1
|
Kim M, Oh ET, Kim SB. Description of Chryseobacterium fluminis sp. nov., a keratinolytic bacterium isolated from a freshwater river. Int J Syst Evol Microbiol 2024; 74. [PMID: 38305712 DOI: 10.1099/ijsem.0.006261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped bacterial strain, designated MMS21-Ot14T, was isolated from a freshwater river, and shown to represent a novel species of the genus Chryseobacterium on the basis of the results from a polyphasic approach. The 16S rRNA gene sequence analysis revealed that MMS21-Ot14T represented a member of the genus Chryseobacterium of the family Weeksellaceae and was closely related to Chryseobacterium hagamense RHA2-9T (97.52 % sequence similarity), Chryseobacterium gwangjuense THG A18T (97.46 %) and Chryseobacterium gregarium P 461/12T (97.27 %). The optimal growth of MMS21-Ot14T occurred at 25-30 °C, pH 6.0-7.0 and in the absence of NaCl. MMS21-Ot14T was capable of hydrolysing casein, starch, DNA, Tween 20 and tyrosine. The strain also showed keratinolytic activity with keratin azure and decolourising activity with remazol brilliant blue R (RBBR), which indicated potential ability to degrade keratin and lignin. The main polar lipids of MMS21-Ot14T were phosphatidylethanolamine, unidentified aminophospholipids, unidentified aminolipids, an unidentified phospholipid and several unidentified lipids. The predominant fatty acids of MMS21-Ot14T were iso-C15 : 0 and iso-C17 : 0 3-OH, and the major isoprenoid quinone was menaquinone 6 (MK-6). The whole genome of MMS21-Ot14T was 5 062 016 bp in length with a DNA G+C content of 37.7 %. The average nucleotide identity and digital DNA-DNA hybridisation values between MMS21-Ot14T and phylogenetically related members of the genus Chryseobacterium were well below the threshold values for species delineation. It is evident from the results of this study that MMS21-Ot14T should be classified as representing a novel species of the genus Chryseobacterium, for which the name Chryseobacterium fluminis sp. nov. (type strain, MMS21-Ot14T = KCTC 92255T = LMG 32529T) is proposed.
Collapse
Affiliation(s)
- Moonsoo Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Eun Tak Oh
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Zhang L, Wang Y, Kong D, Ma Q, Li Y, Xing Z, Ruan Z. Chryseobacterium herbae Isolated from the Rhizospheric Soil of Pyrola calliantha H. Andres in Segrila Mountain on the Tibetan Plateau. Microorganisms 2023; 11:2017. [PMID: 37630577 PMCID: PMC10459008 DOI: 10.3390/microorganisms11082017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
A non-motile, Gram-staining-negative, orange-pigmented bacterium called herbae pc1-10T was discovered in Tibet in the soil around Pyrola calliantha H. Andres' roots. The isolate thrived in the temperature range of 10-30 °C (optimal, 25 °C), pH range of 5.0-9.0 (optimum, pH = 6.0), and the NaCl concentration range of 0-1.8% (optimal, 0%). The DNA G+C content of the novel strain was 37.94 mol%. It showed the function of dissolving organophosphorus, acquiring iron from the environment by siderophore and producing indole acetic acid. Moreover, the genome of strain herbae pc1-10T harbors two antibiotic resistance genes (IND-4 and AdeF) encoding a β-lactamase, and the membrane fusion protein of the multidrug efflux complex AdeFGH; antibiotic-resistance-related proteins were detected using the Shotgun proteomics technology. The OrthoANIu values between strains Chryseobacterium herbae pc1-10T; Chryseobacterium oleae CT348T; Chryseobacterium kwangjuense KJ1R5T; and Chryseobacterium vrystaatense R-23566T were 90.94%, 82.96%, and 85.19%, respectively. The in silico DDH values between strains herbae pc1-10T; C. oleae CT348T; C. kwangjuense KJ1R5T; and C. vrystaatense R-23566T were 41.7%, 26.6%, and 29.7%, respectively. Chryseobacterium oleae, Chryseobacterium vrystaatense, and Chryseobacterium kwangjuense, which had 16S rRNA gene sequence similarity scores of 97.80%, 97.52%, and 96.75%, respectively, were its closest phylogenetic relatives. Chryseobacterium herbae sp. nov. is proposed as the designation for the strain herbae pc1-10T (=GDMCC 1.3255 = JCM 35711), which represented a type species based on genotypic and morphological characteristics. This study provides deep knowledge of a Chryseobacterium herbae characteristic description and urges the need for further genomic studies on microorganisms living in alpine ecosystems, especially around medicinal plants.
Collapse
Affiliation(s)
- Li Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China;
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
| | - Yan Wang
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China;
| | - Delong Kong
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
| | - Qingyun Ma
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Zhen Xing
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China;
| | - Zhiyong Ruan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (D.K.); (Q.M.)
| |
Collapse
|
3
|
De Meyer F, Carlier A. Ecotin: A versatile protease inhibitor of bacteria and eukaryotes. Front Microbiol 2023; 14:1114690. [PMID: 36760512 PMCID: PMC9904509 DOI: 10.3389/fmicb.2023.1114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Serine protease inhibitors are a large family of proteins involved in important pathways and processes, such as inflammatory responses and blood clotting. Most are characterized by a precise mode of action, thereby targeting a narrow range of protease substrates. However, the serine-protease inhibitor ecotin is able to inhibit a broad range of serine proteases that display a wide range of specificities. This specificity is driven by special structural features which allow unique flexibility upon binding to targets. Although frequently observed in many human/animal-associated bacteria, ecotin homologs may also be found in plant-associated taxa and environmental species. The purpose of this review is to provide an update on the biological importance, role in host-microbe interactions, and evolutionary relationship between ecotin orthologs isolated from Eukaryotic and Prokaryotic species across the Tree of Life.
