cadmium (Cd) are major environmental pollutants, and the accumulation of these elements in soils and plants is of great concern in agricultural production due to their toxic effects on crop growth. Also, these elements can enter into the food chain and severely affect human and animal health. Bioaugmentation with plant growth-promoting bacteria (PGPB) can contribute to an environmentally friendly and effective remediation approach by improving plant survival and promoting element phytostabilization or extraction under such harsh conditions. We isolated and characterised Pb and Cd-tolerant root-associated bacteria from Helianthus petiolaris growing on a Pb/Cd polluted soil in order to compose inoculants that can promote plant growth and also ameliorate the phytostabilization or phytoextraction efficiency. One hundred and five trace element-tolerant rhizospheric and endophytic bacterial strains belonging to eight different genera were isolated from the aromatic plant species Helianthus petiolaris. Most of the strains showed multiple PGP-capabilities, ability to immobilise trace elements on their cell wall, and promotion of seed germination. Bacillus paramycoides ST9, Bacillus wiedmannii ST29, Bacillus proteolyticus ST89, Brevibacterium frigoritolerans ST30, Cellulosimicrobium cellulans ST54 and Methylobacterium sp. ST85 were selected to perform bioaugmentation assays in greenhouse microcosms. After 2 months, seedlings of sunflower (H. annuus) grown on polluted soil and inoculated with B. proteolyticus ST89 produced 40% more biomass compared to the non-inoculated control plants and accumulated 20 % less Pb and 40% less Cd in the aboveground plant parts. In contrast, B. paramycoides ST9 increased the bioaccumulation factor (BAF) of Pb three times and of Cd six times without inhibiting plant growth. Our results indicate that, depending on the strain, bioaugmentation with specific beneficial bacteria can improve plant growth and either reduce trace element mobility or enhance plant trace element uptake.
Collapse
|
8
|
Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00190-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Green PN, Ardley JK. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 2018; 68:2727-2748. [PMID: 30024371 DOI: 10.1099/ijsem.0.002856] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Methylobacterium, when first proposed by Patt et al. in 1976, was a monospecific genus created to accommodate a single pink pigmented facultatively methylotrophic bacterium. The genus now has over 50 validly published species, however, the percentage 16S rRNA sequence divergence within Methylobacterium questions whether or not they can still be accommodated within one genus. Additionally, several strains are described as belonging to Methylobacterium, but nodulate legumes and in some cases are unable to utilize methanol as a sole carbon source. This study reviews and discusses the current taxonomic status of Methylobacterium. Based on 16S rRNA gene, multi-locus sequence analysis, genomic and phenotypic data, the 52 Methylobacterium species can no longer be retained in one genus. Consequently, a new genus, Methylorubrum gen. nov., is proposed to accommodate 11 species previously held in Methylobacterium. The reclassified species names are proposed as: Methylorubrum aminovorans comb. nov. (type strain TH-15T=NCIMB 13343T=DSM 8832T), Methylorubrum extorquens comb. nov. (type strain NCIMB 9399T=DSM 1337T), Methylorubrum podarium comb. nov. (type strain FM4T=NCIMB 14856T=DSM 15083T), Methylorubrum populi comb. nov. (type strain BJ001T=NCIMB 13946T=ATCC BAA-705T), Methylorubrum pseudosasae comb. nov. (type strain BL44T=ICMP 17622T=NBRC 105205T), Methylorubrum rhodesianum comb. nov. (type strain NCIMB 12249T=DSM 5687T), Methylorubrum rhodinum comb. nov. (type strain NCIMB 9421T=DSM 2163T), Methylorubrum salsuginis comb. nov. (type strain MRT=NCIMB 14847T=NCCB 100140T), Methylorubrum suomiense comb. nov. (type strain F20T=NCIMB 13778T=DSM 14458T), Methylorubrum thiocyanatum comb. nov. (type strain ALL/SCN-PT=NCIMB 13651T=DSM 11490T) and Methylorubrum zatmanii comb. nov. (type strain NCIMB 12243T=DSM 5688T). The taxonomic position of several remaining species is also discussed.
