1
|
Yuan J, Deng X, Xie X, Chen L, Wei C, Feng C, Qiu G. Blind spots of universal primers and specific FISH probes for functional microbe and community characterization in EBPR systems. ISME COMMUNICATIONS 2024; 4:ycae011. [PMID: 38524765 PMCID: PMC10958769 DOI: 10.1093/ismeco/ycae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024]
Abstract
Fluorescence in situ hybridization (FISH) and 16S rRNA gene amplicon sequencing are commonly used for microbial ecological analyses in biological enhanced phosphorus removal (EBPR) systems, the successful application of which was governed by the oligonucleotides used. We performed a systemic evaluation of commonly used probes/primers for known polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). Most FISH probes showed blind spots and covered nontarget bacterial groups. Ca. Competibacter probes showed promising coverage and specificity. Those for Ca. Accumulibacter are desirable in coverage but targeted out-group bacteria, including Ca. Competibacter, Thauera, Dechlorosoma, and some polyphosphate-accumulating Cyanobacteria. Defluviicoccus probes are good in specificity but poor in coverage. Probes targeting Tetrasphaera or Dechloromonas showed low coverage and specificity. Specifically, DEMEF455, Bet135, and Dech453 for Dechloromonas covered Ca. Accumulibacter. Special attentions are needed when using these probes to resolve the PAO/GAO phenotype of Dechloromonas. Most species-specific probes for Ca. Accumulibacter, Ca. Lutibacillus, Ca. Phosphoribacter, and Tetrasphaera are highly specific. Overall, 1.4% Ca. Accumulibacter, 9.6% Ca. Competibacter, 43.3% Defluviicoccus, and 54.0% Dechloromonas in the MiDAS database were not covered by existing FISH probes. Different 16S rRNA amplicon primer sets showed distinct coverage of known PAOs and GAOs. None of them covered all members. Overall, 520F-802R and 515F-926R showed the most balanced coverage. All primers showed extremely low coverage of Microlunatus (<36.0%), implying their probably overlooked roles in EBPR systems. A clear understanding of the strength and weaknesses of each probe and primer set is a premise for rational evaluation and interpretation of obtained community results.
Collapse
Affiliation(s)
- Jing Yuan
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Maszenan AM, Bessarab I, Williams RBH, Petrovski S, Seviour RJ. The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants. WATER RESEARCH 2022; 221:118729. [PMID: 35714465 DOI: 10.1016/j.watres.2022.118729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.
Collapse
Affiliation(s)
- Abdul M Maszenan
- E2S2, NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia.
| |
Collapse
|
3
|
Qiu G, Law Y, Zuniga-Montanez R, Deng X, Lu Y, Roy S, Thi SS, Hoon HY, Nguyen TQN, Eganathan K, Liu X, Nielsen PH, Williams RBH, Wuertz S. Global warming readiness: Feasibility of enhanced biological phosphorus removal at 35 °C. WATER RESEARCH 2022; 216:118301. [PMID: 35364353 DOI: 10.1016/j.watres.2022.118301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Recent research has shown enhanced biological phosphorus removal (EBPR) from municipal wastewater at warmer temperatures around 30 °C to be achievable in both laboratory-scale reactors and full-scale treatment plants. In the context of a changing climate, the feasibility of EBPR at even higher temperatures is of interest. We operated two lab-scale EBPR sequencing batch reactors for > 300 days at 30 °C and 35 °C, respectively, and followed the dynamics of the communities of polyphosphate accumulating organisms (PAOs) and competing glycogen accumulating organisms (GAOs) using a combination of 16S rRNA gene metabarcoding, quantitative PCR and fluorescence in situ hybridization analyses. Stable and nearly complete phosphorus (P) removal was achieved at 30 °C; similarly, long term P removal was stable at 35 °C with effluent PO43-_P concentrations < 0.5 mg/L on half of all monitored days. Diverse and abundant Candidatus Accumulibacter amplicon sequence variants were closely related to those found in temperate environments, suggesting that EBPR at this temperature does not require a highly specialized PAO community. A slow-feeding strategy effectively limited the carbon uptake rates of GAOs, allowing PAOs to outcompete GAOs at both temperatures. Candidatus Competibacter was the main GAO, along with cluster III Defluviicoccus members. These organisms withstood the slow-feeding regime, suggesting that their bioenergetic characteristics of carbon uptake differ from those of their tetrad-forming relatives. Comparative cycle studies revealed higher carbon and P cycling activity of Ca. Accumulibacter when the temperature was increased from 30 °C to 35 °C, implying that the lowered P removal performance at 35 °C was not a direct effect of temperature, but a result of higher metabolic rates of carbon (and/or P) utilization of PAOs and GAOs, the resultant carbon deficiency, and escalated community competition. An increase in the TOC-to-PO43--P ratio (from 25:1 to 40:1) effectively eased the carbon deficiency and benefited PAOs. In general, a slow-feeding strategy and sufficiently high carbon input benefited a high and stable EBPR at 35 °C, representing basic conditions suitable for full-scale treatment plants experiencing higher water temperatures.
