1
|
Muluye T, Fetahi T, Engdaw F, Mohammed A. Cyanotoxins in African waterbodies: occurrence, adverse effects, and potential risk to animal and human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7519-7542. [PMID: 37603139 DOI: 10.1007/s10653-023-01724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Public concerns about cyanotoxins production in water and its detrimental impacts on human and animal health are growing primarily due to the widespread eutrophication observed in aquatic ecosystems. A review of relevant literature was done to determine the degree of cyanotoxin occurrence and its harmful effects in African waterbodies. Data were extracted from 64 published studies from 1990 to 2022 that quantified the concentration of cyanotoxins in African aquatic ecosystems. Cyanotoxins have been reported in 95 waterbodies (29 lakes, 41 reservoirs, 10 ponds, 9 rivers, 5 coastal waters, and 1 irrigation canal) from 15 African countries. Cyanotoxins were documented in all the regions of Africa except the central region. Microcystins have been reported in nearly all waterbodies (98.9%), but anatoxin-a (5.3%), cylindrospermopsin (2.1%), nodularins (2.1%), homoanatoxin-a (1.1%), and β-N-methylamino-L-alanine (1.1%) were encountered in a small number of water ecosystems, homoanatoxin-a and β-N-methylamino-L-alanine each occurred in one waterbody. The largest concentrations of microcystins and nodularins were reported in South African Lakes Nhlanganzwani (49,410 μg L-1) and Zeekoevlei (347,000 μg g-1). Microcystin concentrations exceeding the WHO guideline for lifetime drinking water (1 μg L-1) were reported in 63% of the aquatic ecosystems surveyed. The most frequently reported toxin-producing cyanobacteria genus is Microcystis spp. (73.7%), followed by Oscillatoria spp. (35.8%) and Dolichospermum spp. (33.7%). Cyanotoxin-related animal mortality and human illness were reported in the continent. Consequently, it is necessary to regularly monitor the level of nutrients, cyanobacteria, and cyanotoxins in African waterbodies in an integrated manner to devise a sustainable water resources management.
Collapse
Affiliation(s)
- Tesfaye Muluye
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Tadesse Fetahi
- Department of Zoological Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Flipos Engdaw
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Adem Mohammed
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Benredjem L, Morais J, Hentschke GS, Abdi A, Berredjem H, Vasconcelos V. First Polyphasic Study of Cheffia Reservoir (Algeria) Cyanobacteria Isolates Reveals Toxic Picocyanobacteria Genotype. Microorganisms 2023; 11:2664. [PMID: 38004676 PMCID: PMC10673316 DOI: 10.3390/microorganisms11112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Monitoring water supply requires, among other quality indicators, the identification of the cyanobacteria community and taking into account their potential impact in terms of water quality. In this work, cyanobacteria strains were isolated from the Cheffia Reservoir and identified based on morphological features, the 16S rRNA gene, phylogenetic analysis, and toxin production by polymerase chain reaction PCR screening of the genes involved in the biosynthesis of cyanotoxins (mcyA, mcyE, sxtA, sxtG, sxtI, cyrJ, and anaC). Thirteen strains representing six different genera: Aphanothece, Microcystis, Geitlerinema, Lyngbya, Microcoleus, and Pseudanabaena were obtained. The results demonstrated the importance of morphological features in determining the genus or the species when incongruence between the morphological and phylogenetic analysis occurs and only the utility of the 16S rRNA gene in determining higher taxonomic levels. The phylogenetic analysis confirmed the polyphyly of cyanobacteria for the Microcystis and Oscillatoriales genera. Unexpectedly, Aphanothece sp. CR 11 had the genetic potential to produce microcystins. Our study gives new insight into species with picoplanktonic (or small) cell size and potentially toxic genotypes in this ecosystem. Thus, conventional water treatment methods in this ecosystem have to be adapted, indicating the requirement for pre-treatment methods that can effectively eliminate picocyanobacteria while preserving cell integrity to prevent toxin release.