Collapse
Affiliation(s)
- Frédéric De Meyer
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France,*Correspondence: Aurélien Carlier, ✉
| |
Collapse
|
4
|
Michalko J, Medo J, Ferus P, Konôpková J, Košútová D, Hoťka P, Barta M. Changes of Endophytic Bacterial Community in Mature Leaves of Prunus laurocerasus L. during the Seasonal Transition from Winter Dormancy to Vegetative Growth. PLANTS 2022; 11:plants11030417. [PMID: 35161398 PMCID: PMC8839770 DOI: 10.3390/plants11030417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023]
Abstract
Diverse communities of bacterial endophytes inhabit plant tissues, and these bacteria play important roles for plant growth and health. Cherry laurel (Prunus laurocerasus L.) is a broadleaf evergreen shrub that is widely grown in temperate zones for its ornamental and medicinal properties, however virtually nothing is known about its associated bacterial community. In this study, we analysed the matured one-year-old leaves of this plant using Illumina-based 16S rRNA gene metabarcoding to reveal the community structure of endophytic bacteria and understand its shifts during the seasonal transition from winter dormancy to a spring vegetative state. The overall community was composed of four dominant phyla (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes). Corynebacterium, Acinetobacter, and Chryseobacterium genera were the most prevalent bacteria, comprising 13.3%, 6.9%, and 6.8% of the amplicon sequence variants (ASVs), respectively. The ASV richness and diversity increased significantly in May as compared to other sampling months (February, March, and April). We observed high variation in the overall community structure of endophytic bacteria among collection dates. The variation was only reflected by a few core community members, suggesting that the changes of the endophytic community during winter/spring seasonal transition are mostly associated with the less abundant community members. We identified biomarker taxa for late winter, mid spring, and late spring collection dates. This study is the first one to report on the diversity and composition of bacterial endophytes in the leaves of cherry laurel and its shifts across the dormancy-to-vegetative seasonal transition.
Collapse
Affiliation(s)
- Jaroslav Michalko
- Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, 951-52 Slepcany, Slovakia; (P.F.); (J.K.); (D.K.); (P.H.)
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949-76 Nitra, Slovakia;
- Correspondence:
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949-76 Nitra, Slovakia;
| | - Peter Ferus
- Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, 951-52 Slepcany, Slovakia; (P.F.); (J.K.); (D.K.); (P.H.)
| | - Jana Konôpková
- Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, 951-52 Slepcany, Slovakia; (P.F.); (J.K.); (D.K.); (P.H.)
| | - Dominika Košútová
- Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, 951-52 Slepcany, Slovakia; (P.F.); (J.K.); (D.K.); (P.H.)
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949-74 Nitra, Slovakia
| | - Peter Hoťka
- Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, 951-52 Slepcany, Slovakia; (P.F.); (J.K.); (D.K.); (P.H.)
| | - Marek Barta
- Department of Plant Pathology and Mycology, Institute of Forest Ecology, Slovak Academy of Sciences, 949-01 Nitra, Slovakia;
| |
Collapse
|
5
|
Zhang X, Guo X, Kahaer M, Tian T, Sun Y. Chryseobacterium endalhagicum sp. nov., isolated from seed of leguminous plant. Int J Syst Evol Microbiol 2021; 71. [PMID: 34739366 PMCID: PMC8742555 DOI: 10.1099/ijsem.0.005077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, yellow-pigmented bacterium, designated as L7T, was isolated from seeds of Alhagi sparsifolia Shap., a leguminous plant that grows in northwest PR China. Strain L7T was found to be non-flagellated, non-spore forming rods which can grow at 10–37 °C, pH 6.0–8.5 and in 0–3 % (v/w) NaCl concentration. The 16S rRNA gene sequence analysis showed that strain L7T belongs to the genus Chryseobacterium with sequence similarities to Chryseobacterium vietnamense GIMN1.005T (98.1%), C. bernardetii NCCTC13530T (98.0%), C. vrystaatense LMG 22846T (97.9%), C. nakagawai NCTC13529T (97.7%), C. shigense DSM 17126T (97.6%) and C. rhizosphaerae RSB3-1T (97.5%). The average nucleotide identity of strain L7T to 31 reference strains were 78.6–85.6 %, lower than the species delineation threshold of 95 %. MK-6 was the only respiratory quinone of L7T and major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 1 ω7c and/or C16 : 1 ω6c, isoC17 : 1 ω9c and/or C16 : 0 10-methyl. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminophospholipids, two unidentified aminolipids, three unidentified glycolipids and two unidentified lipids. The G+C content of the genome was 38.58 mol%. On the basis of polyphasic taxonomy analyses in this study, strain L7T is considered to represent a novel species in the genus Chryseobacterium, for which the name Chryseobacterium endalhagicum sp. nov. is proposed. The type strain is L7T (=MCCC 1K05687T=JCM 34506T)
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Public Health, Xinjiang Medical University, Urumqi 831100, PR China
| | - Xingyan Guo
- School of Public Health, Xinjiang Medical University, Urumqi 831100, PR China.,Medical and Health Management and Service Center of Xinjiang, Urumqi 831100, PR China
| | - Mayina Kahaer
- School of Public Health, Xinjiang Medical University, Urumqi 831100, PR China.,School of Basic Mediacal Sciences, Xinjiang Medical University, Urumqi 831100, PR China
| | - Tingting Tian
- School of Basic Mediacal Sciences, Xinjiang Medical University, Urumqi 831100, PR China
| | - Yuping Sun
- School of Basic Mediacal Sciences, Xinjiang Medical University, Urumqi 831100, PR China
| |
Collapse
|
6
|
Bhagat N, Sharma S, Ambardar S, Raj S, Trakroo D, Horacek M, Zouagui R, Sbabou L, Vakhlu J. Microbiome Fingerprint as Biomarker for Geographical Origin and Heredity in Crocus sativus: A Feasibility Study. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.688393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Host–microbiome interactions are specific and not random, making them defining entities for the host. The hypothesis proposed by various researchers earlier, that both plants and animals harbor specific inheritable core microbiome, is being augmented in the present study. Additionally, a case for using microbial fingerprint as a biomarker, not only for plant identification but also as a geographical indicator, has been investigated, taking Crocus sativus, saffron, as a study material. Crocus sativus, a monogenetic herb, on account of its male sterility and vegetative propagation, is reported to lack genome based molecular markers. Cormosphere microbiome (microbiome associated with corm) has been compared across three geographical locations, in two continents, to identify the core and unique microbiome, during the vegetative phase of its growth. Microbiome analysis done at phylum and genus level, using next generation sequencing technology, revealed that cormosphere at three locations harbored common phyla. At genus level, 24 genera were found common to all three geographical locations, indicating them to be part of the core microbiome of saffron. However, there were some bacterial genera unique to Kashmir, Kishtwar, and Morocco that can be used to develop microbial markers/geographical indicators for saffron grown in these regions. This is a preliminary study, indicating that the location specific bacterial community can be used to develop microbial barcodes but needs further augmentation with high coverage data from other saffron growing geographical regions.
