1
|
Longhi G, Lugli GA, Tarracchini C, Fontana F, Bianchi MG, Carli E, Bussolati O, van Sinderen D, Turroni F, Ventura M. From raw milk cheese to the gut: investigating the colonization strategies of Bifidobacterium mongoliense. Appl Environ Microbiol 2024; 90:e0124424. [PMID: 39150265 PMCID: PMC11409640 DOI: 10.1128/aem.01244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the Bifidobacterium mongoliense species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between B. mongoliense and the human gut. Based on 128 raw milk cheeses collected from different Italian regions, we isolated and characterized 10 B. mongoliense strains. Comparative genomics allowed us to unveil the presence of enzymes required for the degradation of sialylated host-glycans in B. mongoliense, corroborating the appreciable growth on de Man-Rogosa-Sharpe (MRS) medium supplemented with 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL). The B. mongoliense BMONG18 was chosen, due to its superior ability to utilize 3'-SL and mucin as representative strain, to investigate its behavior when co-inoculated with other bifidobacterial species. Conversely, members of other bifidobacterial species did not appear to benefit from the presence of BMONG18, highlighting a competitive scenario for nutrient acquisition. Transcriptomic data of BMONG18 reveal no significant differences in gene expression when cultivated in a gut simulating medium (GSM), regardless of whether cheese was included or not. Furthermore, BMONG18 was shown to exhibit high adhesion capabilities to HT29-MTX human cells, in line with its colonization ability of a human host.IMPORTANCEFermented foods are nourishments produced through controlled microbial growth that play an essential role in worldwide human nutrition. Research interest in fermented foods has increased since the 80s, driven by growing awareness of their potential health benefits beyond mere nutritional content. Bifidobacterium mongoliense, previously identified throughout the production process of Parmigiano Reggiano cheese, was found to be capable of establishing itself in the intestines of its consumers. Our study underscores molecular mechanisms through which this bifidobacterial species, derived from food, interacts with the host and other gut microbiota members.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Papadopoulou D, Chrysikopoulou V, Rampaouni A, Tsoupras A. Antioxidant and anti-inflammatory properties of water kefir microbiota and its bioactive metabolites for health promoting bio-functional products and applications. AIMS Microbiol 2024; 10:756-811. [PMID: 39628717 PMCID: PMC11609422 DOI: 10.3934/microbiol.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
Inflammation and oxidative stress are implicated in several chronic disorders, while healthy foods and especially fermented beverages and those containing probiotics can provide anti-inflammatory and antioxidant protection against such manifestations and the associated disorders. Water kefir is such a beverage that is rich in both probiotic microbiota and anti-inflammatory bioactives, with an increasing demand as an alternative to a fermented product based on non-dairy matrix with potential health properties. Within this study, the health-promoting properties of the most representative species and strains of microorganisms present in water kefir grains, as well as the health benefits attributed to the bioactive metabolites produced by each individual strain in a series of their cultures, were thoroughly reviewed. Emphasis was given to the antioxidant, antithrombotic, and anti-inflammatory bio-functionalities of both the cultured microorganisms and the bioactive metabolites produced in each case. Moreover, an extensive presentation of the antioxidant and anti-inflammatory health benefits observed from the overall water kefir cultures and classic water kefir beverages obtained were also conducted. Finally, the use of water kefir for the production of several other bio-functional products, including fermented functional foods, supplements, nutraceuticals, nutricosmetics, cosmeceuticals, and cosmetic applications with anti-inflammatory and antioxidant health promoting potential was also thoroughly discussed. Limitations and future perspectives on the use of water kefir, its microorganisms, and their bioactive metabolites are also outlined.
Collapse
Affiliation(s)
| | | | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404, Kavala, Greece
| |
Collapse
|
3
|
Nezametdinova VZ, Yunes RA, Dukhinova MS, Alekseeva MG, Danilenko VN. The Role of the PFNA Operon of Bifidobacteria in the Recognition of Host's Immune Signals: Prospects for the Use of the FN3 Protein in the Treatment of COVID-19. Int J Mol Sci 2021; 22:ijms22179219. [PMID: 34502130 PMCID: PMC8430577 DOI: 10.3390/ijms22179219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Bifidobacteria are some of the major agents that shaped the immune system of many members of the animal kingdom during their evolution. Over recent years, the question of concrete mechanisms underlying the immunomodulatory properties of bifidobacteria has been addressed in both animal and human studies. A possible candidate for this role has been discovered recently. The PFNA cluster, consisting of five core genes, pkb2, fn3, aaa-atp, duf58, tgm, has been found in all gut-dwelling autochthonous bifidobacterial species of humans. The sensory region of the species-specific serine-threonine protein kinase (PKB2), the transmembrane region of the microbial transglutaminase (TGM), and the type-III fibronectin domain-containing protein (FN3) encoded by the I gene imply that the PFNA cluster might be implicated in the interaction between bacteria and the host immune system. Moreover, the FN3 protein encoded by one of the genes making up the PFNA cluster, contains domains and motifs of cytokine receptors capable of selectively binding TNF-α. The PFNA cluster could play an important role for sensing signals of the immune system. Among the practical implications of this finding is the creation of anti-inflammatory drugs aimed at alleviating cytokine storms, one of the dire consequences resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Venera Z. Nezametdinova
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Roman A. Yunes
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Marina S. Dukhinova
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Maria G. Alekseeva
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
- Correspondence:
| |
Collapse
|
4
|
Alessandri G, van Sinderen D, Ventura M. The genus bifidobacterium: From genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021; 19:1472-1487. [PMID: 33777340 PMCID: PMC7979991 DOI: 10.1016/j.csbj.2021.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the genus Bifidobacterium are dominant and symbiotic inhabitants of the mammalian gastrointestinal tract. Being vertically transmitted, bifidobacterial host colonization commences immediately after birth and leads to a phase of host infancy during which bifidobacteria are highly prevalent and abundant to then transit to a reduced, yet stable abundance phase during host adulthood. However, in order to reach and stably colonize their elective niche, i.e. the large intestine, bifidobacteria have to cope with a multitude of oxidative, osmotic and bile salt/acid stress challenges that occur along the gastrointestinal tract (GIT). Concurrently, bifidobacteria not only have to compete with the myriad of other gut commensals for nutrient acquisition, but they also require protection against bacterial viruses. In this context, Next-Generation Sequencing (NGS) techniques, allowing large-scale comparative and functional genome analyses have helped to identify the genetic strategies that bifidobacteria have developed in order to colonize, survive and adopt to the highly competitive mammalian gastrointestinal environment. The current review is aimed at providing a comprehensive overview concerning the molecular strategies on which bifidobacteria rely to stably and successfully colonize the mammalian gut.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
5
|
The forgotten sugar: A review on multifarious applications of melezitose. Carbohydr Res 2021; 500:108248. [PMID: 33529787 DOI: 10.1016/j.carres.2021.108248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
Although, 187 years elapsed after the discovery of melezitose, it is a high time to deduce some solid applications as there are only 13 more years left to celebrate a double century of this sugar. The forgotten sugar has multifarious applications; it is used as a metabolic marker to differentiate melezitose fermenting microorganisms, as a carbon source to culture specific microorganisms, as a potential surfactant and excipient to stabilize pharmaceuticals, as a lyoprotectant or cryoprotectant for several industrial applications, as an edibility enhancer in food industry, as a hair smoothening agent in cosmetic industry, and provide protective & nourishing effects in fisheries and aquaculture industries. In entomological research, it is used to study niche differentiation, increased longevity of insects and also as a biocontrol agent. This review brings out the best possible applications of melezitose and present in the form of a mnemonic to remember this forgotten sugar.