Collapse
Affiliation(s)
- Peter N Green
- 1NCIMB, Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen AB21 9YA, UK
| | - Julie K Ardley
- 2School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| |
Collapse
|
10
|
|
11
|
Merlot S, Sanchez Garcia de la Torre V, Hanikenne M. Physiology and Molecular Biology of Trace Element Hyperaccumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 174:14-25. [PMID: 26989941 DOI: 10.1016/j.jenvman.2016.02.047] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 05/10/2023]
Abstract
Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil Nadu, Tiruvarur, 610101, India
| | | | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
13
|
Fones HN, McCurrach H, Mithani A, Smith JAC, Preston GM. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens. Proc Biol Sci 2016; 283:20160648. [PMID: 27170725 PMCID: PMC4874724 DOI: 10.1098/rspb.2016.0648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022] Open
Abstract
Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves.
Collapse
Affiliation(s)
- H N Fones
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - H McCurrach
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - A Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| | - J A C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - G M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
14
|
Kwon MJ, Yang JS, Lee S, Lee G, Ham B, Boyanov MI, Kemner KM, O'Loughlin EJ. Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au-Ag mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:147-157. [PMID: 25917692 DOI: 10.1016/j.jhazmat.2015.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/17/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
The effects of extreme geochemical conditions on microbial community composition were investigated for two distinct sets of sediment samples collected near weathered mine tailings. One set (SCH) showed extraordinary geochemical characteristics: As (6.7-11.5%), Pb (1.5-2.1%), Zn (0.1-0.2%), and pH (3.1-3.5). The other set (SCL) had As (0.3-1.2%), Pb (0.02-0.22%), and Zn (0.01-0.02%) at pH 2.5-3.1. The bacterial communities in SCL were clearly different from those in SCH, suggesting that extreme geochemical conditions affected microbial community distribution even on a small spatial scale. The clones identified in SCL were closely related to acidophilic bacteria in the taxa Acidobacterium (18%), Acidomicrobineae (14%), and Leptospirillum (10%). Most clones in SCH were closely related to Methylobacterium (79%) and Ralstonia (19%), both well-known metal-resistant bacteria. Although total As was extremely high, over 95% was in the form of scorodite (FeAsO4·2H2O). Acid-extractable As was only ∼118 and ∼14 mg kg(-1) in SCH and SCL, respectively, below the level known to be toxic to bacteria. Meanwhile, acid-extractable Pb and Zn in SCH were above toxic concentrations. Because As was present in an oxidized, stable form, release of Pb and/or Zn (or a combination of toxic metals in the sediment) from the sediment likely accounts for the differences in microbial community structure. The results also suggest that care should be taken when investigating mine tailings, because large differences in chemical/biological properties can occur over small spatial scales.
Collapse
Affiliation(s)
- Man Jae Kwon
- Korea Institute of Science and Technology, Gangneung, South Korea.
| | - Jung-Seok Yang
- Korea Institute of Science and Technology, Gangneung, South Korea.
| | - Seunghak Lee
- Korea Institute of Science and Technology, Seoul, South Korea
| | | | - Baknoon Ham
- Korea Institute of Science and Technology, Gangneung, South Korea
| | - Maxim I Boyanov
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA; Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia, Bulgaria
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | | |
Collapse
|
15
|
Dourado MN, Aparecida Camargo Neves A, Santos DS, Araújo WL. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BIOMED RESEARCH INTERNATIONAL 2015; 2015:909016. [PMID: 25861650 PMCID: PMC4377440 DOI: 10.1155/2015/909016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/31/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
The genus Methylobacterium is composed of pink-pigmented facultative methylotrophic (PPFM) bacteria, which are able to synthesize carotenoids and grow on reduced organic compounds containing one carbon (C1), such as methanol and methylamine. Due to their high phenotypic plasticity, these bacteria are able to colonize different habitats, such as soil, water, and sediment, and different host plants as both endophytes and epiphytes. In plant colonization, the frequency and distribution may be influenced by plant genotype or by interactions with other associated microorganisms, which may result in increasing plant fitness. In this review, different aspects of interactions with the host plant are discussed, including their capacity to fix nitrogen, nodule the host plant, produce cytokinins, auxin and enzymes involved in the induction of systemic resistance, such as pectinase and cellulase, and therefore plant growth promotion. In addition, bacteria belonging to this group can be used to reduce environmental contamination because they are able to degrade toxic compounds, tolerate high heavy metal concentrations, and increase plant tolerance to these compounds. Moreover, genome sequencing and omics approaches have revealed genes related to plant-bacteria interactions that may be important for developing strains able to promote plant growth and protection against phytopathogens.