Collapse
|
7
|
Fay M, Salazar JK, Ramachandran P, Stewart D. Microbiomes of commercially-available pine nuts and sesame seeds. PLoS One 2021; 16:e0252605. [PMID: 34153055 PMCID: PMC8216511 DOI: 10.1371/journal.pone.0252605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/23/2021] [Indexed: 01/21/2023] Open
Abstract
Metagenomic analysis of food is becoming more routine and can provide important information pertaining to the shelf life potential and the safety of these products. However, less information is available on the microbiomes associated with low water activity foods. Pine nuts and sesame seeds, and food products which contain these ingredients, have been associated with recalls due to contamination with bacterial foodborne pathogens. The objective of this study was to identify the microbial community of pine nuts and sesame seeds using targeted 16S rRNA sequencing technology. Ten different brands of each seed type were assessed, and core microbiomes were determined. A total of 21 and 16 unique taxa with proportional abundances >1% in at least one brand were identified in the pine nuts and sesame seeds, respectively. Members of the core pine nut microbiome included the genera Alishewanella, Aminivibrio, Mycoplasma, Streptococcus, and unassigned OTUs in the families of Desulfobacteraceae and Xanthomonadaceae. For sesame seeds, the core microbiome included Aminivibrio, Chryseolina, Okibacterium, and unassigned OTUs in the family Flavobacteriaceae. The microbiomes of these seeds revealed that these products are dominated by environmental bacterial genera commonly isolated from soil, water, and plants; bacterial genera containing species known as commensal organisms were also identified. Understanding these microbiomes can aid in the risk assessment of these products by identifying food spoilage potential and community members which may co-enrich with foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Megan Fay
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, Illinois, United States of America
| | - Joelle K. Salazar
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, Illinois, United States of America
| | - Padmini Ramachandran
- Division of Microbiology, U. S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Diana Stewart
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, Illinois, United States of America
| |
Collapse
|
8
|
Lee JE, Yoon SH, Lee GY, Lee DH, Huh CS, Kim GB. Chryseobacterium vaccae sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2020; 70:4859-4866. [PMID: 32515727 DOI: 10.1099/ijsem.0.004250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain CA7T, a Gram-stain-negative, non-motile, non-spore-forming, aerobic and rod-shaped bacterial strain, was isolated from raw cow's milk collected from a farm affiliated with Chung-Ang University, Anseong, Korea, and characterized by a polyphasic approach. Optimal growth of strain CA7T was observed on tryptic soy agar at 30 °C and pH 7.0 with 0 % NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CA7T belonged to the genus Chryseobacterium. The most closely related strains (16S rRNA gene sequence similarity indicated in parentheses), based on the phylogenetic analysis, were Chryseobacterium rhizosphaerae KCTC 22548T (98.08 %), Chryseobacterium nakagawai CCUG 60563T (98.61 %), Chryseobacterium jejuense KACC 12501T (97.85 %) and Chryseobacterium aurantiacum KCTC 62135T (97.78 %). Whole genome sequencing indicated that the genome size was 5 125 723 bp and had a DNA G+C content of 37.4 mol%. Average nucleotide identity values for strain CA7T with C. rhizosphaerae, C. nakagawai, C. jejuense, C. aurantiacum, and the type species of the genus Chryseobacterium, C. gleum, were 80.2, 79.8, 79.8, 79.6 and 80.4 %, respectively. The digital DNA-DNA hybridization values of CA7T compared to C. rhizosphaerae, C. nakagawai, C. jejuense, C. aurantiacum and C. gleum were 24.1, 23.9, 23.9, 23.7 and 24.3 %, respectively. The major fatty acids were iso-C15 : 0, summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl), iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). Menaquinone-6 was the only respiratory quinone. The major polar lipid was phosphatidylethanolamine. Based on this polyphasic taxonomic study, strain CA7T represents a novel species of the genus Chryseobacterium for which the name Chryseobacterium vaccae sp. nov. is proposed. The type strain is CA7T (=KACC 21402T=JCM 33749T).
Collapse
Affiliation(s)
- Ju-Eun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sung-Hee Yoon
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Gi-Yong Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Do-Hoon Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chul-Sung Huh
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Research Institute of Eco-friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
9
|
Zhang J, Gao C, Yu XM, Lun HY, Du ZJ. Chryseobacterium lacus sp. nov. Isolated From the Surface Water of Two Lakes With Light-Induced Carotenoid Production. Front Microbiol 2020; 11:251. [PMID: 32194523 PMCID: PMC7064467 DOI: 10.3389/fmicb.2020.00251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/03/2020] [Indexed: 01/01/2023] Open
Abstract
Two Gram-stain-negative, rod-shaped, gliding, catalase-positive, and facultative anaerobic strains, YLOS41T and XH07, were isolated from surface water of Yilong Lake and West Lake of Dali in Yunnan Province, respectively. Both strains were yellow-colored under light conditions and white-colored under dark conditions. The results of physiological and chemotaxonomic characterization, sequencing and phylogenetic analysis, and draft genome sequence comparison demonstrated that the two strains represented a single novel species within the genus Chryseobacterium, for which the name Chryseobacterium lacus sp. nov. is proposed. The type strain is YLOS41T (= KCTC 62352T = MCCC 1H00300T), and the second strain is XH07 (= KCTC 62993). During the cultivation process, we found that the colony color of the two strains changed from white to yellow with illumination. The study investigated the effects of light irradiation on the strain YLOS41T. Results showed that light irradiation did not affect the growth of cells but significantly increased carotenoid synthesis, which caused the change of colony color. In-depth metabolic analysis was conducted by transcriptome. The predominant changes were found for genes involved in carotenoid synthesis as protection from light damage. Based on the genome and transcriptome, we proved that strain YLOS41T possessed a complete synthetic pathway of carotenoid and speculated that the production was zeaxanthin. This was the first report of Chryseobacterium species with light-induced carotenoid synthesis. This study enhances our present knowledge on how Chryseobacterium species isolated from surface water responds to light damage.