Collapse
|
6
|
Exploring the Ecology of Bifidobacteria and Their Genetic Adaptation to the Mammalian Gut. Microorganisms 2020; 9:microorganisms9010008. [PMID: 33375064 PMCID: PMC7822027 DOI: 10.3390/microorganisms9010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian gut is densely inhabited by microorganisms that have coevolved with their host. Amongst these latter microorganisms, bifidobacteria represent a key model to study host–microbe interaction within the mammalian gut. Remarkably, bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract. They constitute one of the dominant bacterial members of the intestinal microbiota and are among the first colonizers of the mammalian gut. Notably, the presence of bifidobacteria in the gut has been associated with several health-promoting activities. In this review, we aim to provide an overview of current knowledge on the genetic diversity and ecology of bifidobacteria. Furthermore, we will discuss how this important group of gut bacteria is able to colonize and survive in the mammalian gut, so as to facilitate host interactions.
Collapse
|
7
|
Eckel VPL, Ziegler LM, Vogel RF, Ehrmann M. Bifidobacterium tibiigranuli sp. nov. isolated from homemade water kefir. Int J Syst Evol Microbiol 2020; 70:1562-1570. [PMID: 31860428 DOI: 10.1099/ijsem.0.003936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Bifidobacterium strains, TMW 2.2057T and TMW 2.1764 were isolated from two different homemade water kefirs from Germany. Both strains were oxidase- and catalase-negative and Gram-staining-positive. Cells were non-motile, irregular rods that were aerotolerant anaerobes. On basis of fructose 6-phosphate phosphoketolase activity, they were assigned to the family Bifidobacteriaceae. Comparative analysis of 16S rRNA and concatenated housekeeping genes (clpC, dnaB, dnaG, dnaJ, hsp60 and rpoB) demonstrated that both strains represented a member of the genus Bifidobacterium, with Bifidobacterium subtile DSM 20096T as the closest phylogenetic relative (98.35 % identity). Both strains can be distinguished using randomly amplified polymorphic DNA fingerprinting. Analysis of concatenated marker gene sequences as well as average nucleotide identity by blast (ANIb) and in silico DNA-DNA hybridization (isDDH) calculations of their genome sequences confirmed Bifidobacterium subtile DSM 20096T as the closest relative (87.91 and 35.80 % respectively). All phylogenetic analyses allow differentiation of strains TMW 2.2057T and TMW 2.1764 from all hitherto described species of the genus Bifidobacterium with validly published names. We therefore propose a novel species with the name Bifidobacterium tibiigranuli, for which TMW 2.2057T (=DSM 108414T=LMG 31086T) is the type strain.
Collapse
Affiliation(s)
- Viktor P L Eckel
- Technische Universität München, Lehrstuhl fuer Technische Mikrobiologie, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Lisa-Marie Ziegler
- Technische Universität München, Lehrstuhl fuer Technische Mikrobiologie, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Rudi F Vogel
- Technische Universität München, Lehrstuhl fuer Technische Mikrobiologie, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Matthias Ehrmann
- Technische Universität München, Lehrstuhl fuer Technische Mikrobiologie, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| |
Collapse
|
8
|
Bondue P, Milani C, Arnould E, Ventura M, Daube G, LaPointe G, Delcenserie V. Bifidobacterium mongoliense genome seems particularly adapted to milk oligosaccharide digestion leading to production of antivirulent metabolites. BMC Microbiol 2020; 20:111. [PMID: 32380943 PMCID: PMC7206731 DOI: 10.1186/s12866-020-01804-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMO) could promote the growth of bifidobacteria, improving young children's health. In addition, fermentation of carbohydrates by bifidobacteria can result in the production of metabolites presenting an antivirulent activity against intestinal pathogens. Bovine milk oligosaccharides (BMO), structurally similar to HMO, are found at high concentration in cow whey. This is particularly observed for 3'-sialyllactose (3'SL). This study focused on enzymes and transport systems involved in HMO/BMO metabolism contained in B. crudilactis and B. mongoliense genomes, two species from bovine milk origin. The ability of B. mongoliense to grow in media supplemented with whey or 3'SL was assessed. Next, the effects of cell-free spent media (CFSM) were tested against the virulence expression of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. RESULTS Due to the presence of genes encoding β-galactosidases, β-hexosaminidases, α-sialidases and α-fucosidases, B. mongoliense presents a genome more sophisticated and more adapted to the digestion of BMO/HMO than B. crudilactis (which contains only β-galactosidases). In addition, HMO/BMO digestion involves genes encoding oligosaccharide transport systems found in B. mongoliense but not in B. crudilactis. B. mongoliense seemed able to grow on media supplemented with whey or 3'SL as main source of carbon (8.3 ± 1.0 and 6.7 ± 0.3 log cfu/mL, respectively). CFSM obtained from whey resulted in a significant under-expression of ler, fliC, luxS, stx1 and qseA genes (- 2.2, - 5.3, - 2.4, - 2.5 and - 4.8, respectively; P < 0.05) of E. coli O157:H7. CFSM from 3'SL resulted in a significant up-regulation of luxS (2.0; P < 0.05) gene and a down-regulation of fliC (- 5.0; P < 0.05) gene. CFSM obtained from whey resulted in significant up-regulations of sopD and hil genes (2.9 and 3.5, respectively; P < 0.05) of S. Typhimurium, while CFSM obtained from 3'SL fermentation down-regulated hil and sopD genes (- 2.7 and - 4.2, respectively; P < 0.05). CONCLUSION From enzymes and transporters highlighted in the genome of B. mongoliense and its potential ability to metabolise 3'SL and whey, B. mongoliense seems well able to digest HMO/BMO. The exact nature of the metabolites contained in CFSM has to be identified still. These results suggest that BMO associated with B. mongoliense could be an interesting synbiotic formulation to maintain or restore intestinal health of young children.