Collapse
Affiliation(s)
| | | | - Daiene Souza Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Welington Luiz Araújo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
16
|
Visioli G, D'Egidio S, Vamerali T, Mattarozzi M, Sanangelantoni AM. Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. CHEMOSPHERE 2014; 117:538-44. [PMID: 25277966 DOI: 10.1016/j.chemosphere.2014.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 05/20/2023]
Abstract
In this work, both culture-dependent and independent approaches were used to identify and isolate endophytic bacteria from roots of the Ni hyperaccumulator Noccaea caerulescens. A total of 17 isolates were cultured from root samples, selected for tolerance to 6mM Ni and grouped by restriction analysis of 16S rDNA. Bacterial species cultivated from roots belonged to seven genera, Microbacterium, Arthrobacter, Agreia, Bacillus, Sthenotrophomonas, Kocuria and Variovorax. The culture-independent approach confirmed the presence of Microbacterium and Arthrobacter while only other five clones corresponding to different amplified ribosomal DNA restriction patterns were detected. Five selected highly Ni-resistant bacteria showing also plant growth promoting activities, were inoculated into seeds of N. caerulescens, and in vivo microscopic analysis showed rapid root colonisation. Inoculated plants showed increased shoot biomass, root length and root-to-shoot Ni translocation. Root colonisation was also evident, but not effective, in the non-hyperaccumulating Thlaspi perfoliatum. Seed inoculation with selected Ni-resistant endophytic bacteria may represent a powerful tool in phytotechnologies, although transferring it to biomass species still requires further studies and screening.
Collapse
Affiliation(s)
- Giovanna Visioli
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Sara D'Egidio
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale dell' Università 16, 35020 Legnaro-Padova, Italy
| | - Monica Mattarozzi
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, Parma, Italy
| | | |
Collapse
|
17
|
Alboghobeish H, Tahmourespour A, Doudi M. The study of Nickel Resistant Bacteria (NiRB) isolated from wastewaters polluted with different industrial sources. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:44. [PMID: 24475932 PMCID: PMC3931474 DOI: 10.1186/2052-336x-12-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 01/26/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pollution due to the heavy metals is a problem that may have negative consequences on the hydrosphere. One of the best procedures in removing the toxic metals from the environment is using metal resistant bacteria. RESULTS In the present study eight nickel resistant bacteria were isolated from industrial wastewaters. Three of them were selected as the most resistant based on their Maximum tolerable concentration (8, 16 and 24 mM Ni2+). Their identification was done according to morphological, biochemical characteristics and 16SrDNA gene sequencing and they were identified as Cupriavidus sp ATHA3, Klebsiella oxytoca ATHA6 and Methylobacterium sp ATHA7. The accession numbers assigned to ATHA3, ATHA6 and ATHA7 strains are JX120152, JX196648 and JX457333 respectively. The Growth rate of the most resistant isolate, Klebsiella oxytoca strain ATHA6, in the presence of Ni2+ and the reduction in Ni2+ concentration was revealed that K oxytoca ATHA6 could decrease 83 mg/mL of nickel from the medium after 3 days. CONCLUSION It can be concluded that the identified Ni resistant bacteria could be valuable for the bioremediation of Ni polluted waste water and sewage.