Collapse
Affiliation(s)
- Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yang Lu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Samarpita Roy
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Hui Yi Hoon
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Kaliyamoorthy Eganathan
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
4
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Kolakovic S, Salgado R, Freitas EB, Bronze MR, Sekulic MT, Carvalho G, Reis MAM, Oehmen A. Diclofenac biotransformation in the enhanced biological phosphorus removal process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151232. [PMID: 34715209 DOI: 10.1016/j.scitotenv.2021.151232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac is a pharmaceutical active compound frequently detected in wastewater and water bodies, and often reported to be persistent and difficult to biodegrade. While many previous studies have focussed on assessing diclofenac biodegradation in nitrification and denitrification processes, this study focusses on diclofenac biodegradation in the enhanced biological phosphorus removal (EBPR) process, where the efficiency of this process for diclofenac biodegradation as well as the metabolites generated are not well understood. An enrichment of Accumulibacter polyphosphate accumulating organisms (PAOs) was operated in an SBR for over 300 d, and acclimatized to 20 μg/L of diclofenac, which is in a similar range to that observed in domestic wastewater influents. The diclofenac biotransformation was monitored in four periods of stable operation and linked to the microbial community and metabolic behaviour in each period. Nitrification was observed in two of the four periods despite the addition of a nitrification inhibitor, and these periods were positively correlated with increased diclofenac biodegradation. Interestingly, in two periods with excellent phosphorus removal (>99%) and no nitrification, different levels of diclofenac biotransformation were observed. Period 2, enriched in Accumulibacter Type II achieved more significant diclofenac biotransformation (3.4 μg/gX), while period 4, enriched in Accumulibacter Type I achieved lower diclofenac biotransformation (0.4 μg/gX). In total, 23 transformation products were identified, with lower toxicity than the parent compound, enabling the elucidation of multiple metabolic pathways for diclofenac biotransformation. This study showed that PAOs can contribute to diclofenac biotransformation, yielding less toxic transformation products, and can complement the biodegradation carried out by other organisms in activated sludge, particularly nitrifiers.
Collapse
Affiliation(s)
- Srdana Kolakovic
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; University of Novi Sad, Faculty of Technical Sciences, 21000 Novi Sad, Serbia
| | - Ricardo Salgado
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; ESTS-IPS-CINEA, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal, Portugal
| | - Elisabete B Freitas
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria R Bronze
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Maja Turk Sekulic
- University of Novi Sad, Faculty of Technical Sciences, 21000 Novi Sad, Serbia
| | - Gilda Carvalho
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Maria A M Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
6
|
Nittami T, Batinovic S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett Appl Microbiol 2021; 75:759-775. [PMID: 34919734 DOI: 10.1111/lam.13634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Activated sludge bulking caused by filamentous bacteria is still a problem in wastewater treatment plants around the world. Bulking is a microbiological problem, and so its solution on species-specific basis is likely to be reached only after their ecology, physiology and metabolism is better understood. Culture-independent molecular methods have provided much useful information about this group of organisms, and in this review, the methods employed and the information they provide are critically assessed. Their application to understanding bulking caused by the most frequently seen filament in Japan, 'Ca. Kouleothrix', is used here as an example of how these techniques might be used to develop control strategies. Whole genome sequences are now available for some of filamentous bacteria responsible for bulking, and so it is possible to understand why these filaments might thrive in activated sludge plants, and provide clues as to how eventually they might be controlled specifically.
Collapse
Affiliation(s)
- T Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - S Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
7
|
Close K, Marques R, Carvalho VCF, Freitas EB, Reis MAM, Carvalho G, Oehmen A. The storage compounds associated with Tetrasphaera PAO metabolism and the relationship between diversity and P removal. WATER RESEARCH 2021; 204:117621. [PMID: 34500182 DOI: 10.1016/j.watres.2021.117621] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
In enhanced biological phosphorus removal (EBPR), Tetrasphaera can potentially be an abundant and important polyphosphate accumulating organism (PAO), however ongoing questions remain concerning its storage compounds, phosphorus (P) removal capabilities and metabolic behaviour. This study investigated each of these points in an enriched Tetrasphaera culture (95% biovolume). The enriched Tetrasphaera culture fermented amino acids, while also converting and storing diverse amino acids as aspartic and glutamic acid within cells. Subsequent intracellular consumption of these two amino acids during the aerobic phase supports their importance in the metabolism of Tetrasphaera. Polyhydroxyalkanoate (PHA) cycling was also observed in this study, in contrast to some previous studies on Tetrasphaera. While exhibiting anaerobic phosphorus release and aerobic uptake, the highly enriched Tetrasphaera culture was unable to completely remove phosphorus in sequencing batch reactors (SBR) cycles, with an average removal efficiency of 72.3 ± 7.8%. This is unlike a previous study containing both Tetrasphaera (70%) and Accumulibacter (22%), which regularly performed complete phosphorus removal under otherwise similar operational conditions, at efficiencies of > 99%. Notably, the phylodiversity of organisms belonging to Tetrasphaera was substantially different in the present work, consisting mainly of organisms within Clade 2, likely impacting PHA cycling. These results suggest that the contribution of Tetrasphaera towards P removal is highly dependent on the composition of its Clades within this microbial group and an observed higher abundance of Tetrasphaera in WWTPs does not necessarily imply overall higher P removal. This study improves our understanding of the role of Tetrasphaera within EBPR systems and key factors impacting its metabolism.