Collapse
Affiliation(s)
- Lamia Benredjem
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, Abbes Laghrour University of Khenchela, BP 1252 Road of Batna, Khenchela 40004, Algeria;
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Annaba 23000, Algeria; (A.A.); (H.B.)
| | - João Morais
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (G.S.H.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Guilherme Scotta Hentschke
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (G.S.H.)
| | - Akila Abdi
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Annaba 23000, Algeria; (A.A.); (H.B.)
| | - Hajira Berredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Annaba 23000, Algeria; (A.A.); (H.B.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (G.S.H.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Chia MA, Ameh I, George KC, Balogun EO, Akinyemi SA, Lorenzi AS. Genetic Diversity of Microcystin Producers (Cyanobacteria) and Microcystin Congeners in Aquatic Resources across Africa: A Review Paper. TOXICS 2022; 10:772. [PMID: 36548605 PMCID: PMC9783101 DOI: 10.3390/toxics10120772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microcystins are produced by multifaceted organisms called cyanobacteria, which are integral to Africa's freshwater environments. The excessive proliferation of cyanobacteria caused by rising temperature and eutrophication leads to the production and release of copious amounts of microcystins, requiring critical management and control approaches to prevent the adverse environmental and public health problems associated with these bioactive metabolites. Despite hypotheses reported to explain the phylogeography and mechanisms responsible for cyanobacterial blooms in aquatic water bodies, many aspects are scarcely understood in Africa due to the paucity of investigations and lack of uniformity of experimental methods. Due to a lack of information and large-scale studies, cyanobacteria occurrence and genetic diversity are seldom reported in African aquatic ecosystems. This review covers the diversity and geographical distribution of potential microcystin-producing and non-microcystin-producing cyanobacterial taxa in Africa. Molecular analyses using housekeeping genes (e.g., 16S rRNA, ITS, rpoC1, etc.) revealed significant sequence divergence across several cyanobacterial strains from East, North, West, and South Africa, but the lack of uniformity in molecular markers employed made continent-wise phylogenetic comparisons impossible. Planktothrix agardhii, Microcystis aeruginosa, and Cylindrospermopsis raciborskii (presently known as Raphidiopsis raciborskii) were the most commonly reported genera. Potential microcystin (MCs)-producing cyanobacteria were detected using mcy genes, and several microcystin congeners were recorded. Studying cyanobacteria species from the African continent is urgent to effectively safeguard public and environmental health because more than 80% of the continent has no data on these important microorganisms and their bioactive secondary metabolites.
Collapse
Affiliation(s)
- Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ilu Ameh
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Korie Chibuike George
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | | | | | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, Brazil
| |
Collapse
|
4
|
Béjaoui B, Basti L, Canu DM, Feki-Sahnoun W, Salem H, Dahmani S, Sahbani S, Benabdallah S, Blake R, Norouzi H, Solidoro C. Hydrology, biogeochemistry and metabolism in a semi-arid mediterranean coastal wetland ecosystem. Sci Rep 2022; 12:9367. [PMID: 35672427 PMCID: PMC9174276 DOI: 10.1038/s41598-022-12936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
A LOICZ Budget Model is applied to the Ichkeul Lake, a wetland ecosystem of the South Mediterranean-North African region, to evaluate its functioning in order to boost water management. The Ichkeul Lake water and nutrient budget, net ecosystem metabolism (NEM), nutrient availability, and their seasonal changes are estimated using field data. A considerable anthropogenic-driven amount of nitrogen is transferred into N2/N2O to the atmosphere during the dry season with predominance of denitrification-anammox processes. The primary production is impacted by forcing the ecosystem respiration to reduce the NEM so that the system is functioning as heterotrophic. Climate change and anthropogenic pressures are expected to exacerbate the current trends of water quality degradation, with possible negative impacts on Palearctic birds' population. Mitigation actions are possible, through the implementation of National Wetland Management Strategies that include nutrient load and water resources management.