Collapse
Affiliation(s)
- Hoda Alboghobeish
- Microbiology Department, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Arezoo Tahmourespour
- Basic Medical Sciences Department, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
| | - Monir Doudi
- Microbiology Department, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| |
Collapse
|
18
|
Kolb S, Stacheter A. Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Front Microbiol 2013; 4:268. [PMID: 24046766 PMCID: PMC3763247 DOI: 10.3389/fmicb.2013.00268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023] Open
Abstract
The commercial availability of next generation sequencing (NGS) technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past years re-attracted notice to the pivotal role of methylotrophs in global conversions of methanol, which mainly originates from plants, and is involved in oxidative reactions and ozone formation in the atmosphere. Aerobic methanol utilizers belong to Bacteria, yeasts, Ascomycota, and molds. Numerous bacterial methylotrophs are facultatively aerobic, and also contribute to anaerobic methanol oxidation in the environment, whereas strict anaerobic methanol utilizers belong to methanogens and acetogens. The diversity of enzymes catalyzing the initial oxidation of methanol is considerable, and comprises at least five different enzyme types in aerobes, and one in strict anaerobes. Only the gene of the large subunit of pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH; mxaF) has been analyzed by environmental pyrosequencing. To enable a comprehensive assessment of methanol utilizers in the environment, new primers targeting genes of the PQQ MDH in Methylibium (mdh2), of the nicotinamide adenine dinucleotide-dependent MDH (mdh), of the methanol oxidoreductase of Actinobacteria (mdo), of the fungal flavin adenine nucleotide-dependent alcohol oxidase (mod1, mod2, and homologs), and of the gene of the large subunit of the methanol:corrinoid methyltransferases (mtaC) in methanogens and acetogens need to be developed. Combined stable isotope probing of nucleic acids or proteins with amplicon-based NGS are straightforward approaches to reveal insights into functions of certain methylotrophic taxa in the global methanol cycle.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of Bayreuth Bayreuth, Germany
| | | |
Collapse
|
19
|
Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. SOIL BIOLOGY & BIOCHEMISTRY 2013; 60:182-194. [PMID: 23645938 PMCID: PMC3618436 DOI: 10.1016/j.soilbio.2013.01.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 01/04/2013] [Accepted: 01/13/2013] [Indexed: 05/04/2023]
Abstract
Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.
Collapse
Affiliation(s)
- Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
| | - Melanie Kuffner
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), CSIC, Apdo. 122, 15780 Santiago de Compostela, Spain
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, B-3590 Diepenbeek, Belgium
| | - Walter W. Wenzel
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| | - Katharina Fallmann
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| | - Markus Puschenreiter
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| |
Collapse
|
20
|
Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. ADVANCES IN AGRONOMY 2013:381-445. [PMID: 0 DOI: 10.1016/b978-0-12-407685-3.00007-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
21
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012. [DOI: 10.1099/ijs.0.048033-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper, to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below, and these authors’ names will be included in the author index of the present issue. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|
22
|
High-throughput identification and screening of novel Methylobacterium species using whole-cell MALDI-TOF/MS analysis. PLoS One 2012; 7:e40784. [PMID: 22808262 PMCID: PMC3395638 DOI: 10.1371/journal.pone.0040784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/13/2012] [Indexed: 11/28/2022] Open
Abstract
Methylobacterium species are ubiquitous α-proteobacteria that reside in the phyllosphere and are fed by methanol that is emitted from plants. In this study, we applied whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (WC-MS) to evaluate the diversity of Methylobacterium species collected from a variety of plants. The WC-MS spectrum was reproducible through two weeks of cultivation on different media. WC-MS spectrum peaks of M. extorquens strain AM1 cells were attributed to ribosomal proteins, but those were not were also found. We developed a simple method for rapid identification based on spectra similarity. Using all available type strains of Methylobacterium species, the method provided a certain threshold similarity value for species-level discrimination, although the genus contains some type strains that could not be easily discriminated solely by 16S rRNA gene sequence similarity. Next, we evaluated the WC-MS data of approximately 200 methylotrophs isolated from various plants with MALDI Biotyper software (Bruker Daltonics). Isolates representing each cluster were further identified by 16S rRNA gene sequencing. In most cases, the identification by WC-MS matched that by sequencing, and isolates with unique spectra represented possible novel species. The strains belonging to M. extorquens, M. adhaesivum, M. marchantiae, M. komagatae, M. brachiatum, M. radiotolerans, and novel lineages close to M. adhaesivum, many of which were isolated from bryophytes, were found to be the most frequent phyllospheric colonizers. The WC-MS technique provides emerging high-throughputness in the identification of known/novel species of bacteria, enabling the selection of novel species in a library and identification without 16S rRNA gene sequencing.