Collapse
Affiliation(s)
- Jing Zhang
- Marine College, Shandong University, Weihai, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cheng Gao
- Marine College, Shandong University, Weihai, China
| | - Xue-Mei Yu
- Marine College, Shandong University, Weihai, China
| | - He-Yuan Lun
- Marine College, Shandong University, Weihai, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Oh WT, Jun JW, Giri SS, Yun S, Kim HJ, Kim SG, Kim SW, Han SJ, Kwon J, Park SC. Isolation of Chryseobacterium siluri sp. nov., from liver of diseased catfish ( Silurus asotus). Heliyon 2020; 6:e03454. [PMID: 32123769 PMCID: PMC7036476 DOI: 10.1016/j.heliyon.2020.e03454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/20/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
Yellow-pigmented, circular bacteria (strain SNU WT7) were isolated from the liver of moribund eastern catfish (Silurus asotus). Our study focused on the taxonomic description of SNU WT7 using phylogenetic, phenotypic, and chemotaxonomic analyses. The 16S rRNA gene sequence of the SNU WT7 strain was highly similar to that of Chryseobacterium haifense H38T (97.29% similarity), followed by Chryseobacterium hominis P2K6T (97.22% similarity), while other species exhibited similarity values of less than 97.0%. The genome of strain SNU WT7 displayed average nucleotide identity and genome-to-genome distance values of 72.35% and 22.0%, respectively, which clearly indicated that the novel species was distant from the other Chryseobacterium species, with its closest relative being C. haifense H38T. Furthermore, the phenotypic characteristics, including acid production from glucose, D-fructose, lactose, and maltose, of strain SNU WT 7 differed from those of C. haifense H38T. The major polar lipid of the strain was phosphatidylethanolamine, and several unidentified aminolipids and lipids were also present. Similar to other Chryseobacterium species, the quinone system was composed mainly of MK-6. The genome of SNU WT7 is 2,690,367 bp with a G + C content of 43.6%. Taken together, our data indicate that the isolate SNU WT7 represents a novel species of the genus Chryseobacterium. Thus, we present the name Chryseobacterium siluri sp. nov. for the novel type strain SNU WT7T (KCTC 72626, JCM 33707).
Collapse
Affiliation(s)
- Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Zhong Y, Yang Y, Liu P, Xu R, Rensing C, Fu X, Liao H. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. PLANT, CELL & ENVIRONMENT 2019; 42:2028-2044. [PMID: 30646427 DOI: 10.1111/pce.13519] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Rhizosphere bacterial communities are vital for plants, yet the composition of rhizobacterial communities and the complex interactions between roots and microbiota, or between microbiota, are largely unknown. In this study, we investigated the structure and composition of rhizobacterial communities in two soybean cultivars and their recombinant inbred lines contrasting in nodulation through 16S rRNA amplicon sequencing in two years of field trials. Our results demonstrate that soybean plants are able to select microbes from bulk soils at the taxonomic and functional level. Soybean genotype significantly influenced the structure of rhizobacterial communities and resulted in dramatically different co-occurrence networks of rhizobacterial communities between different genotypes of soybean plants. Furthermore, the introduction of exogenous rhizobia through inoculation altered soybean rhizobacterial communities in genotype-dependent manner. Rhizobium inoculation not only stimulated the proliferation of potential beneficial microbes but also increased connections in rhizobacterial networks and changed the hub microbes, all of which led to the association of distinctive bacterial communities. Taken together, we demonstrated that the assembly of soybean rhizobacterial communities was determined by both genotype and the introduction of exogenous rhizobia. These findings bolster the feasibility of root microbiome engineering through inoculation of specific microbial constituents.
Collapse
Affiliation(s)
- Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Peng Liu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruineng Xu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
12
|
Draft Genome Sequences of Seven Chryseobacterium Type Strains. Microbiol Resour Announc 2019; 8:MRA01518-18. [PMID: 30637405 PMCID: PMC6318376 DOI: 10.1128/mra.01518-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 01/07/2023] Open
Abstract
In an honors course on “Omics Sciences,” draft genome sequences of Chryseobacterium elymi KCTC 22547T, Chryseobacterium flavum KCTC 12877T, Chryseobacterium hispanicum KCTC 22104T, Chryseobacterium lathyri KCTC 22544T, “Candidatus Chryseobacterium massiliae” CCUG 51329T, Chryseobacterium piscium CCUG 51923T, and Chryseobacterium rhizosphaerae KCTC 22548T were generated to facilitate phylogenomic comparisons within the genus. In an honors course on “Omics Sciences,” draft genome sequences of Chryseobacterium elymi KCTC 22547T, Chryseobacterium flavum KCTC 12877T, Chryseobacterium hispanicum KCTC 22104T, Chryseobacterium lathyri KCTC 22544T, “Candidatus Chryseobacterium massiliae” CCUG 51329T, Chryseobacterium piscium CCUG 51923T, and Chryseobacterium rhizosphaerae KCTC 22548T were generated to facilitate phylogenomic comparisons within the genus.