Collapse
Affiliation(s)
- Pauline Bondue
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Emilie Arnould
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Georges Daube
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Canada
| | - Véronique Delcenserie
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
9
|
Genomic and physiological insights into the lifestyle of Bifidobacterium species from water kefir. Arch Microbiol 2020; 202:1627-1637. [PMID: 32266422 DOI: 10.1007/s00203-020-01870-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Water kefir is a fermented beverage employing a natural microbial consortium, which harbours bifidobacteria, namely Bifidobacterium aquikefiri and Bifidobacterium tibiigranuli. However, little information is available on their metabolic properties or role in the consortium. In this study, we combined genomic and physiologic investigations to predict and characterize the properties of these organisms and their possible role in the consortium. When comparing the genomes of these psychrotrophic organisms with that of the three selected mesophilic probiotic Bifidobacterium strains, we could find 143 genes shared by the 3 known isolates of bifidobacteria from water kefir that do not occur in the probiotic strains. These include genes involved in acid and oxygen tolerance. In addition, their genomically predicted carbohydrate usage and transport suggest adaptation to sucrose and other plant-related sugars. Furthermore, they proved prototrophic for all amino acids in vitro, which enables them to cope with the strong amino acid limitation in water kefir.
Collapse
|
10
|
Carafa I, Navarro IC, Bittante G, Tagliapietra F, Gallo L, Tuohy K, Franciosi E. Shift in the cow milk microbiota during alpine pasture as analyzed by culture dependent and high-throughput sequencing techniques. Food Microbiol 2020; 91:103504. [PMID: 32539948 DOI: 10.1016/j.fm.2020.103504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/19/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
In the present study, two groups of cows from a permanent lowland farm (PF) were divided during summer and reared in the PF or in a temporary alpine farm (ALP), respectively. Microbiological analyses were performed with the objective to investigate the microbial evolution of milk before, during, and after summer transhumance comparing, in particular, the two groups of cows to determine whether the alpine pasture could directly influence the milk microbiota. A significant increase of all microbial groups was registered in milk samples collected in the ALP. Interestingly, many strains belonging to species with well reported technological and probiotic activities were isolated from Alpine milk (20% Lactococcus lactis subsp. lactis/cremoris, 18% Lactobacillus paracasei, 14% Bifidobacterium crudilactis and 18% Propionibacterium sp.), whereas only 16% of strains isolated from the permanent farm milk belonged to the species Lactococcus lactis subsp. lactis/cremoris, 6% to Lactobacillus paracasei, 2% to Bifidobacterium crudilactis and 5% to Propionibacterium sp. The MiSeq Illumina data showed that Alpine milk presented a significant reduction of Pseudomonas and an increase of Lactococcus, Bifidobacterium and Lactobacillus genera. These data confirmed the practice of Alpine pasture as one of the main drivers affecting the milk microbiota. All the microbial changes disappeared when cows were delivered back from Alpine pasture to the indoor farm.
Collapse
Affiliation(s)
- Ilaria Carafa
- Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach (FEM), San Michele all' Adige, TN, Italy
| | - Irma Castro Navarro
- Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach (FEM), San Michele all' Adige, TN, Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy
| | - Kieran Tuohy
- Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach (FEM), San Michele all' Adige, TN, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach (FEM), San Michele all' Adige, TN, Italy.
| |
Collapse
|
11
|
Bifidobacterial Distribution Across Italian Cheeses Produced from Raw Milk. Microorganisms 2019; 7:microorganisms7120599. [PMID: 31766566 PMCID: PMC6955966 DOI: 10.3390/microorganisms7120599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Cheese microbiota is of high industrial relevance due to its crucial role in defining the organoleptic features of the final product. Nevertheless, the composition of and possible microbe-microbe interactions between these bacterial populations have never been assessed down to the species-level. For this reason, 16S rRNA gene microbial profiling combined with internally transcribed spacer (ITS)-mediated bifidobacterial profiling analyses of various cheeses produced with raw milk were performed in order to achieve an in-depth view of the bifidobacterial populations present in these microbially fermented food matrices. Moreover, statistical elaboration of the data collected in this study revealed the existence of community state types characterized by the dominance of specific microbial genera that appear to shape the overall cheese microbiota through an interactive network responsible for species-specific modulatory effects on the bifidobacterial population.