Collapse
Affiliation(s)
- Kylie Close
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ricardo Marques
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Virginia C F Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elisabete B Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gilda Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
8
|
Zhang C, Guisasola A, Baeza JA. Achieving simultaneous biological COD and phosphorus removal in a continuous anaerobic/aerobic A-stage system. WATER RESEARCH 2021; 190:116703. [PMID: 33310441 DOI: 10.1016/j.watres.2020.116703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/01/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Recovering energy from wastewater in addition to its treatment is a hot trend in the new concept of water resource recovery facility (WRRF). High-rate systems operating at low solid retention time (SRT) have been proposed to meet this challenge. In this paper, the integration of Enhanced Biological Phosphorus Removal (EBPR) in an anaerobic/aerobic continuous high-rate system (A-stage EBPR) was evaluated. Successful P and COD removal were obtained operating at SRT 6, 5 and 4 days treating real wastewater, while a further decrease to 3 days led to biomass washout. The best steady state operational conditions were obtained at SRT = 4d, with high removal percentage of P (94.5%) and COD (96.3%), and without detecting nitrification. COD mineralization could be reduced to 30%, while 64 % of the entering carbon could be diverted as biomass to energy recovery. Regarding nitrogen, about 69±1% of the influent N was left as ammonium in the effluent, with 30% used for biomass growth. The aerobic reactor could be operated at low dissolved oxygen (DO) (0.5 mg/L), which is beneficial to decrease energy requirements. Biochemical methane potential (BMP) tests showed better productivity for the anaerobic sludge than the aerobic sludge, with an optimal BMP of 296±2 mL CH4/gVSS. FISH analysis at SRT = 4d revealed a high abundance of Accumulibacter (33±13%) and lower proportion of GAO: Competibacter (3.0±0.3%), Defluviicoccus I (0.6±0.1%) and Defluviicoccus II (4.3±1.1%).
Collapse
Affiliation(s)
- Congcong Zhang
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Albert Guisasola
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Juan Antonio Baeza
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain.
| |
Collapse
|
9
|
Roy S, Nirakar P, Yong NGH, Stefan W. Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in Accumulibacter. WATER RESEARCH 2021; 189:116557. [PMID: 33220610 DOI: 10.1016/j.watres.2020.116557] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/04/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Denitrifying phosphorus removal is a cost and energy efficient treatment technology that relies on polyphosphate accumulating organisms (DPAOs) utilizing nitrate or nitrite as terminal electron acceptor. Denitrification is a multistep process, but many organisms do not possess the complete pathway, leading to the accumulation of intermediates such as nitrous oxide (N2O), a potent greenhouse gas and ozone depleting substance. Candidatus Accumulibacter organisms are prevalent in denitrifying phosphorus removal processes and, according to genomic analyses, appear to vary in their denitrification abilities based on their lineage. Denitrification kinetics and nitrous oxide accumulation in the absence of inhibition from free nitrous acid is a strong indicator of denitrification capabilities of Accumulibacter exposed long-term to nitrate or nitrite as electron acceptor. Thus, we investigated the preferential use of the nitrogen oxides involved in denitrification and nitrous oxide accumulation in two enrichments of Accumulibacter and a competitor - the glycogen accumulating organism Candidatus Competibacter. We modified a metabolic model to predict phosphorus removal and denitrification rates when nitrate, nitrite or N2O were added as electron acceptors in different combinations. Unlike previous studies, no N2O accumulation was observed for Accumulibacter in the presence of multiple electron acceptors. Electron competition did not limit denitrification kinetics or lead to N2O accumulation in Accumulibacter or Competibacter. Despite the presence of sufficient internal storage polymers (polyhydroxyalkanoates, or PHA) as energy source for each denitrification step, the extent of denitrification observed was dependent on the dominant organism in the enrichment. Accumulibacter showed complete denitrification, whereas Competibacter denitrification was limited to reduction of nitrate to nitrite. These findings indicate that DPAOs can contribute to lowering N2O emissions in the presence of multiple electron acceptors under partial nitritation conditions.