Collapse
|
13
|
Pérez-Sancho M, Vela AI, Kostrzewa M, Zamora L, Casamayor A, Domínguez L, Fernández-Garayzábal JF. First analysis by MALDI-TOF MS technique of Chryseobacterium species relevant to aquaculture. JOURNAL OF FISH DISEASES 2018; 41:389-393. [PMID: 29125187 DOI: 10.1111/jfd.12706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Affiliation(s)
- M Pérez-Sancho
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - A I Vela
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad Complutense, Madrid, Spain
| | | | - L Zamora
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - A Casamayor
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - L Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad Complutense, Madrid, Spain
| | - J F Fernández-Garayzábal
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad Complutense, Madrid, Spain
| |
Collapse
|
14
|
Wen CF, Xi LX, Zhao S, Hao ZX, Luo L, Liao H, Chen ZR, She R, Han GQ, Cao SJ, Wu R, Yan QG, Hou R. Chryseobacterium chengduensis sp. nov. isolated from the air of captive giant panda enclosures in Chengdu, China. J Zhejiang Univ Sci B 2017; 17:610-8. [PMID: 27487806 DOI: 10.1631/jzus.b1500214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A Gram-negative, aerobic, non-motile, rod-shaped bacterial strain, designated 25-1(T), was isolated from the air inside giant panda enclosures at the Chengdu Research Base of Giant Panda Breeding, China. Strain 25-1(T) grew optimally at pH 7.0-8.0, at 28-30 °C and in the presence of NaCl concentrations from 0.0% to 0.5 %. 16S rRNA gene sequence analysis indicated that strain 25-1(T) belongs to the genus Chryseobacterium within the family Flavobacteriaceae and is related most closely to C. carnis G81(T) (96.4% similarity), C. lathyri RBA2-6(T) (95.8% similarity), and C. zeae JM1085(T) (95.8% similarity). Its genomic DNA G+C molar composition was 36.2%. The major cellular fatty acids were iso-C15:0 (44.0%), iso-C17:0 3OH (19.8%) and C16:1 ω7c/16:1 ω6c (12.7%). The only isoprenoid quinone was menaquinone 6 (MK-6). The major polar lipids were phosphatidylethanolamine, two unidentified amino lipids and two unidentified lipids. The DNA-DNA relatedness between strain 25-1(T) and C. lathyri RBA2-6(T) was 38%. Phenotypic, genotypic, and phylogenetic characteristics indicated that strain 25-1(T) is a novel member of the genus Chryseobacterium, for which the name C. chengduensis sp. nov. is proposed. The type strain is 25-1(T) (CCTCC AB2015133(T)=DSM 100396(T)).
Collapse
Affiliation(s)
- Cai-Fang Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Li-Xin Xi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhong-Xiang Hao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Liao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen-Rong Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong She
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guo-Quan Han
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| |
Collapse
|
15
|
Draft Genome Sequence of
Chryseobacterium
sp. JV274 Isolated from Maize Rhizosphere. GENOME ANNOUNCEMENTS 2017; 5:5/15/e00122-17. [PMID: 28408666 PMCID: PMC5391404 DOI: 10.1128/genomea.00122-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Chryseobacterium sp. JV274. This strain was isolated from the rhizosphere of maize during a greenhouse experiment. JV274 harbors genes involved in flexirubin production (darA and darB genes), bacterial competition (type VI secretion system), and gliding (bacterial motility; type IX secretion system).
Collapse
|
16
|
Chaudhary DK, Kim J. Chryseobacterium nepalense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:646-652. [DOI: 10.1099/ijsem.0.001680] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|
17
|
Isolation and Molecular Identification of Endophytic Bacteria From Rambutan Fruits (Nephelium lappaceum L.) Cultivar Binjai. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Leite J, Fischer D, Rouws LFM, Fernandes-Júnior PI, Hofmann A, Kublik S, Schloter M, Xavier GR, Radl V. Cowpea Nodules Harbor Non-rhizobial Bacterial Communities that Are Shaped by Soil Type Rather than Plant Genotype. FRONTIERS IN PLANT SCIENCE 2016; 7:2064. [PMID: 28163711 PMCID: PMC5247471 DOI: 10.3389/fpls.2016.02064] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/26/2016] [Indexed: 05/04/2023]
Abstract
Many studies have been pointing to a high diversity of bacteria associated to legume root nodules. Even though most of these bacteria do not form nodules with legumes themselves, it was shown that they might enter infection threads when co-inoculated with rhizobial strains. The aim of this work was to describe the diversity of bacterial communities associated with cowpea (Vigna unguiculata L. Walp) root nodules using 16S rRNA gene amplicon sequencing, regarding the factors plant genotype and soil type. As expected, Bradyrhizobium was the most abundant genus of the detected genera. Furthermore, we found a high bacterial diversity associated to cowpea nodules; OTUs related to the genera Enterobacter, Chryseobacterium, Sphingobacterium, and unclassified Enterobacteriacea were the most abundant. The presence of these groups was significantly influenced by the soil type and, to a lesser extent, plant genotype. Interestingly, OTUs assigned to Chryseobacterium were highly abundant, particularly in samples obtained from an Ultisol soil. We confirmed their presence in root nodules and assessed their diversity using a target isolation approach. Though their functional role still needs to be addressed, we postulate that Chryseobacterium strains might help cowpea plant to cope with salt stress in semi-arid regions.
Collapse
Affiliation(s)
- Jakson Leite
- Soil Science Department, Universidade Federal Rural do Rio de JaneiroSeropédica, Brazil
| | - Doreen Fischer
- Embrapa AgrobiologiaSeropédica, Brazil
- Research Unit Environmental Genomics, Helmholtz Zentrum MünchenOberschleißheim, Germany
| | | | | | - Andreas Hofmann
- Embrapa AgrobiologiaSeropédica, Brazil
- Research Unit Environmental Genomics, Helmholtz Zentrum MünchenOberschleißheim, Germany
| | - Susanne Kublik
- Research Unit Environmental Genomics, Helmholtz Zentrum MünchenOberschleißheim, Germany
| | - Michael Schloter
- Research Unit Environmental Genomics, Helmholtz Zentrum MünchenOberschleißheim, Germany
| | | | - Viviane Radl
- Research Unit Environmental Genomics, Helmholtz Zentrum MünchenOberschleißheim, Germany
- *Correspondence: Viviane Radl,
| |
Collapse
|
19
|
Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Chryseobacterium arachidiradicis sp. nov., isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea). Int J Syst Evol Microbiol 2015; 65:2179-2186. [PMID: 25858249 DOI: 10.1099/ijs.0.000237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A yellow-pigmented bacterial strain, 91A-612(T), isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea) in Alabama, USA, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Chryseobacterium, showing the highest sequence similarities to the type strains of Chryseobacterium molle (98.4%), C. pallidum (98.3%) and C. hominis (97.8%). The 16S rRNA gene sequence similarities to the type strains of all other species of the genus Chryseobacterium were below 97.0%. The fatty acid profile of strain 91A-612(T) consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH/C16 : 1ω7c) and iso-C17 : 0 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine and several unidentified lipids, including two lipids that did not contain a sugar moiety, an amino group or a phosphate group (L3, L8), and an aminolipid (AL1). The quinone system was composed mainly of MK-6. The polyamine pattern contained sym-homospermidine as the major compound and moderate amounts of spermidine and spermine. DNA-DNA hybridizations between strain 91A-612(T) and the type strains of C. molle, C. pallidum and C. hominis resulted in relatedness values well below 70%. These data and the differentiating biochemical and chemotaxonomic properties showed that isolate 91A-612(T) represents a novel species of the genus Chryseobacterium, for which we propose the name Chryseobacterium arachidiradicis sp. nov. (type strain 91A-612(T) = LMG 27814(T)= CCM 8490(T) = CIP 110647(T)).