Collapse
|
23
|
Pini F, Frascella A, Santopolo L, Bazzicalupo M, Biondi EG, Scotti C, Mengoni A. Exploring the plant-associated bacterial communities in Medicago sativa L. BMC Microbiol 2012; 12:78. [PMID: 22607312 PMCID: PMC3412730 DOI: 10.1186/1471-2180-12-78] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 05/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important part of biodiversity in this system, which includes also the well known symbiont S. meliloti. Interestingly, this last species was also found in plant aerial part, by applying cultivation-independent protocols, and a genetic diversity analysis suggested that population structure could be strongly influenced by random drift.
Collapse
Affiliation(s)
- Francesco Pini
- Department of Evolutionary Biology, University of Florence, via Romana 17, I-50125, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:759865. [PMID: 22482056 PMCID: PMC3310211 DOI: 10.1155/2012/759865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
Abstract
Methylobacterium strains were isolated from mangrove samples collected in Bertioga, SP, Brazil, from locations either contaminated or uncontaminated by oil spills. The tolerances of the strains to different heavy metals were assessed by exposing them to different concentrations of cadmium, lead, and arsenic (0.1 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM). Additionally, the genetic diversity of Methylobacterium spp. was determined by sequence analysis of the 16S rRNA genes. The isolates from the contaminated locations were grouped, suggesting that oil can select for microorganisms that tolerate oil components and can change the methylotrophic bacterial community. Cadmium is the most toxic heavy metal assessed in this work, followed by arsenic and lead, and two isolates of Methylobacterium were found to be tolerant to all three metals. These isolates have the potential to bioremediate mangrove environments contaminated by oil spills by immobilizing the heavy metals present in the oil.
Collapse
|
25
|
Tani A, Sahin N, Kimbara K. Methylobacterium gnaphalii sp. nov., isolated from leaves of Gnaphalium spicatum. Int J Syst Evol Microbiol 2011; 62:2602-2607. [PMID: 22199216 DOI: 10.1099/ijs.0.037713-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pink-pigmented, facultatively methylotrophic bacterium, strain 23e(T), was isolated from the leaves of Gnaphalium spicatum (cudweed). The cells of strain 23e(T) were Gram-reaction negative, motile and non-spore-forming rods. On the basis of 16S rRNA gene sequence similarities, strain 23e(T) was related to Methylobacterium organophilum ATCC 27886(T) (97.1%) and Methylobacterium marchantiae JT1(T) (97%), and the phylogenetic similarities to all other Methylobacterium species with validly published names were less than 97%. Major cellular fatty acids were C(18:1)ω7c, C(16:00) and C(18:0). The results of DNA-DNA hybridization, phylogenetic analyses based on 16S rRNA and cpn60 gene sequences, fatty acid profiles, whole-cell matrix-assisted laser desorption/ionization time of flight/MS analysis, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 23e(T) from the phylogenetically closest relatives. We propose that strain 23e(T) represents a novel species within the genus Methylobacterium, for which the name Methylobacterium gnaphalii sp. nov. is proposed. The type strain is 23e(T) (=DSM 24027(T)=NBRC 107716(T)).
Collapse
Affiliation(s)
- Akio Tani
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Okayama, Japan
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla University, Kötekli 48000, Mugla, Turkey
| | - Kazuhide Kimbara
- Faculty of Engineering, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
26
|
Knief C, Dengler V, Bodelier PLE, Vorholt JA. Characterization of Methylobacterium strains isolated from the phyllosphere and description of Methylobacterium longum sp. nov. Antonie van Leeuwenhoek 2011; 101:169-83. [DOI: 10.1007/s10482-011-9650-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 09/24/2011] [Indexed: 11/27/2022]
|
27
|
Tani A, Sahin N, Kimbara K. Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculata. Int J Syst Evol Microbiol 2011; 62:1647-1652. [PMID: 21908681 DOI: 10.1099/ijs.0.033019-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pink-pigmented, facultatively methylotrophic bacterium, strain 35a(T), was isolated from the leaves of Oxalis corniculata. Cells of strain 35a(T) were Gram-reaction-negative, motile, non-spore-forming rods. The highest 16S rRNA gene pairwise sequence similarities for strain 35a(T) were found with the strains of Methylobacterium iners 5317S-33(T) (96.7%), 'Methylobacterium soli' YIM 48816 (96.6%) and Methylobacterium jeotgali S2R03-9(T) (96.3%). 16S rRNA gene sequence similarities with the type strains of all other recognized species of the genus Methylobacterium were below 96%. Major cellular fatty acids were C(18:1)ω7c, C(18:0) and C(16:0). The results of DNA-DNA hybridization experiments, analysis of cpn60 gene sequences, fatty acid profiles, whole-cell MALDI-TOF/MS spectral pattern analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 35a(T) from its nearest phylogenetic neighbours. Strain 35a(T) is therefore considered to represent a novel species within the genus Methylobacterium, for which the name Methylobacterium oxalidis sp. nov. is proposed. The type strain is 35a(T) (=DSM 24028(T)=NBRC 107715(T)).