Collapse
Affiliation(s)
- Samarpita Roy
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 119077, Singapore.
| | - Pradhan Nirakar
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
| | - N G How Yong
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| | - Wuertz Stefan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
10
|
Li BB, Peng ZY, Zhi LL, Li HB, Zheng KK, Li J. Distribution and diversity of filamentous bacteria in wastewater treatment plants exhibiting foaming of Taihu Lake Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115644. [PMID: 33254706 DOI: 10.1016/j.envpol.2020.115644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Foaming caused by filamentous bacteria in activated sludge (AS) is a common phenomenon in municipal wastewater treatment plants (WWTPs) in Taihu Lake Basin of South China. In this study, total bacterial and filamentous bacterial communities were comprehensively characterized in AS and foams from eight municipal WWTPs by high-throughput sequencing technology. Results showed that alpha diversities of total bacterial communities in foams were obviously lower than those in AS samples. The bacterial community structures were significantly different between WWTPs rather than sample types (AS vs. foam). For most WWTPs, the Actinobacteria phylum was highly enriched in foams and the most abundant genera in foams were common mycolata. Sixteen filamentous bacteria were identified against the improved bulking and foaming bacteria (BFB) database. Abundance and composition of BFB in different WWTPs and different sample types were significantly different. 'Nostocoida limicola' I Trichococcus and Microthrix were generally dominant in AS samples. The dominant BFB in foams were associated with Microthrix, Skermania, Gordonia, and Mycobacterium. A new Defluviicoccus spp. in cluster III was identified in severe and continuous foams. Moreover, dominant BFB in stable and continuous foams with light level in one typical WWTP were diverse, even, and dynamic. Bacterial co-occurrence network analysis implied that the bacterial community of AS was more sensitive to disturbance than that of foam.
Collapse
Affiliation(s)
- Bing-Bing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi-Ying Peng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li-Ling Zhi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huai-Bo Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai-Kai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
11
|
Nierychlo M, McIlroy SJ, Kucheryavskiy S, Jiang C, Ziegler AS, Kondrotaite Z, Stokholm-Bjerregaard M, Nielsen PH. Candidatus Amarolinea and Candidatus Microthrix Are Mainly Responsible for Filamentous Bulking in Danish Municipal Wastewater Treatment Plants. Front Microbiol 2020; 11:1214. [PMID: 32582118 PMCID: PMC7296077 DOI: 10.3389/fmicb.2020.01214] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 01/23/2023] Open
Abstract
Filamentous bulking is a common serious operational problem leading to deteriorated sludge settling that has long been observed in activated sludge biological wastewater treatment systems. A number of bacterial genera found therein possess filamentous morphology, where some have been shown to be implicated in bulking episodes (e.g., Ca. Microthrix), the impact of many others is still not clear. In this study we performed a survey of 17 Danish municipal wastewater treatment plants (WWTPs) with nutrient removal using 16S rRNA amplicon sequencing over a period of 13 years, where all known filamentous bacteria from 30 genera were analyzed. The filamentous community constituted on average 13 ± 6%, and up to 43% of total read abundance with the same genera common to all plants. Ca. Microthrix and several genera belonging to phylum Chloroflexi were among the most abundant filamentous bacteria. The effect of filamentous bacteria on sludge settling properties was analyzed using measurements of the diluted sludge volume index (DSVI). Strong positive correlations with DSVI were observed only for Ca. Microthrix and Ca. Amarolinea, the latter being a novel, recently characterized genus belonging to the phylum Chloroflexi. The bulking potential of other filamentous bacteria was not significant despite their presence in many plants. Low phylogenetic diversity was observed for both Ca. Microthrix and Ca. Amarolinea, making physiological characterization of individual species and potential development of control strategies more feasible. In this study we show that, despite the high diversity of filamentous phylotypes in Danish WWTPs, only few of them were responsible for severe bulking episodes.
Collapse
Affiliation(s)
- Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simon J. McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Sergey Kucheryavskiy
- Section of Chemical Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anja S. Ziegler
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Krüger A/S, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
12
|
Carvalho V, Freitas E, Fradinho J, Reis M, Oehmen A. The effect of seed sludge on the selection of a photo-EBPR system. N Biotechnol 2019; 49:112-119. [DOI: 10.1016/j.nbt.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
|
13
|
Onetto CA, Grbin PR, McIlroy SJ, Eales KL. Genomic insights into the metabolism of ‘CandidatusDefluviicoccus seviourii’, a member ofDefluviicoccuscluster III abundant in industrial activated sludge. FEMS Microbiol Ecol 2018; 95:5210054. [DOI: 10.1093/femsec/fiy231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/24/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cristobal A Onetto
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| | - Paul R Grbin
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| | - Simon J McIlroy
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Brisbane, Australia
| | - Kathryn L Eales
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| |
Collapse
|
14
|
Carvalho VCF, Freitas EB, Silva PJ, Fradinho JC, Reis MAM, Oehmen A. The impact of operational strategies on the performance of a photo-EBPR system. WATER RESEARCH 2018; 129:190-198. [PMID: 29149674 DOI: 10.1016/j.watres.2017.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/21/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
A novel Phototrophic - Enhanced Biological Phosphorus Removal (Photo-EBPR) system, consisting of a consortium of photosynthetic organisms and polyphosphate accumulating organisms (PAOs), was studied in this work. A sequencing batch reactor was fed with a mixture of acetate and propionate (75%-25%) and subjected to dark/light cycles in order to select a photo-EBPR system containing PAOs and photosynthetic organisms, the latter likely providers of oxygen to the system. The results from the selection period (stage 1) showed that the photo-EBPR culture was capable of performing P release in the dark and P uptake in the presence of light, under limited oxygen concentrations. During the optimization period, the aeration period, which was initially provided at the end of the light phase, was gradually reduced until a non-aerated system was achieved, while the light intensity was increased. After optimization of the operational conditions, the selected consortium of photosynthetic organisms/PAOs showed high capacity of P removal in the light phase in the absence of air or other electron acceptor. A net P removal of 34 ± 3 mg-P/L was achieved, with a volumetric P removal rate of 15 ± 2 mg-P/L.h, and 79 ± 8% of P removal from the system. Also, in limiting oxygen conditions, the P uptake rate was independent of the PHA consumption, which demonstrates that the organisms obtained energy for P removal from light. These results indicated that a photo-EBPR system can be a potential solution for P removal with low COD/P ratios and in the absence of air, prospecting the use of natural sunlight as illumination, which would reduce the costs of EBPR operation regarding aeration.