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, , A-1210 Wien, Austria
| | - John A McInroy
- Department of Entomology and Plant Pathology, , Auburn University, Auburn, AL, USA
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
20
|
Chryseobacterium rhizoplanae sp. nov., isolated from the rhizoplane environment. Antonie van Leeuwenhoek 2014; 107:533-8. [DOI: 10.1007/s10482-014-0349-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
21
|
Montero-Calasanz MDC, Göker M, Rohde M, Spröer C, Schumann P, Busse HJ, Schmid M, Klenk HP, Tindall BJ, Camacho M. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 2014; 37:342-50. [DOI: 10.1016/j.syapm.2014.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 04/22/2014] [Indexed: 11/30/2022]
|
22
|
Kämpfer P, Poppel MT, Wilharm G, Busse HJ, McInroy JA, Glaeser SP. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014; 64:1419-1427. [DOI: 10.1099/ijs.0.058933-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two yellow-pigmented bacterial strains (100T and C26T), showing 98.4 % 16S rRNA gene sequence similarity to each other and isolated from a chicken in Germany and as a contaminant from an agar plate of a rhizosphere sample in Alabama, were studied by using a polyphasic taxonomic approach. Cells of both isolates were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequences of the two organisms with the sequences of the type strains of the most closely related species of the genus
Chryseobacterium
showed the highest sequence similarities of strains 100T and C26T to the type strains of
Chryseobacterium joostei
(respectively 97.5 and 98.2 %),
C. viscerum
(96.6, 97.8 %),
C. gleum
(97.1, 97.7 %),
C. arthrosphaerae
(97.3%, 97.7 %),
C. indologenes
(97.2, 97.7 %),
C. tructae
(96.6, 97.6 %),
C. jejuense
(97.0, 97.6 %) and
C. oncorhynchi
(96.3, 97.5 %); 16S rRNA gene sequence similarities to members of all other species of the genus
Chryseobacterium
were below 97.5 %. The fatty acid profiles of both strains consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C17 : 1ω9c and iso-C17 : 0 3-OH, but also showed slight differences (absence or presence of C16 : 0 3-OH and iso-C15 : 1 F). DNA–DNA hybridizations between the two strains and between the novel strains and the type strains of
C. joostei
,
C. indologenes
,
C. jejuense
,
C. tructae
and
C. viscerum
resulted in relatedness values clearly below 70 %. These DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed that both strains 100T and C26T represent novel species, for which the names Chryseobacterium gallinarum sp. nov. (type strain 100T = LMG 27808T = CCM 8493T) and Chryseobacterium contaminans sp. nov. (type strain C26T = LMG 27810T = CCM 8492T) are proposed.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Marie T. Poppel
- Robert Koch-Institut, Bereich Wernigerode, Wernigerode, Germany
| | | | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | | | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
23
|
Kook M, Son HM, Ngo HTT, Yi TH. Chryseobacterium camelliae sp. nov., isolated from green tea. Int J Syst Evol Microbiol 2014; 64:851-857. [DOI: 10.1099/ijs.0.057398-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, strictly aerobic, non-motile, rod-shaped and flexirubin-type-pigmented strain, THG C4-1T, was isolated from green tea leaves in Jangheung-gun, Republic of Korea. Strain THG C4-1T grew well at 20–30 °C, at pH 7.0–7.5 and in the absence of NaCl on nutrient agar. Based on 16S rRNA gene sequence comparisons, strain THG C4-1T was most closely related to
Chryseobacterium taiwanense
Soil-3-27T (97.7 %),
C. hagamense
RHA2-9T (97.2 %),
C. gregarium
P 461/12T (97.2 %),
C. ginsenosidimutans
THG 15T (97.1 %),
C. taeanense
PHA3-4T (97.0 %) and
C. daeguense
K105T (97.0 %), but DNA–DNA relatedness between strain THG C4-1T and its closest phylogenetic neighbours was below 21 %. The DNA G+C content was 41.7 mol%. The only isoprenoid quinone detected in strain THG C4-1T was menaquinone 6 (MK-6). The major component of the polyamine pattern was sym-homospermidine. The major polar lipids were phosphatidylethanolamine and unidentified aminolipids. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 1ω9c. These data supported the affiliation of strain THG C4-1T to the genus
Chryseobacterium
. The results of physiological and biochemical tests enabled strain THG C4-1T to be differentiated genotypically and phenotypically from recognized species of the genus
Chryseobacterium
. Therefore, the novel isolate represents a novel species, for which the name Chryseobacterium camelliae sp. nov. is proposed, with THG C4-1T ( = KACC 16985T = JCM 18745T) as the type strain.