Collapse
|
12
|
The status of names whose nomenclatural types are based on strains deposited solely for patent purposes. Int J Syst Evol Microbiol 2019; 69:2616-2620. [DOI: 10.1099/ijsem.0.003527] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Abstract
Discoveries made in the past 5 years indicate that the composition of the intestinal microbiota has a major influence on the effectiveness of anticancer immunosurveillance and thereby contributes to the therapeutic activity of immune-checkpoint inhibitors that target cytotoxic T lymphocyte protein 4 (CTLA-4) or the programmed cell death protein 1 (PD-1)-programmed cell death 1 ligand 1 (PD-L1) axis, as well as the activity of immunogenic chemotherapies. Herein, we highlight some of the bacteria, such as Akkermansia muciniphila, Bacteroides fragilis, Bifidobacterium spp. and Faecalibacterium spp., that have been associated with favourable anticancer immune responses in both preclinical tumour models and patients with cancer. Importantly, these bacteria also seem to have a positive influence on general health, thus reducing the incidence of metabolic disorders and a wide range of chronic inflammatory pathologies. We surmise that a diverse and propitious microbial ecosystem favours organismal homeostasis, particularly at the level of the cancer-immune dialogue.
Collapse
|
14
|
Preliminary Screening of Growth and Viability of 10 Strains of Bifidobacterium spp.: Effect of Media Composition. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactic acid bacteria (LAB) alone or with special adjunct probiotic strains are inevitable for the preparation of specific functional foods. Moreover, because of their growth and metabolism, final products are preserved for a certain time. Thus, in this work, growth and metabolic activity of novel animal origin isolates and culture collection strains of Bifidobacterium spp. were investigated. The influence of milk media (reconstituted or ultra-high-temperature (UHT) milk), compared with synthetic modified Wilkins–Chalgren (WCH) broth under aerobic conditions was investigated. All tested bifidobacterial strains (n = 10) were grown well (1–2 log colony-forming units (CFU)/mL for 24 h at 37 °C) in all substrates and levels higher than 5 log CFU/mL remained during the cold storage period. Generally, different substrates determined almost the same maximal population densities (MPD) after 24 h that range within the average values of 8.96 ± 0.43 log CFU/mL, 8.87 ± 0.52 log CFU/mL, and 8.75 ± 0.54 log CFU/mL in reconstituted milk, UHT milk, and WCH broth, respectively. After 28 days of storage, the pH levels in milk media and broth were reduced to 4.50–5.60 and 4.60–4.90, respectively, representing a decrease of 0.8–2.13 units.
Collapse
|
15
|
Chang CJ, Lin TL, Tsai YL, Wu TR, Lai WF, Lu CC, Lai HC. Next generation probiotics in disease amelioration. J Food Drug Anal 2019; 27:615-622. [PMID: 31324278 PMCID: PMC9307044 DOI: 10.1016/j.jfda.2018.12.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Studies on the role of gut commensal bacteria in health development have rapidly attracted much more attention beyond the classical pathogens over the last decade. Many important reports have highlighted the changes in the gut microbiota (dysbiosis) are closely related to development of intra- and extra-intestinal, chronic inflammation related diseases such as colitis, obesity/metabolic syndromes, diabetes mellitus, liver diseases, cardiovascular diseases and also cancer and neurodegenerative diseases. To circumvent these difficulties, the strategy of modulating the structure of the gut microbiota has been under intensive study and shed more light on amelioration of these inflammation related diseases. While traditional probiotics generally show marginal ameliorative effects, emerging next generation probiotics start to reveal as new preventive and therapeutic tools. Recent studies have unraveled many potential next generation probiotics (NGP). These include Prevotella copri and Christensenella minuta that control insulin resistance, Parabacteroides goldsteinii, Akkermansia muciniphila and Bacteroides thetaiotaomicron that reverse obesity and insulin resistance, Faecalibacterium prausnitzii that protects mice against intestinal diseases, and Bacteroides fragilis that reduces inflammation and shows anticancer effect. New agents will soon be revealed for targeted therapy on specific inflammation related diseases. The important roles of next generation probiotics and gut microbiota normobiosis on the maintenance of intestinal integrity and homeostasis are emphasized.
Collapse
Affiliation(s)
- Chih-Jung Chang
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Tzu-Lung Lin
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - Yu-Ling Tsai
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - Tsung-Ru Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Fan Lai
- Department of Medicine, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Xinzhuang, New Taipei City, 24205, Taiwan.
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan; Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taoyuan, 33303, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taoyuan 33303, Taiwan.
| |
Collapse
|
16
|
Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk HP, Goodfellow M, Göker M. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front Microbiol 2018; 9:2007. [PMID: 30186281 PMCID: PMC6113628 DOI: 10.3389/fmicb.2018.02007] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022] Open
Abstract
The application of phylogenetic taxonomic procedures led to improvements in the classification of bacteria assigned to the phylum Actinobacteria but even so there remains a need to further clarify relationships within a taxon that encompasses organisms of agricultural, biotechnological, clinical, and ecological importance. Classification of the morphologically diverse bacteria belonging to this large phylum based on a limited number of features has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft genome sequences of a large collection of actinobacterial type strains were used to infer phylogenetic trees from genome-scale data using principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families, and genera, as well as many species and a few subspecies were shown to be in need of revision leading to proposals for the recognition of 2 orders, 10 families, and 17 genera, as well as the transfer of over 100 species to other genera. In addition, emended descriptions are given for many species mainly involving the addition of data on genome size and DNA G+C content, the former can be considered to be a valuable taxonomic marker in actinobacterial systematics. Many of the incongruities detected when the results of the present study were compared with existing classifications had been recognized from 16S rRNA gene trees though whole-genome phylogenies proved to be much better resolved. The few significant incongruities found between 16S/23S rRNA and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences. Similarly good congruence was found between the discontinuous distribution of phenotypic properties and taxa delineated in the phylogenetic trees though diverse non-monophyletic taxa appeared to be based on the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Rüdiger Pukall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
17
|
Fontana A, Campanaro S, Treu L, Kougias PG, Cappa F, Morelli L, Angelidaki I. Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes. WATER RESEARCH 2018; 134:181-191. [PMID: 29427960 DOI: 10.1016/j.watres.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 05/25/2023]
Abstract
The present research is the first comprehensive study regarding the thermophilic anaerobic degradation of cheese wastewater, which combines the evaluation of different reactor configurations (i.e. single and two-stage continuous stirred tank reactors) on the process efficiency and the in-depth characterization of the microbial community structure using genome-centric metagenomics. Both reactor configurations showed acidification problems under the tested organic loading rates (OLRs) of 3.6 and 2.4 g COD/L-reactor day and the hydraulic retention time (HRT) of 15 days. However, the two-stage design reached a methane yield equal to 95% of the theoretical value, in contrast with the single stage configuration, which reached a maximum of 33% of the theoretical methane yield. The metagenomic analysis identified 22 new population genomes and revealed that the microbial compositions between the two configurations were remarkably different, demonstrating a higher methanogenic biodiversity in the two-stage configuration. In fact, the acidogenic reactor of the serial configuration was almost solely composed by the lactose degrader Bifidobacterium crudilactis UC0001. The predictive functional analyses of the main population genomes highlighted specific metabolic pathways responsible for the AD process and the mechanisms of main intermediates production. Particularly, the acetate accumulation experienced by the single stage configuration was mainly correlated to the low abundant syntrophic acetate oxidizer Tepidanaerobacter acetatoxydans UC0018 and to the absence of aceticlastic methanogens.