Collapse
Affiliation(s)
- V C F Carvalho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - E B Freitas
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - P J Silva
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - J C Fradinho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - M A M Reis
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - A Oehmen
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
15
|
Marques R, Santos J, Nguyen H, Carvalho G, Noronha JP, Nielsen PH, Reis MAM, Oehmen A. Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. WATER RESEARCH 2017; 122:159-171. [PMID: 28599161 DOI: 10.1016/j.watres.2017.04.072] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
Tetrasphaera and Candidatus Accumulibacter are two abundant polyphosphate accumulating organisms in full-scale enhanced biological phosphorus removal (EBPR) systems. However, little is known about the metabolic behaviour and ecological niche that each organism exhibits in mixed communities. In this study, an enriched culture of Tetrasphaera and Ca. Accumulibacter was obtained using casein hydrolysate as sole carbon source. This culture was able to achieve a high phosphorus removal efficiency (>99%), storing polyphosphate while consuming amino acids anaerobically. Microautoradiography and fluorescence in situ hybridisation confirmed that more than 90% Tetrasphaera cells were responsible for amino acid consumption while Ca. Accumulibacter likely survived on fermentation products. Tetrasphaera performed the majority of the P removal (approximately 80%) in this culture, and batch tests showed that the metabolism of some carbon sources could actually lead to anaerobic orthophosphate (Pi) uptake (9.0 ± 2.1 mg-P/L) through energy generated by fermentation of glucose and amino acids. This anaerobic Pi uptake may lead to lower net Pi release to C uptake ratios and reduce the Pi needed to be removed aerobically in WWTPs. Intracellular metabolites such as amino acids, sugars, volatile fatty acids and small amines were observed as potential storage products, which may serve as energy sources in the aerobic phase. Evidence of the urea cycle was found, which could be involved in reducing the intracellular nitrogen content. This study improves our understanding of how phosphorus is removed in EBPR systems and can enable novel process optimisation strategies.
Collapse
Affiliation(s)
- Ricardo Marques
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Jorge Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Hien Nguyen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Denmark
| | - Gilda Carvalho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - J P Noronha
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Denmark
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
16
|
Speirs LBM, Dyson ZA, Tucci J, Seviour RJ. Eikelboom filamentous morphotypes 0675 and 0041 embrace members of the Chloroflexi: resolving their phylogeny, and design of fluorescence in situ hybridisation probes for their identification. FEMS Microbiol Ecol 2017; 93:4107108. [DOI: 10.1093/femsec/fix115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
|
17
|
Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Front Microbiol 2017; 8:718. [PMID: 28496434 PMCID: PMC5406452 DOI: 10.3389/fmicb.2017.00718] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.
Collapse
Affiliation(s)
- Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
18
|
Quantification of Chloroflexi Eikelboom morphotype 1851 for prediction and control of bulking events in municipal activated sludge plants in Japan. Appl Microbiol Biotechnol 2017; 101:3861-3869. [DOI: 10.1007/s00253-016-8077-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 11/28/2022]
|
19
|
Albertsen M, McIlroy SJ, Stokholm-Bjerregaard M, Karst SM, Nielsen PH. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants. Front Microbiol 2016; 7:1033. [PMID: 27458436 PMCID: PMC4930944 DOI: 10.3389/fmicb.2016.01033] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial “Candidatus Accumulibacter phosphatis” (Accumulibacter) and the model GAO being the gammaproteobacterial “Candidatus Competibacter phosphatis”. Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set.
Collapse
Affiliation(s)
- Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark; Krüger A/SAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| |
Collapse
|
20
|
Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions. Sci Rep 2016; 6:25719. [PMID: 27193869 PMCID: PMC4872125 DOI: 10.1038/srep25719] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/19/2016] [Indexed: 02/01/2023] Open
Abstract
Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.