Collapse
Affiliation(s)
- Akio Tani
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Okayama, Japan
| | - Nurettin Sahin
- Mugla University, Egitim Fakultesi, 48000 Kötekli, Mugla, Turkey
| | - Kazuhide Kimbara
- Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka, Japan
| |
Collapse
|
28
|
Wellner S, Lodders N, Kämpfer P. Methylobacterium cerastii sp. nov., isolated from the leaf surface of Cerastium holosteoides. Int J Syst Evol Microbiol 2011; 62:917-924. [PMID: 21669927 DOI: 10.1099/ijs.0.030767-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Two Gram-stain-negative, non-endospore-forming, rod-like strains, designated C15T and C44, were isolated from the phyllosphere of Cerastium holosteoides and were studied in detail in order to assess their taxonomic position. 16S rRNA gene sequence analysis allocated both isolates clearly to the genus Methylobacterium. Both strains showed the highest 16S rRNA gene sequence similarity to Methylobacterium marchantiae JT1T (97.5 %) and Methylobacterium jeotgali S2R03-9T (97.4 %). The fatty acid profiles contained major amounts of C16:0, C18:1ω7c and C16:1ω7c/iso-C15:0 2-OH (summed feature 3), which supported the grouping of the isolates in the genus Methylobacterium. Physiological/biochemical characterization and DNA-DNA hybridizations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation of the strains. For this reason, we propose for strain C15T (=DSM 23679T=CCUG 60040T=CCM 7788T) a novel species with the name Methylobacterium cerastii sp. nov. Strain C44 (=DSM 23675=CCM 7789) is an additional strain of M. cerastii.
Collapse
Affiliation(s)
- S Wellner
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - N Lodders
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - P Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| |
Collapse
|
29
|
Li J, Zhang T, Wang L, Liu Y, Dai R, Liu X. Characterization and quantification of the nickel resistant microbial community in activated sludge using 16S rDNA and nickel resistance genes. ENVIRONMENTAL TECHNOLOGY 2011; 32:533-542. [PMID: 21877534 DOI: 10.1080/09593330.2010.504749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effect of nickel on the microbial community in the activated sludge of a sequencing batch reactor (SBR) reactor was investigated by continuously dosing nickel from 60 to 240 mg Ni(II) L(-1). The diversity of the microbial community was investigated by polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis of the variable V3 region of the bacterial 16S rDNA. The experimental results showed that the community structure changed significantly after dosing with nickel with a shift in dominant species, the disappearance of some original species and the emergence of some new species. The existence of a nickel resistant gene was also investigated using PCR. The obtained nickel resistance gene had a maximum homology with the plasmid pMOL30 of Ralstonia metallidurans CH34. The quantitative real-time PCR results indicated that the quantity of the nickel resistance gene was related to the nickel concentration loaded to the reactor.