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy; Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Fabrizio Cappa
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Killer J, Mekadim C, Pechar R, Bunešová V, Mrázek J, Vlková E. Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. Microbiologyopen 2018; 7:e00579. [PMID: 29356451 PMCID: PMC6079163 DOI: 10.1002/mbo3.579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 02/02/2023] Open
Abstract
An alternative molecular marker with respect to the 16S rRNA gene demonstrating better identification and phylogenetic parameters has not been designed for the whole Bifidobacteriaceae family, which includes the genus Bifidobacterium and scardovial genera. Therefore, the aim of the study was to find such a gene in available genomic sequences, suggest appropriate means and conditions for asmplification and sequencing of the desired region of the selected gene in various strains of the bacterial family and verify the importance in classification and phylogeny. Specific primers flanking the variable region (~800 pb) within the pyrG gene encoding the CTP synthetase were designed by means of gene sequences retrieved from the genomes of strains belonging to the family Bifidobacteriaceae. The functionality and specificity of the primers were subsequently tested on the wild (7) and type strains of bifidobacteria (36) and scardovia (7). Comparative and phylogenetic studies based on obtained sequences revealed actual significance in classification and phylogeny of the Bifidobacteriaceae family. Gene statistics (percentages of mean sequence similarities and identical sites, mean number of nucleotide differences, P- and K-distances) and phylogenetic analyses (congruence between tree topologies, percentages of bootstrap values >50 and 70%) indicate that the pyrG gene represents an alternative identification and phylogenetic marker exhibiting higher discriminatory power among strains, (sub)species, and genera than the 16S rRNA gene. Sequences of the particular gene fragment, simply achieved through specific primers, enable more precisely to classify and evaluate phylogeny of the family Bifidobacteriaceae including, with some exceptions, health-promoting probiotic bacteria.
Collapse
Affiliation(s)
- Jiří Killer
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Prague 4 - Krč, Czechia.,Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague 6 - Suchdol, Czechia
| | - Chahrazed Mekadim
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague 6 - Suchdol, Czechia
| | - Radko Pechar
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague 6 - Suchdol, Czechia
| | - Věra Bunešová
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague 6 - Suchdol, Czechia
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Prague 4 - Krč, Czechia
| | - Eva Vlková
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague 6 - Suchdol, Czechia
| |
Collapse
|
19
|
Duranti S, Mangifesta M, Lugli GA, Turroni F, Anzalone R, Milani C, Mancabelli L, Ossiprandi MC, Ventura M. Bifidobacterium vansinderenii sp. nov., isolated from faeces of emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2017; 67:3987-3995. [DOI: 10.1099/ijsem.0.002243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sabrina Duranti
- Department of Chemistry, Laboratory of Probiogenomics, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marta Mangifesta
- Department of Chemistry, Laboratory of Probiogenomics, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Gabriele Andrea Lugli
- Department of Chemistry, Laboratory of Probiogenomics, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Department of Chemistry, Laboratory of Probiogenomics, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosaria Anzalone
- Department of Chemistry, Laboratory of Probiogenomics, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Department of Chemistry, Laboratory of Probiogenomics, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Chemistry, Laboratory of Probiogenomics, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Marco Ventura
- Department of Chemistry, Laboratory of Probiogenomics, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
20
|
Pechar R, Killer J, Salmonová H, Geigerová M, Švejstil R, Švec P, Sedláček I, Rada V, Benada O. Bifidobacterium apri sp. nov., a thermophilic actinobacterium isolated from the digestive tract of wild pigs (Sus scrofa). Int J Syst Evol Microbiol 2017; 67:2349-2356. [DOI: 10.1099/ijsem.0.001956] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- R. Pechar
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - J. Killer
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
- Institute of Animal Physiology and Genetics v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 – Krč, 142 20, Czech Republic
| | - H. Salmonová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - M. Geigerová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - R. Švejstil
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - P. Švec
- Czech Collection of Microorganisms, Masaryk University, Faculty of Science, Kamenice 5, building A25, 625 00, Brno, Czech Republic
| | - I. Sedláček
- Czech Collection of Microorganisms, Masaryk University, Faculty of Science, Kamenice 5, building A25, 625 00, Brno, Czech Republic
| | - V. Rada
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, Prague 6 – Suchdol, 165 21, Czech Republic
| | - O. Benada
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- Department of Biology, Faculty of Science, J. E. Purkyně University in Ústi nad Labem, Za Válcovnou 1000/8, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
21
|