Collapse
|
21
|
Franca RDG, Vieira A, Mata AMT, Carvalho GS, Pinheiro HM, Lourenço ND. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. WATER RESEARCH 2015; 85:327-336. [PMID: 26343991 DOI: 10.1016/j.watres.2015.08.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule stability. Fluorescence in situ hybridization (FISH) analysis confirmed the compact structure of the dye-fed granules, microbial activity being apparently maintained in the granule core, as opposed to the dye-free control. These findings support the potential application of the AGS technology for textile wastewater treatment.
Collapse
Affiliation(s)
- Rita D G Franca
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Anabela Vieira
- Microbiology of Man-Made Environments Laboratory, iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Quinta do Marquês, 2780-157 Oeiras, Portugal.
| | - Ana M T Mata
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gilda S Carvalho
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Helena M Pinheiro
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Nídia D Lourenço
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
22
|
Carvalheira M, Oehmen A, Carvalho G, Eusébio M, Reis MAM. The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms. WATER RESEARCH 2014; 66:296-307. [PMID: 25222333 DOI: 10.1016/j.watres.2014.08.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/01/2014] [Accepted: 08/23/2014] [Indexed: 05/08/2023]
Abstract
In wastewater treatment plants (WWTPs), aeration is the major energetic cost, thus its minimisation will improve the cost-effectiveness of the process. This study shows that both the dissolved oxygen (DO) concentration and aerobic hydraulic retention time (HRT) affect the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). At low DO levels, Accumulibacter PAOs were shown to have an advantage over Competibacter GAOs, as PAOs had a higher oxygen affinity and thus largely maintained their aerobic activity at low DO levels, while GAO activity decreased. Bioreactor operation at low DO levels was found to increase the PAO fraction of the sludge. Furthermore, an increase in aerobic HRT (at a DO level of 2 mg O2/L), promoted the proliferation of GAOs over PAOs, decreasing the EBPR efficiency. Overall, this study shows that low aeration can be beneficial for EBPR performance through selecting for PAOs over GAOs, which should be incorporated into WWTP models in order to minimise energetic costs and improve WWTP sustainability.
Collapse
Affiliation(s)
- Mónica Carvalheira
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Adrian Oehmen
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras, Portugal.
| | - Mário Eusébio
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Maria A M Reis
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
23
|
Nittami T, Speirs LBM, Fukuda J, Watanabe M, Seviour RJ. Fluorescence in situ hybridization probes targeting members of the phylum Candidatus Saccharibacteria falsely target Eikelboom type 1851 filaments and other Chloroflexi members. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:611-617. [PMID: 25756114 DOI: 10.1111/1758-2229.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The FISH probe TM7-305 is thought to target the filamentous Eikelboom morphotype 0041 as a member of the Candidatus ‘Saccharibacteria’ (formerly TM7) phylum. However, with activated sludge samples in both Japan and Australia, this probe hybridized consistently with filamentous bacteria fitting the description of the morphotype 1851, which also responded positively to the CHL1851 FISH probe designed to target Chloroflexi members of this morphotype. 16S rRNA clone libraries from samples containing type 1851 TM7-305-positive filaments yielded Chloroflexi clones with high sequence similarity to Kouleothrix aurantiaca. These contained a variant TM7-305 probe target site possessing weakly destabilizing mismatches insufficient to prevent probe hybridization. Furthermore, the TM7-905 FISH probe, designed to target members of the entire Candidatus ‘Saccharibacteria’ phylum, also hybridized with the filament morphotypes 0041/0675, which responded also to the phylum level Chloroflexi probes. Many Chloroflexi sequences have only a single base mismatch to the TM7-905 probe target sequence. When competitor probes for both the TM7-305 and TM7-905 Chloroflexi non-target sites were applied, no fluorescent signal was seen in any of the filamentous organisms also hybridizing with the aforementioned Chloroflexi probes. These data indicate that these competitor probes must be included in hybridizations when both the TM7-905 and TM7-305 FISH probes are applied, to minimize potential false positive FISH results.
Collapse
|
24
|
Carvalheira M, Oehmen A, Carvalho G, Reis MAM. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). WATER RESEARCH 2014; 64:149-159. [PMID: 25051162 DOI: 10.1016/j.watres.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The type of carbon source present in the wastewater is one factor that affects the competition between polyphosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) and therefore, the efficiency of the enhanced biological phosphorus removal (EBPR) process. This study investigated the impact of the carbon source composition on the anaerobic and aerobic kinetics of PAOs and the EBPR performance of an 85% PAO enrichment. When both acetate (HAc) and propionate (HPr) were present, propionate was depleted more quickly, with a constant uptake rate of 0.18 ± 0.02 C-mol/(C-mol biomass·h), while the acetate uptake rate decreased with an increase in propionate concentration, due to the substrate competition between acetate and propionate. The metabolic model for PAOs was modified to incorporate the anaerobic substrate competition effect. The aerobic rates for phosphorus (P) uptake, glycogen production and polyhydroxyalkanoates (PHA) degradation were within the same range for all tests, indicating that these rates are essentially independent of the acetate and propionate concentration, simplifying the calibration procedure for metabolic models. The metabolic model applied to describe the anaerobic and aerobic activity agreed well with the experimental data of HAc, HPr, P, PHA and biomass growth. The low glycogen consumption observed suggest that some reducing equivalents were generated anaerobically through the TCA cycle. The results of this work suggest that the propionate uptake kinetics by PAOs can provide them an advantage over GAOs in EBPR systems, even when the propionate fraction of the influent is relatively low.