Collapse
Affiliation(s)
- Béchir Béjaoui
- National Institute of Marine Sciences and Technology, University of Carthage, 28 rue du 2 Mars 1934 Carthage Salammbô, Tunis, Tunisia.
| | - Leila Basti
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Tokyo, Minato, 108-8477, Japan
| | - Donata Melaku Canu
- National Institute of Oceanography and Applied Geophysics, OGS, Borgo Grotta Gigante, 42/c, 34010 Sgonico, Trieste, Italy
| | - Wafa Feki-Sahnoun
- National Institute of Marine Sciences and Technology, University of Carthage, 28 rue du 2 Mars 1934 Carthage Salammbô, Tunis, Tunisia
| | - Hatem Salem
- National Institute of Marine Sciences and Technology, University of Carthage, 28 rue du 2 Mars 1934 Carthage Salammbô, Tunis, Tunisia
- Laboratory of Hydraulics and Environment, National Engineering School of Tunis, University of Tunis, BP 37, 1002, Tunis, Tunisia
| | - Sana Dahmani
- University of Applied Sciences for Engineering and Economics, Treskowallee 8, 10318, Berlin, Germany
| | - Sabrine Sahbani
- National Institute of Marine Sciences and Technology, University of Carthage, 28 rue du 2 Mars 1934 Carthage Salammbô, Tunis, Tunisia
- National Institute of Agronomy of Tunisia, 43 Av. Charles Nicolle, 1082, Tunis, Tunisia
| | - Sihem Benabdallah
- Centre for Water Research and Technologies, Technople Borj Cedria, BP 273-8020, Tunis, Tunisia
| | - Reginald Blake
- The City University of New York, New York City College of Technology, 300 Jay St, Brooklyn, NY, 11201, USA
| | - Hamidreza Norouzi
- The City University of New York, New York City College of Technology, 300 Jay St, Brooklyn, NY, 11201, USA
| | - Cosimo Solidoro
- National Institute of Oceanography and Applied Geophysics, OGS, Borgo Grotta Gigante, 42/c, 34010 Sgonico, Trieste, Italy
- International Centre for Theoretical Physics, ICTP, Strada Costiera, Trieste, Italy
| |
Collapse
|
5
|
Benredjem L, Berredjem H, Abdi A, Casero MC, Quesada A, Fosso B, Marzano M, Pesole G, Azevedo J, Vasconcelos V. Morphological, molecular, and biochemical study of cyanobacteria from a eutrophic Algerian reservoir (Cheffia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27624-27635. [PMID: 34984616 DOI: 10.1007/s11356-021-17528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The cyanobacteria management in water bodies requires a deep knowledge of the community composition. Considering the reliable and thorough information provided by the polyphasic approach in cyanobacteria taxonomy, here we assess the cyanobacterial community structure of the Cheffia reservoir from Algeria. Cyanobacteria were identified on the basis of morphological traits and next-generation sequencing (NGS); toxins-related genes were localized in addition to the identification of toxins; temperature and nutrient level of water samples were also determined. The polyphasic approach was essential for cyanobacteria investigation; 28 genera were identified through 16S rRNA metabarcoding with the dominance of taxa from Microcystis (34.2%), Aphanizomenon (20.1%), and Planktothrix (20.0%), and morphological analysis revealed the association in this water body of five species within the genus Microcystis: M. aeruginosa, M. novacekii, M. panniformis, M. ichthyoblabe, and M. flos-aquae. The presence of mcyE genotypes was detected; moreover, HPLC-PDA and LC-ESI-MS/MS revealed the production of microcystin-LR. Results obtained in our study are very important since this ecosystem is used for water supply and irrigation; as a consequence, a good water management plan is essential.
Collapse
Affiliation(s)
- Lamia Benredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Hajira Berredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Akila Abdi
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Maria Cristina Casero
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049, Madrid, Spain
| | - Bruno Fosso
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Marinella Marzano
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Graziano Pesole
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
- Dipartimento Di Bioscienze, Biotecnologie E Biofarmaceutica, Università Degli Studi Di Bari "Aldo Moro", Via Orabona 4, 70126, Bari, Italy
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua Dos Bragas, 289, 4050-123, Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua Dos Bragas, 289, 4050-123, Porto, Portugal.