Bondue P, Crèvecoeur S, Brose F, Daube G, Seghaye MC, Griffiths MW, LaPointe G, Delcenserie V. Cell-Free Spent Media Obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis Grown in Media Supplemented with 3'-Sialyllactose Modulate Virulence Gene Expression in Escherichia coli O157:H7 and Salmonella Typhimurium. Front Microbiol 2016; 7:1460. [PMID: 27713728 PMCID: PMC5031695 DOI: 10.3389/fmicb.2016.01460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Complex oligosaccharides from human milk (HMO) possess an antimicrobial activity and can promote the growth of bifidobacteria such as Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis. In addition, fermentation of carbohydrates by bifidobacteria can result in the production of metabolites presenting an antivirulence effect on several pathogenic bacteria. Whey is rich in complex bovine milk oligosaccharides (BMO) structurally similar to HMO and B. crudilactis, a species of bovine origin, is able to metabolize some of those complex carbohydrates. This study focused on the ability of B. bifidum and B. crudilactis to grow in a culture medium supplemented in 3′-sialyllactose (3′SL) as the main source of carbon, a major BMO encountered in cow milk. Next, the effects of cell-free spent media (CFSM) were tested against virulence expression of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Both strains were able to grow in presence of 3′SL, but B. crudilactis showed the best growth (7.92 ± 0.3 log cfu/ml) compared to B. bifidum (6.84 ± 0.9 log cfu/ml). Then, CFSM were tested for their effects on virulence gene expression by ler and hilA promoter activity of luminescent mutants of E. coli and S. Typhimurium, respectively, and on wild type strains of E. coli O157:H7 and S. Typhimurium using RT-qPCR. All CFSM resulted in significant under expression of the ler and hilA genes for the luminescent mutants and ler (ratios of −15.4 and −8.1 respectively) and qseA (ratios of −2.1 and −3.1) for the wild type strain of E. coli O157:H7. The 3′SL, a major BMO, combined with some bifidobacteria strains of bovine or human origin could therefore be an interesting synbiotic to maintain or restore the intestinal health of young children. These effects observed in vitro will be further investigated regarding the overall phenotype of pathogenic agents and the exact nature of the active molecules.
Collapse
Affiliation(s)
- Pauline Bondue
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - Sébastien Crèvecoeur
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - François Brose
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - Georges Daube
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | | | - Mansel W Griffiths
- Canadian Research Institute for Food Safety, University of Guelph Guelph, Canada
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, University of Guelph Guelph, Canada
| | - Véronique Delcenserie
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| |
Collapse
|
22
|
A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol 2016; 12:601-7. [PMID: 27294321 DOI: 10.1038/nchembio.2104] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 03/28/2016] [Indexed: 11/08/2022]
Abstract
Metabolic enzymes are very specific. However, most of them show weak side activities toward compounds that are structurally related to their physiological substrates, thereby producing side products that may be toxic. In some cases, 'metabolite repair enzymes' eliminating side products have been identified. We show that mammalian glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase, two core glycolytic enzymes, produce 4-phosphoerythronate and 2-phospho-L-lactate, respectively. 4-Phosphoerythronate strongly inhibits an enzyme of the pentose phosphate pathway, whereas 2-phospho-L-lactate inhibits the enzyme producing the glycolytic activator fructose 2,6-bisphosphate. We discovered that a single, widely conserved enzyme, known as phosphoglycolate phosphatase (PGP) in mammals, dephosphorylates both 4-phosphoerythronate and 2-phospho-L-lactate, thereby preventing a block in the pentose phosphate pathway and glycolysis. Its yeast ortholog, Pho13, similarly dephosphorylates 4-phosphoerythronate and 2-phosphoglycolate, a side product of pyruvate kinase. Our work illustrates how metabolite repair enzymes can make up for the limited specificity of metabolic enzymes and permit high flux in central metabolic pathways.
Collapse
|
23
|
Laureys D, Cnockaert M, De Vuyst L, Vandamme P. Bifidobacterium aquikefiri sp. nov., isolated from water kefir. Int J Syst Evol Microbiol 2016; 66:1281-1286. [PMID: 26739269 DOI: 10.1099/ijsem.0.000877] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Bifidobacterium, strain LMG 28769T, was isolated from a household water kefir fermentation process. Cells were Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, oxidase-negative and facultatively anaerobic short rods. Analysis of its 16S rRNA gene sequence revealed Bifidobacterium crudilactis and Bifidobacterium psychraerophilum (97.4 and 97.1 % similarity towards the respective type strain sequences) as nearest phylogenetic neighbours. Its assignment to the genus Bifidobacterium was confirmed by the presence of fructose 6-phosphate phosphoketolase activity. Analysis of the hsp60 gene sequence revealed very low similarity with nucleotide sequences in the NCBI nucleotide database. The genotypic and phenotypic analyses allowed the differentiation of strain LMG 28769T from all recognized Bifidobacterium species. Strain LMG 28769T ( = CCUG 67145T = R 54638T) therefore represents a novel species, for which the name Bifidobacterium aquikefiri sp. nov. is proposed.
Collapse
Affiliation(s)
- David Laureys
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University,K. L., Ledeganckstraat 35, B-9000 Ghent,Belgium.,Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel,Pleinlaan 2, B-1050, Brussels,Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University,K. L., Ledeganckstraat 35, B-9000 Ghent,Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel,Pleinlaan 2, B-1050, Brussels,Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University,K. L., Ledeganckstraat 35, B-9000 Ghent,Belgium
| |
Collapse
|
24
|
Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2015; 5:377-88. [PMID: 24889892 DOI: 10.3920/bm2013.0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At present, the genus Bifidobacterium includes 48 species and subspecies, and this number is expected to increase. Bifidobacteria are found in different ecological niches. However, most were originally isolated from animals, mainly mammals, especially during the milk feeding period of life. Their presence in high numbers is associated with good health of the host. Moreover, bifidobacteria are often found in poultry and insects that exhibit a social mode of life (honeybees and bumblebees). This review is designed as a summary of currently known species of the genus Bifidobacterium, especially focused on their difference and similarities. The primary focus is on their occurrence in the digestive tract of animals, as well as the specificities of animal strains, with regard to their potential use as probiotics.