Collapse
Affiliation(s)
- Mónica Carvalheira
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras, Portugal
| | - Maria A M Reis
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
25
|
Nobu MK, Tamaki H, Kubota K, Liu WT. Metagenomic characterization of ‘Candidatus Defluviicoccus tetraformis strain TFO71’, a tetrad-forming organism, predominant in an anaerobic-aerobic membrane bioreactor with deteriorated biological phosphorus removal. Environ Microbiol 2014; 16:2739-51. [DOI: 10.1111/1462-2920.12383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/01/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Masaru K. Nobu
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; 205 North Mathews Ave Urbana IL 61801 USA
| | - Hideyuki Tamaki
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, Higashi 1-1-1 Tsukuba Ibaraki 305-8566 Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering; Tohoku University; 6-6-06 Aza-Aoba, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; 205 North Mathews Ave Urbana IL 61801 USA
| |
Collapse
|
26
|
Lanham AB, Oehmen A, Saunders AM, Carvalho G, Nielsen PH, Reis MAM. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal. WATER RESEARCH 2013; 47:7032-7041. [PMID: 24210547 DOI: 10.1016/j.watres.2013.08.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/25/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems.
Collapse
Affiliation(s)
- Ana B Lanham
- REQUIMTE/CQFB, Chemistry Department FCT-UNL, 2829-516 Caparica, Portugal.
| | | | | | | | | | | |
Collapse
|
27
|
Mielczarek AT, Nguyen HTT, Nielsen JL, Nielsen PH. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants. WATER RESEARCH 2013; 47:1529-1544. [PMID: 23317522 DOI: 10.1016/j.watres.2012.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint".
Collapse
Affiliation(s)
- Artur Tomasz Mielczarek
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | |
Collapse
|
28
|
Mielczarek AT, Kragelund C, Eriksen PS, Nielsen PH. Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal. WATER RESEARCH 2012; 46:3781-95. [PMID: 22608099 DOI: 10.1016/j.watres.2012.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/25/2012] [Accepted: 04/04/2012] [Indexed: 05/12/2023]
Abstract
Bulking and foaming are two frequently occurring operational problems in activated sludge wastewater treatment plants, and these problems are mainly associated with excessive growth of filamentous bacteria. In this study, a comprehensive investigation of the identity and population dynamics of filamentous bacteria in 28 Danish municipal treatment plants with nutrient removal has been carried out over three years. Fluorescence in situ hybridization was applied to quantify more than twenty probe-defined populations of filamentous bacteria that in total constituted a large fraction of the entire microbial community, on average 24%. Despite the majority being present within the flocs, they occasionally caused settling problems in most of the plants. A low diversity of probe-defined filamentous bacteria was found in the plants with Microthrix and various species belonging to phylum Chloroflexi (e.g., type 0803 and type 0092) as the most abundant. Few other filamentous probe-defined species were found revealing a large similarity between the filamentous populations in the plants investigated. The composition of filamentous populations was stable in each plant with only minor changes in relative abundances observed during the three-year study period. The relative composition of the different species was unique to each plant giving a characteristic "fingerprint". Comprehensive statistical analyses of the presence and abundance of the filamentous organisms did not reveal many correlations with a particular plant design or process parameter.
Collapse
Affiliation(s)
- Artur Tomasz Mielczarek
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | |
Collapse
|
29
|
McIlroy SJ, Speirs LBM, Tucci J, Seviour RJ. In situ profiling of microbial communities in full-scale aerobic sequencing batch reactors treating winery waste in australia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8794-8803. [PMID: 21875070 DOI: 10.1021/es2018576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
On-site aerobic sequencing batch reactor (SBR) treatment plants are implemented in many Australian wineries to treat the large volumes of associated wastewater they generate. Yet very little is known about their microbiology. This paper represents the first attempt to analyze the communities of three such systems sampled during both vintage and nonvintage operational periods using molecular methods. Alphaproteobacterial tetrad forming organisms (TFO) related to members of the genus Defluviicoccus and Amaricoccus dominated all three systems in both operational periods. Candidatus 'Alysiosphaera europaea' and Zoogloea were codominant in two communities. Production of high levels of exocellular capsular material by Zoogloea and Amaricoccus is thought to explain the poor settleability of solids in one of these plants. The dominance of these organisms is thought to result from the high COD to N/P ratios that characterize winery wastes, and it is suggested that manipulating this ratio with nutrient dosing may help control the problems they cause.