Collapse
Affiliation(s)
- Jia Li
- Environmental Biotechnology Laboratory, Department of Civil Engineering, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
30
|
Cellulase Production by Pink Pigmented Facultative Methylotrophic Strains (PPFMs). Appl Biochem Biotechnol 2011; 164:666-80. [DOI: 10.1007/s12010-011-9166-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
31
|
Xinxian L, Xuemei C, Yagang C, Woon-Chung WJ, Zebin W, Qitang W. Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0568-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Studholme DJ, Kemen E, MacLean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones JDG. Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol Lett 2010; 310:182-92. [PMID: 20695894 DOI: 10.1111/j.1574-6968.2010.02065.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Banana Xanthomonas wilt is a newly emerging disease that is currently threatening the livelihoods of millions of farmers in East Africa. The causative agent is Xanthomonas campestris pathovar musacearum (Xcm), but previous work suggests that this pathogen is much more closely related to species Xanthomonas vasicola than to X. campestris. We have generated draft genome sequences for a banana-pathogenic strain of Xcm isolated in Uganda and for a very closely related strain of X. vasicola pathovar vasculorum, originally isolated from sugarcane, that is nonpathogenic on banana. The draft sequences revealed overlapping but distinct repertoires of candidate virulence effectors in the two strains. Both strains encode homologues of the Pseudomonas syringae effectors HopW, HopAF1 and RipT from Ralstonia solanacearum. The banana-pathogenic and non-banana-pathogenic strains also differed with respect to lipopolysaccharide synthesis and type-IV pili, and in at least several thousand single-nucleotide polymorphisms in the core conserved genome. We found evidence of horizontal transfer between X. vasicola and very distantly related bacteria, including members of other divisions of the Proteobacteria. The availability of these draft genomes will be an invaluable tool for further studies aimed at understanding and combating this important disease.
Collapse
|
33
|
Schauer S, Kämpfer P, Wellner S, Spröer C, Kutschera U. Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int J Syst Evol Microbiol 2010; 61:870-876. [PMID: 20495043 DOI: 10.1099/ijs.0.021915-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pink-pigmented, facultatively methylotrophic bacterium, designated strain JT1(T), was isolated from a thallus of the liverwort Marchantia polymorpha L. and was analysed by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis placed the strain in a clade with Methylobacterium adhaesivum AR27(T), Methylobacterium fujisawaense DSM 5686(T), Methylobacterium radiotolerans JCM 2831(T) and Methylobacterium jeotgali S2R03-9(T), with which it showed sequence similarities of 97.8, 97.7, 97.2 and 97.4 %, respectively. However, levels of DNA-DNA relatedness between strain JT1(T) and these and the type strains of other closely related species were lower than 70 %. Cells of JT1(T) stained Gram-negative and were motile, rod-shaped and characterized by numerous fimbriae-like appendages on the outer surface of their wall (density up to 200 µm(-2)). Major fatty acids were C(18 : 1)ω7c and C(16 : 0). Based on the morphological, physiological and biochemical data presented, strain JT1(T) is considered to represent a novel species of the genus Methylobacterium, for which the name Methylobacterium marchantiae sp. nov. is proposed. The type strain is JT1(T) ( = DSM 21328(T) = CCUG 56108(T)).
Collapse
Affiliation(s)
- S Schauer
- Institut für Biologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34109 Kassel, Germany
| | - P Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig Universität Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - S Wellner
- Institut für Angewandte Mikrobiologie, Justus-Liebig Universität Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany
| | - C Spröer
- DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - U Kutschera
- Institut für Biologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34109 Kassel, Germany
| |
Collapse
|
34
|
Mengoni A, Pini F, Huang LN, Shu WS, Bazzicalupo M. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv. MICROBIAL ECOLOGY 2009; 58:660-667. [PMID: 19479304 DOI: 10.1007/s00248-009-9537-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 05/15/2009] [Indexed: 05/27/2023]
Abstract
Bacteria associated with tissues of metal-hyperaccumulating plants are of great interest due to the multiple roles they may play with respect to plant growth and resistance to heavy metals. The variability of bacterial communities associated with plant tissues of three populations of Alyssum bertolonii, a Ni hyperaccumulator endemic of serpentine outcrops of Central Italy, was investigated. Terminal-restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes was applied to DNA extracted from leaf tissues of 30 individual plants from three geographically separated serpentine outcrops. Moreover, T-RFLP fingerprinting was also performed on DNA extracted from the same soils from which the plants were collected. Fifty-nine unique terminal-restriction fragments (TRFs) were identified, with more than half of the taxonomically interpreted TRFs assigned to Alpha- and Gamma-Proteobacteria and Clostridia. Data were then used to define the extent of variation of bacterial communities due to single plants or to plant populations. Results indicated a very high plant-by-plant variation of leaf-associated community (more than 93% of total variance observed). However, a core (numerically small) of plant-specific TRFs was found. This work demonstrates that plant-associated bacterial communities represent a large reservoir of biodiversity and that the high variability existing between plants, even from the same population, should be taken into account in future studies on association between bacteria and metal-hyperaccumulating plants.