Collapse
Affiliation(s)
- MooChang Kook
- Department of Marine Biotechnology, Anyang University, Incheon 417-833, Republic of Korea
| | - Heung-Min Son
- Department of Oriental Medicinal Material & Processing College of Life Science, Kyung Hee University, 1 Seocheon, Kihung Yongin, Kyunggi 446-701, Republic of Korea
| | - Hien T. T. Ngo
- Department of Oriental Medicinal Material & Processing College of Life Science, Kyung Hee University, 1 Seocheon, Kihung Yongin, Kyunggi 446-701, Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Material & Processing College of Life Science, Kyung Hee University, 1 Seocheon, Kihung Yongin, Kyunggi 446-701, Republic of Korea
| |
Collapse
|
24
|
Kämpfer P, McInroy JA, Glaeser SP. Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie van Leeuwenhoek 2013; 105:491-500. [DOI: 10.1007/s10482-013-0101-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/14/2013] [Indexed: 11/29/2022]
|
25
|
Park YJ, Son HM, Lee EH, Kim JH, Mavlonov GT, Choi KJ, Shin HS, Kook M, Yi TH. Chryseobacterium gwangjuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:4580-4585. [DOI: 10.1099/ijs.0.052118-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, non-motile, rod-shaped bacterial strain, THG-A18T, was isolated from soil of Gwangju province in South Korea. Strain THG-A18T grew optimally at 25–30 °C, at pH 7.0–8.0 and in the absence of NaCl. Strain THG-A18T displayed β-glucosidase activity, which enabled it to convert ginsenoside Rb1 to Rd. According to 16S rRNA gene sequence analysis, strain THG-A18T was shown to belong to the genus
Chryseobacterium
. The closest phylogenetic neighbours were
Chryseobacterium ginsenosidimutans
THG 15T (97.9 % 16S rRNA gene sequence similariity),
C. defluvii
B2T (97.7 %),
C. daeguense
K105T (97.6 %),
C. taiwanense
BCRC 17412T (97.5 %),
C. indoltheticum
LMG 4025T (97.4 %),
C. gregarium
P 461/12T (97.4 %) and
C. lathyri
RBA2-6T (97.3 %), but DNA–DNA relatedness values between these strains and strain THG-A18T were below 41.9 %. The G+C content of the genomic DNA was 36.4 mol%. The major respiratory quinone (MK-6) and fatty acids [iso-C15 : 0, iso-C17 : 0 3-OH, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 9 (comprising iso-C17 : 1ω9c and/or 10-methyl C16 : 0)] supported the affiliation of strain THG-A18T with the genus
Chryseobacterium
. The polar lipids of strain THG-A18T were phosphatidylethanolamine, four unidentified aminolipids and seven unidentified lipids. A number of physiological and biochemical tests allowed phenotypic differentiation of strain THG-A18T from recognized species of the genus
Chryseobacterium
. The name Chryseobacterium gwangjuense sp. nov. is proposed, with THG-A18T ( = KACC 16227T = LMG 26579T) as the type strain.
Collapse
Affiliation(s)
- Yong Jin Park
- Department of Oriental Medicinal Material & Processing College of Life Science, KyungHee University, Yongin, Kyunggi 446-701, Republic of Korea
| | - Heung-Min Son
- Department of Oriental Medicinal Material & Processing College of Life Science, KyungHee University, Yongin, Kyunggi 446-701, Republic of Korea
| | - Eun-Hee Lee
- Department of Oriental Medicinal Material & Processing College of Life Science, KyungHee University, Yongin, Kyunggi 446-701, Republic of Korea
| | - Ju Han Kim
- Department of Oriental Medicinal Material & Processing College of Life Science, KyungHee University, Yongin, Kyunggi 446-701, Republic of Korea
| | - Gafurjon T. Mavlonov
- Department of Oriental Medicinal Material & Processing College of Life Science, KyungHee University, Yongin, Kyunggi 446-701, Republic of Korea
| | - Ki Ju Choi
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, South Korea CDC, Osong Health Technology Administration Complex, Cheongwon-gun, Chungbuk, 363-951, Republic of Korea
| | - Hun-Sub Shin
- Department of Oriental Medicinal Material & Processing College of Life Science, KyungHee University, Yongin, Kyunggi 446-701, Republic of Korea
| | - MooChang Kook
- Department of Marine Biotechnology, Anyang University, Incheon 417-833, Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Material & Processing College of Life Science, KyungHee University, Yongin, Kyunggi 446-701, Republic of Korea
| |
Collapse
|
26
|
Montero-Calasanz MDC, Göker M, Rohde M, Spröer C, Schumann P, Busse HJ, Schmid M, Tindall BJ, Klenk HP, Camacho M. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63:4386-4395. [PMID: 23907217 DOI: 10.1099/ijs.0.052456-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel non-motile, Gram-staining-negative, yellow-pigmented bacterium, designated AG13(T), isolated from a rain water pond at a plant nursery in Spain and characterized as a plant-growth-promoting bacterium, was investigated to determine its taxonomic status. The isolate grew best over a temperature range of 15-40 °C, at pH 5.0-8.0 and with 0-4 % (w/v) NaCl. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Chryseobacterium. The DNA G+C content of the novel strain was 37.2 mol%. The strain had a polyamine pattern with sym-homospermidine as the major compound and produced flexirubin-type pigments. MK-6 was the dominant menaquinone and the major cellular fatty acids were iso-C15 : 0, C17 : 1ω9c and iso-C17 : 0 3-OH. The main polar lipids were phosphatidylethanolamine, aminolipids and several unidentified lipids. The 16S rRNA gene showed 92.0-97.2 % sequence similarity with those of the members of the genus Chryseobacterium. Based on chemotaxonomic and phenotypic traits, and DNA-DNA hybridizations with the type strains of the most closely related species, the isolate is proposed to represent a novel species, Chryseobacterium hispalense, type strain AG13(T) ( = DSM 25574(T) = CCUG 63019(T)). Emended descriptions of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium are also provided.
Collapse
Affiliation(s)
- Maria Del Carmen Montero-Calasanz
- IFAPA-Instituto de Investigación y Formación Agraria y Pesquera, Centro Las Torres-Tomejil, Ctra. Sevilla-Cazalla de la Sierra, Km 12.2, 41200 Alcalá del Río, Sevilla, Spain
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Manfred Rohde
- HZI - Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Michael Schmid
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Brian J Tindall
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Maria Camacho
- IFAPA-Instituto de Investigación y Formación Agraria y Pesquera, Centro Las Torres-Tomejil, Ctra. Sevilla-Cazalla de la Sierra, Km 12.2, 41200 Alcalá del Río, Sevilla, Spain
| |
Collapse
|
27
|
Ambardar S, Vakhlu J. Plant growth promoting bacteria from Crocus sativus rhizosphere. World J Microbiol Biotechnol 2013; 29:2271-9. [PMID: 23749248 DOI: 10.1007/s11274-013-1393-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/31/2013] [Indexed: 11/30/2022]
Abstract
Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant.