Collapse
Affiliation(s)
- Simon J McIlroy
- Biotechnology Research Centre, Department of Pharmacy and Applied Science, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | |
Collapse
|
30
|
Speirs LBM, McIlroy SJ, Petrovski S, Seviour RJ. The activated sludge bulking filament Eikelboom morphotype 0914 is a member of the Chloroflexi. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:159-165. [PMID: 23761247 DOI: 10.1111/j.1758-2229.2010.00201.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The filamentous bacterium Eikelboom morphotype type 0914 responsible for bulking in activated sludge plants is identified here for the first time as a member of the phylum Chloroflexi subgroup 1. Two FISH probes, CFX67a and CFX67b, targeting the 16S rRNA sequences of this filament morphotype were designed, validated and used successfully for its in situ identification. A survey of plants in eastern Australia with the CFX67a probe showed it targeted only the type 0914 morphotype that was common especially in long sludge age plants designed to remove phosphorus and nitrogen microbiologically, although being in very low abundance in many samples. Filaments responding to the CFX67b probe also exhibited the type 0914 morphology but were less frequent, although again occurring in similarly configured plants. All these filaments showed an uneven FISH signal suggesting their ribosomes are localized at the ends of their cells. Furthermore, some generated distinctive FISH signals in all biomass samples containing them, where only certain cells within any single trichome fluoresced with probes designed against different target sites. Helper probes for each of these were required before all cells fluoresced above the visual detection limits of FISH.
Collapse
Affiliation(s)
- Lachlan B M Speirs
- Biotechnology Research Centre, La Trobe University, Bendigo, Vic. 3552, Australia
| | | | | | | |
Collapse
|
31
|
McIlroy SJ, Tillett D, Petrovski S, Seviour RJ. Non-target sites with single nucleotide insertions or deletions are frequently found in 16S rRNA sequences and can lead to false positives in fluorescencein situhybridization (FISH). Environ Microbiol 2010; 13:33-47. [DOI: 10.1111/j.1462-2920.2010.02306.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
McIlroy SJ, Nittami T, Seviour EM, Seviour RJ. Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen-accumulating organism in activated sludge. FEMS Microbiol Ecol 2010; 74:248-56. [PMID: 20633046 DOI: 10.1111/j.1574-6941.2010.00934.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The in situ ecophysiology of alphaproteobacterial filamentous Cluster III Defluviicoccus present in enhanced biological phosphorus removal (EBPR)-activated sludge systems was evaluated using FISH-MAR and histochemical staining methods. These organisms, sharing the Nostocoida limicola morphotype, are known to be responsible for serious episodes of activated sludge bulking. The data presented here also demonstrate an ability to assimilate short-chain fatty acids and synthesize poly-β-hydroxyalkanoates (PHA) anaerobically, and then utilize this stored PHA under aerobic conditions, but with no corresponding synthesis of polyphosphate. These features are consistent with an in situ phenotype of glycogen-accumulating organisms (GAO), populations thought to lower the efficiency of EBPR systems by outcompeting polyphosphate-accumulating organisms (PAO) for substrates in their anaerobic feed phase. Survey data indicate that these GAO are as commonly seen as the known PAO in full-scale EBPR-activated sludge systems, which suggest that they might play important roles there, and therefore should not be viewed just as laboratory curiosities.
Collapse
Affiliation(s)
- Simon J McIlroy
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | |
Collapse
|
33
|
McIlroy S, Seviour RJ. Elucidating further phylogenetic diversity among the Defluviicoccus-related glycogen-accumulating organisms in activated sludge. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:563-568. [PMID: 23765935 DOI: 10.1111/j.1758-2229.2009.00082.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Glycogen-accumulating organisms (GAO) are thought to out-compete the polyphosphate-accumulating organisms (PAO) in activated sludge communities removing phosphate (P). Two GAO groups are currently recognized, the gammaproteobacterial Candidatus'Competibacter phosphatis', and the alphaproteobacterial Defluviicoccus vanus-related tetrad forming organisms (TFOs). Both are phylogenetically diverse based on their 16S rRNA sequences, with the latter currently considered to contain members falling into three distinct clusters. This paper identifies members of an additional fourth Defluviicoccus cluster from 16S rRNA gene clone library data obtained from a laboratory-scale activated sludge plant community removing P, and details FISH probes designed against them. Probe DF181A was designed to target a single sequence and DF181B designed against the remaining sequences in the cluster. Cells hybridizing with these probes in the biomass samples tested always appeared as either TFOs or in large clusters of small cocci. Members of the Defluviicoccus-related organisms were commonly found in full-scale wastewater treatments plants, sometimes as a dominant population.
Collapse
Affiliation(s)
- Simon McIlroy
- Biotechnology Research Centre, La Trobe University, Bendigo, Vic. 3552, Australia
| | | |
Collapse
|