Collapse
Affiliation(s)
- Alessio Mengoni
- Department of Evolutionary Biology, University of Firenze, via Romana 17, 50125 Firenze, Italy.
| | | | | | | | | |
Collapse
|
35
|
Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. CHEMOSPHERE 2009; 77:153-60. [PMID: 19647283 DOI: 10.1016/j.chemosphere.2009.06.047] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/22/2009] [Accepted: 06/22/2009] [Indexed: 05/20/2023]
Abstract
Pollution of soils with heavy metals is becoming one of the most severe environmental and human health hazards. Due to its widespread contamination finding innovative ways to clean metal pollutant has become a priority in the remediation field. Phytoremediation, the use of plants for the restoration of environments contaminated with pollutants is a relatively new technology that is more benign than current engineering solutions to treat contaminated sites. Recently, the benefits of combining endophytic bacteria with plants for increased remediation of pollutants have been successfully tried for toxic metal removal from contaminated soils. Endophytic bacteria reside within plant hosts without causing disease symptoms. Further, the metal resistant endophytes are reported to be present in various hyperaccumulator plants growing on heavy metal contaminated soils and play an important role in successful survival and growth of plants. Moreover, the metal resistant endophytes are reported to promote plant growth by various mechanisms such as nitrogen fixation, solubilization of minerals, production of phytohormones, siderophores, utilization of 1-aminocyclopropane-1-carboxylic acid as a sole N source and transformation of nutrient elements. In this review we highlight the diversity and plant growth promoting features of metal resistant endophytic bacteria and discuss their potential in phytoextraction of heavy metals from contaminated soils.
Collapse
|
36
|
Characterization of 1-aminocyclopropane-1-carboxylate deaminase producing methylobacteria from phyllosphere of rice and their role in ethylene regulation. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0027-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Cultivation-independent characterization of methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol 2008; 74:2218-28. [PMID: 18263752 DOI: 10.1128/aem.02532-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNA(Ala) gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems.
Collapse
|
38
|
Endophytes and Rhizosphere Bacteria of Plants Growing in Heavy Metal-Containing Soils. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-74231-9_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Go SJ, Koo BS, Sa TM. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 2007; 57:326-331. [PMID: 17267973 DOI: 10.1099/ijs.0.64603-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pink-pigmented, facultatively methylotrophic bacterium, strain CBMB20T, isolated from stem tissues of rice, was analysed by a polyphasic approach. Strain CBMB20T utilized 1-aminocyclopropane 1-carboxylate (ACC) as a nitrogen source and produced ACC deaminase. It was related phylogenetically to members of the genus Methylobacterium. 16S rRNA gene sequence analysis indicated that strain CBMB20T was most closely related to Methylobacterium fujisawaense, Methylobacterium radiotolerans and Methylobacterium mesophilicum; however, DNA-DNA hybridization values were less than 70 % with the type strains of these species. The DNA G+C content of strain CBMB20T was 70.6 mol%. The study presents a detailed phenotypic characterization of strain CBMB20T that allows its differentiation from other Methylobacterium species. In addition, strain CBMB20T is the only known member of the genus Methylobacterium to be described from the phyllosphere of rice. Based on the data presented, strain CBMB20T represents a novel species in the genus Methylobacterium, for which the name Methylobacterium oryzae sp. nov. is proposed, with strain CBMB20T (=DSM 18207T=LMG 23582T=KACC 11585T) as the type strain.
Collapse
MESH Headings
- Amino Acids, Cyclic/metabolism
- Bacterial Typing Techniques
- Base Composition
- Carbohydrate Metabolism
- Carbon-Carbon Lyases/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fatty Acids/chemistry
- Genes, rRNA/genetics
- Methylobacterium/classification
- Methylobacterium/enzymology
- Methylobacterium/genetics
- Methylobacterium/isolation & purification
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Oryza/microbiology
- Phylogeny
- Pigments, Biological/biosynthesis
- Plant Stems/microbiology
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Byung-Yong Kim
- Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Selvaraj Poonguzhali
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Soon-Wo Kwon
- Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Myung-Hee Song
- Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jeoung-Hyun Ryu
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Seung-Joo Go
- Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Bon-Sung Koo
- Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Tong-Min Sa
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|