Collapse
Affiliation(s)
- V Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - J Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200 Prague 4-Krč, Czech Republic
| | - S Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
25
|
Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol 2014; 80:6383-94. [PMID: 25107967 DOI: 10.1128/aem.02004-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bifidobacterium genus currently encompasses 48 recognized taxa, which have been isolated from different ecosystems. However, the current phylogeny of bifidobacteria is hampered by the relative paucity of genotypic data. Here, we reassessed the taxonomy of this bacterial genus using genome-based approaches, which demonstrated that the previous taxonomic view of bifidobacteria contained several inconsistencies. In particular, high levels of genetic relatedness were shown to exist between particular Bifidobacterium taxa which would not justify their status as separate species. The results presented are here based on average nucleotide identity analysis involving the genome sequences for each type strain of the 48 bifidobacterial taxa, as well as phylogenetic comparative analysis of the predicted core genome of the Bifidobacterium genus. The results of this study demonstrate that the availability of complete genome sequences allows the reconstruction of a more robust bifidobacterial phylogeny than that obtained from a single gene-based sequence comparison, thus discouraging the assignment of a new or separate bifidobacterial taxon without such a genome-based validation.
Collapse
|
26
|
Bunesova V, Killer J, Vlkova E, Musilova S, Tomaska M, Rada V, Kmet V. Isolation and characterization of bifidobacteria from ovine cheese. Int J Food Microbiol 2014; 188:26-30. [PMID: 25086349 DOI: 10.1016/j.ijfoodmicro.2014.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/21/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022]
Abstract
Animal products are one of the niches of bifidobacteria, a fact probably attributable to secondary contamination. In this study, 2 species of the genus Bifidobacterium were isolated by culture-dependent methods from ovine cheeses that were made from unpasteurized milk without addition of starter cultures. The isolates were identified as Bifidobacterium crudilactis and Bifidobacterium animalis subsp. lactis using matrix-assisted laser desorption/ionization time-of-flight analysis and sequencing of phylogenetic markers (16S rRNA, hsp60, and fusA).
Collapse
Affiliation(s)
- Vera Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 6-Suchdol 165 21, Czech Republic.
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 6-Suchdol 165 21, Czech Republic; Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4-Krč 14 200, Czech Republic
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 6-Suchdol 165 21, Czech Republic
| | - Sarka Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 6-Suchdol 165 21, Czech Republic
| | - Martin Tomaska
- Dairy Research Institute, Dlhá 95, 010 01 Žilina, Slovakia
| | - Vojtech Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 6-Suchdol 165 21, Czech Republic
| | - Vladimir Kmet
- Institute of Animal Physiology of Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| |
Collapse
|
27
|
Killer J, Havlik J, Bunesova V, Vlkova E, Benada O. Pseudoscardovia radai sp. nov., another representative of a new genus within the family Bifidobacteriaceae isolated from the digestive tract of a wild pig ( Sus scrofa scrofa ). Int J Syst Evol Microbiol 2014; 64:2932-2938. [PMID: 24867175 DOI: 10.1099/ijs.0.063230-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presence of bifidobacteria and representatives of the new genus Pseudoscardovia within the family Bifidobacteriaceae in the digestive tract of wild pigs has been reported recently. Results based on comparative 16S rRNA gene sequence analysis of a new fructose-6-phosphate phosphoketolase-positive bacterial isolate originated from the small intestine of a wild pig revealed a relationship to Pseudoscardovia suis DPTE4T (96.8% sequence similarity). Phylogenetic and comparative analyses based on 16S rRNA, hsp60, xfp, fusA, tuf and rpoC partial gene sequences confirmed relationship of the new bacterial strain to Pseudoscardovia suis compared with bifidobacteria species occurring in the digestive tract of domestic and wild pigs. Differences in utilization of various substrates, production of enzymes, cell morphology, peptidoglycan structure, profile of cellular fatty acids and polar lipids between the new bacterial isolate designated as DPVI-TET3T and P. suis DPTE4T allow to establish a new bacterial taxon for which the name Pseudoscardovia radai sp. nov. (= DPVI/TET3T = CCM 7943T = DSM 24742T) was proposed.
Collapse
Affiliation(s)
- Jiri Killer
- Institute of Animal Physiology and Genetics AS CR Prague;
| | - Jaroslav Havlik
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources
| | - Vera Bunesova
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources
| | - Eva Vlkova
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources
| | - Oldrich Benada
- Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic
| |
Collapse
|
28
|
Delcenserie V, Taminiau B, Gavini F, de Schaetzen MA, Cleenwerck I, Theves M, Mahieu M, Daube G. Detection and characterization of Bifidobacterium crudilactis and B. mongoliense able to grow during the manufacturing process of French raw milk cheeses. BMC Microbiol 2013; 13:239. [PMID: 24164698 PMCID: PMC4231354 DOI: 10.1186/1471-2180-13-239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 10/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of a production chain of raw milk cheeses (St Marcellin, Vercors area, France) led to the isolation of two Bifidobacterium populations: B. crudilactis and B. mongoliense, that were able to grow along the production chain. The aims of this study were to further detect and characterize these bacteria along the process and evaluate the ability of some strains to survive or grow in adverse conditions. RESULTS Using PCR coupled with restriction fragment length polymorphism, B. crudilactis and B. mongoliense were detected in respectively 77% and 30% of St Marcellin cheeses from production chain after 21 days of ripening. They were present in more than half of all analyzed retail cheeses with counts going from 1.6 to 5 log cfu g-1 for B. crudilactis and 1.4 to 7 log cfu g-1 for B. mongoliense. Bifidobacterium mongoliense was sensitive to pH 2, with an observed decrease of at least 3 log for both studied strains (FR49/f/2 and FR41/2) after 1 h incubation. At pH 3, no significant decrease was observed. Good survival was observed for the same strains in presence of pancreatic juice with a decrease of less than one log. Survival of strain FR49/f/2 was better than FR41/2 with a decrease of 3 logarithms (in presence of 1% bile salts) and almost 2 logarithms (in presence of 0.5% bile salts). The genotypic analyses using total DNA-DNA hybridization, GC% content, 16S rRNA gene sequencing and multilocus sequencing analysis (MLSA) confirmed the classification of Bifidobacterium. crudilactis and B. mongoliense into two different clusters well separated from other bifidobacteria clusters. CONCLUSIONS According to the observed characteristics such as survival in adverse conditions and their ability to grow under 12 °C during the manufacturing process of the cheeses, which has never been described for bifidobacteria and which is a very interesting technological asset, these B. crudilactis and B. mongoliense strains should be further investigated for a potential use in new food or in food supplements.