Collapse
Affiliation(s)
- Sheetal Ambardar
- School of Biotechnology, University of Jammu, Jammu, 180 006, India
| | | |
Collapse
|
28
|
Pridgeon JW, Klesius PH, Garcia JC. Identification and virulence of Chryseobacterium indologenes isolated from diseased yellow perch (Perca flavescens). J Appl Microbiol 2012; 114:636-43. [PMID: 23164054 DOI: 10.1111/jam.12070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 11/30/2022]
Abstract
AIM To identify pathogen of diseased yellow perch and determine their virulence. METHODS AND RESULTS Fifteen Gram-negative bacterial isolates were recovered from the skin lesions of diseased yellow perch (Perca flavescens). Based on API 20NE test, ten isolates were found to share 67.2-99.9% homologies with Chryseobactertium indologenes. Based on fatty acid methyl ester analysis, 13 isolates were found to share similarities with C. indologenes and other species of Chryseobacterium. Based on sequencing results of partial 16S rRNA gene, 13 isolates shared 99% identities (e value = 2e-50) with the 16S rRNA sequence of C. indologenes (GenBank HQ259684). Based on the 16S-23S rRNA intergenic spacer region (ISR) sequence, the 13 isolates shared 88% identity (e value = 1e-165) with the 16S-23S ISR sequence of C. indologenes (GenBank EU014570). T-coffee multiple sequence alignment revealed that the partial 16S rRNA or the 16S-23S ISR sequence of the 13 isolates shared 100% identity with each other. When healthy yellow perch were exposed to the 15 isolates by bath immersion (c. 6 × 10(7) CFU ml(-1) for 1 h), only C. indologenes isolates killed 10-20% of fish, whereas other isolates were avirulent. When yellow perch were exposed to C. indologenes by intraperitoneal injection, mortality was dose dependent, with LD(50) and LD(95) values of 1.5 × 10(8) and 3.2 × 10(8) CFU per fish, respectively. CONCLUSIONS Chryseobactertium indologenes could be pathogenic to yellow perch. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the isolation of C. indologenes from diseased yellow perch. Virulence studies suggested that C. indologenes could become pathogenic to yellow perch.
Collapse
Affiliation(s)
- J W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, Auburn, AL 36832, USA.
| | | | | |
Collapse
|
29
|
Park SJ, Choi JH, Cha CJ. Chryseobacterium rigui sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2012; 63:1062-1067. [PMID: 22707535 DOI: 10.1099/ijs.0.040519-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterium, designated strain CJ16(T), was isolated from the estuarine wetland of the Han River. Cells of the isolate were yellow-pigmented, Gram-stain-negative, non-motile and rod-shaped. Growth of strain CJ16(T) was observed in TSB at 5-37 °C (optimum 30 °C), at pH 5.0-9.0 (optimum pH 6.0) and with 0-3 % (w/v) NaCl (optimum 0 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CJ16(T) was most closely related to Chryseobacterium hagamense KCTC 22545(T) (97.2 % 16S rRNA gene sequence similarity). Genomic relatedness based on DNA-DNA hybridization between strain CJ16(T) and C. hagamense KCTC 22545(T) was 23 % (strain CJ16(T) as probe) and 19 % (strain KCTC 22545(T) as probe). Chemotaxonomic analysis revealed that strain CJ16(T) possessed MK-6 as the major isoprenoid quinone and sym-homospermidine as the predominant polyamine. The predominant fatty acids were iso-C15 : 0 (26.9 %), iso-C17 : 0 3-OH (16.8 %) and summed feature 9 (comprising C16 : 0 10-methyl and/or iso-C17 : 1ω9c; 10.5 %). The DNA G+C content of strain CJ16(T) was 37.9 mol%. Based on phenotypic, genotypic and phylogenetic studies, strain CJ16(T) represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium rigui sp. nov. is proposed. The type strain is CJ16(T) ( = KACC 16560(T) = JCM 18078(T)).
Collapse
Affiliation(s)
- Sung-Joon Park
- Department of Biotechnology (BK21 Program), Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Jung-Hye Choi
- Department of Biotechnology (BK21 Program), Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Chang-Jun Cha
- Department of Biotechnology (BK21 Program), Chung-Ang University, Anseong 456-756, Republic of Korea
| |
Collapse
|
30
|
Cho SH, Chae SH, Cho M, Kim TU, Choi S, Han JH, Kim YT, Joung Y, Joh K, Nedashkovskaya OI, Kim SB. Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. Int J Syst Evol Microbiol 2011; 61:2654-2658. [DOI: 10.1099/ijs.0.027599-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-negative, yellow-pigmented, gliding, rod-shaped, aerobic bacterium (RA5-111T) was isolated from foreshore soil. The taxonomic status of the novel isolate was determined using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities, strain RA5-111T could be assigned to the genus Gramella, with sequence similarities of 97.7, 97.3 and 96.2 % to the type strains of Gramella echinicola, Gramella portivictoriae and Gramella marina, respectively. Chemotaxonomic and phenotypic characteristics also supported the affiliation of strain RA5-111T with the genus Gramella. The genomic DNA G+C content was 39.1 mol%. The isolate contained MK-6 as the predominant menaquinone, iso-C15 : 0, iso-C17 : 0 3-OH and a summed feature (iso-C15 : 0 2-OH and/or C16 : 1ω7c) as major fatty acids, and phosphatidylethanolamine and unknown phospholipids as the polar lipids. DNA–DNA relatedness, phenotypic, genotypic and chemotaxonomic data clearly indicate that the isolate represents a novel species of the genus Gramella, for which the name Gramella gaetbulicola sp. nov. is proposed. The type strain is RA5-111T ( = KCTC 23022T = JCM 16528T = NBRC 106272T).
Collapse
Affiliation(s)
- Sung-Heun Cho
- Department of Microbiology and Molecular Biology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Song-Hee Chae
- Department of Microbiology and Molecular Biology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Myoungho Cho
- Department of Microbiology and Molecular Biology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Tae-Ui Kim
- Department of Microbiology and Molecular Biology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Seri Choi
- Department of Microbiology and Molecular Biology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Ji-Hye Han
- Department of Microbiology and Molecular Biology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Young Tae Kim
- Department of Microbiology and Molecular Biology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Yochan Joung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89 Wangsan-ri, Cheoin, Yongin, Gyeonggi 449-791, Republic of Korea
| | - Kiseong Joh
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89 Wangsan-ri, Cheoin, Yongin, Gyeonggi 449-791, Republic of Korea
| | - Olga I. Nedashkovskaya
- Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100 Let Vladivostoku 159, Vladivostok 690022, Russia
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea
| |
Collapse
|
31
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2011. [DOI: 10.1099/ijs.0.030445-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper, to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below, and these authors' names will be included in the author index of the present issue. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|