Collapse
Affiliation(s)
- Veronique Delcenserie
- Food Sciences Department, Faculty of Veterinary Medicine, University of Liège, Sart Tilman, B43b, B-4000 Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2013. [DOI: 10.1099/ijs.0.056101-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
30
|
Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 2011; 149:88-105. [DOI: 10.1016/j.ijfoodmicro.2011.06.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 02/06/2023]
|
31
|
Quigley L, O'Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD. Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int J Food Microbiol 2011; 150:81-94. [PMID: 21868118 DOI: 10.1016/j.ijfoodmicro.2011.08.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
The availability and application of culture-independent tools that enable a detailed investigation of the microbiota and microbial biodiversity of food systems has had a major impact on food microbiology. This review focuses on the application of DNA-based technologies, such as denaturing gradient gel electrophoresis (DGGE), temporal temperature gradient gel electrophoresis (TTGE), single stranded conformation polymorphisms (SSCP), the polymerase chain reaction (PCR) and others, to investigate the diversity, dynamics and identity of microbes in dairy products from raw milk. Here, we will highlight the benefits associated with culture-independent methods which include enhanced sensitivity, rapidity and the detection of microorganisms not previously associated with such products.
Collapse
Affiliation(s)
- Lisa Quigley
- Teagasc, Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
32
|
Delcenserie V, Gavini F, China B, Daube G. Bifidobacterium pseudolongum are efficient indicators of animal fecal contamination in raw milk cheese industry. BMC Microbiol 2011; 11:178. [PMID: 21816092 PMCID: PMC3166927 DOI: 10.1186/1471-2180-11-178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/04/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The contamination of raw milk cheeses (St-Marcellin and Brie) from two plants in France was studied at several steps of production (raw milk, after addition of rennet - St-Marcellin - or after second maturation - Brie -, after removal from the mold and during ripening) using bifidobacteria as indicators of fecal contamination. RESULTS Bifidobacterium semi-quantitative counts were compared using PCR-RFLP and real-time PCR. B. pseudolongum were detected in 77% (PCR-RFLP; 1.75 to 2.29 log cfu ml(-1)) and 68% (real-time PCR; 2.19 to 2.73 log cfu ml(-1)) of St-Marcellin samples and in 87% (PCR-RFLP; 1.17 to 2.40 log cfu ml(-1)) of Brie cheeses samples. Mean counts of B. pseudolongum remained stable along both processes. Two other populations of bifidobacteria were detected during the ripening stage of St-Marcellin, respectively in 61% and 18% of the samples (PCR-RFLP). The presence of these populations explains the increase in total bifidobacteria observed during ripening. Further characterization of these populations is currently under process. Forty-eight percents (St-Marcellin) and 70% (Brie) of the samples were B. pseudolongum positive/E. coli negative while only 10% (St-Marcellin) and 3% (Brie) were B. pseudolongum negative/E. coli positive. CONCLUSIONS The increase of total bifidobacteria during ripening in Marcellin's process does not allow their use as fecal indicator. The presence of B. pseudolongum along the processes defined a contamination from animal origin since this species is predominant in cow dung and has never been isolated in human feces. B. pseudolongum was more sensitive as an indicator than E. coli along the two different cheese processes. B. pseudolongum should be used as fecal indicator rather than E. coli to assess the quality of raw milk and raw milk cheeses.
Collapse
Affiliation(s)
- Véronique Delcenserie
- Food Sciences Department, Faculty of Veterinary Medicine, University of Liège, Sart Tilman, B43b Liege, B-4000 Belgium
| | | | | | | |
Collapse
|
33
|
Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. GENES AND NUTRITION 2011; 6:285-306. [PMID: 21484167 DOI: 10.1007/s12263-010-0206-6] [Citation(s) in RCA: 524] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/15/2010] [Indexed: 12/17/2022]
Abstract
Members of the genus Bifidobacterium can be found as components of the gastrointestinal microbiota, and are believed to play an important role in maintaining and promoting human health by eliciting a number of beneficial properties. Bifidobacteria can utilize a diverse range of dietary carbohydrates that escape degradation in the upper parts of the intestine, many of which are plant-derived oligo- and polysaccharides. The gene content of a bifidobacterial genome reflects this apparent metabolic adaptation to a complex carbohydrate-rich gastrointestinal tract environment as it encodes a large number of predicted carbohydrate-modifying enzymes. Different bifidobacterial strains may possess different carbohydrate utilizing abilities, as established by a number of studies reviewed here. Carbohydrate-degrading activities described for bifidobacteria and their relevance to the deliberate enhancement of number and/or activity of bifidobacteria in the gut are also discussed in this review.
Collapse
Affiliation(s)
- Karina Pokusaeva
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | | | | |
Collapse
|
34
|
Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 2010; 33:359-66. [DOI: 10.1016/j.syapm.2010.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/17/2022]
|
35
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
36
|
Bifidobacteria in the digestive tract of bumblebees. Anaerobe 2010; 16:165-70. [DOI: 10.1016/j.anaerobe.2009.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/15/2009] [Accepted: 07/20/2009] [Indexed: 11/22/2022]
|
37
|
Rasolofo EA, St-Gelais D, LaPointe G, Roy D. Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk. Int J Food Microbiol 2010; 138:108-18. [DOI: 10.1016/j.ijfoodmicro.2010.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/09/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|