- Biology Department, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Development of Genus-Specific PCR Primers for Molecular Monitoring of Invasive Nostocalean Cyanobacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115703. [PMID: 34073374 PMCID: PMC8198022 DOI: 10.3390/ijerph18115703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
The geographical range of invasive cyanobacteria with high toxigenic potential is widening because of eutrophication and global warming, thus, monitoring their appearance is necessary for safe water quality control. Most invasive cyanobacteria are nostocalean species, and their accurate identification by classical morphological methods may be problematic. In this study, we developed polymerase chain reaction (PCR) primers to selectively identify five invasive cyanobacterial genera, namely, Chrysosporum, Cuspidothrix, Cylindrospermopsis, Raphidiopsis, and Sphaerospermopsis, using genetic markers such as rbcLX, rpoB, rpoC1, and cpcBA, and determined the amplification conditions for each pair of primers. The primer performances were verified on single or mixed nostocalean cyanobacterial isolates. The five primers allowed selective identification of all the target genera. In field samples collected during summer, when cyanobacteria flourished in the Nakdong River, the respective PCR product was observed in all samples where the target genus was detected by microscopic analysis. Besides, weak bands corresponding to Sphaerospermopsis and Raphidiopsis were observed in some samples in which these genera were not detected by microscopy, suggesting that the cell densities were below the detection limit of the microscopic method used. Thus, the genus-specific primers developed in this study enable molecular monitoring to supplement the current microscopy-based monitoring.
Collapse
|
7
|
First Report on Cyanotoxin (MC-LR) Removal from Surface Water by Multi-Soil-Layering (MSL) Eco-Technology: Preliminary Results. WATER 2021. [DOI: 10.3390/w13101403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyanobacteria blooms occur frequently in freshwaters around the world. Some can produce and release toxic compounds called cyanotoxins, which represent a danger to both the environment and human health. Microcystin-LR (MC-LR) is the most toxic variant reported all over the world. Conventional water treatment methods are expensive and require specialized personnel and equipment. Recently, a multi-soil-layering (MSL) system, a natural and low-cost technology, has been introduced as an attractive cost-effective, and environmentally friendly technology that is likely to be an alternative to conventional wastewater treatment methods. This study aims to evaluate, for the first time, the efficiency of MSL eco-technology to remove MC-LR on a laboratory scale using local materials. To this end, an MSL pilot plant was designed to treat distilled water contaminated with MC-LR. The pilot was composed of an alternation of permeable layers (pozzolan) and soil mixture layers (local sandy soil, sawdust, charcoal, and metallic iron on a dry weight ratio of 70, 10, 10, and 10%, respectively) arranged in a brick-layer-like pattern. MSL pilot was continuously fed with synthetic water containing distilled water contaminated with increasing concentrations of MC-LR (0.18–10 µg/L) at a hydraulic loading rate (HLR) of 200 L m−2 day−1. The early results showed MC-LR removal of above 99%. Based on these preliminary results, the multi-soil-layering eco-technology could be considered as a promising solution to treat water contaminated by MC-LR in order to produce quality water for irrigation or recreational activities.
Collapse
|
8
|
Abstract
Eutrophication and global climate change gather advantageous conditions for cyanobacteria proliferation leading to bloom formation and cyanotoxin production. In the Azores, eutrophication is a major concern, mainly in lakes where fertilizers and organic matter discharges have increased nutrient concentration. In this study, we focused on understanding the influence of environmental factors and lake characteristics on (i) cyanobacteria diversity and biomass and (ii) the presence of toxic strains and microcystin, saxitoxin, anatoxin-a, and cylindrospermopsin cyanotoxin-producing genes. Fifteen lakes from the Azores Archipelago were sampled seasonally, environmental variables were recorded in situ, cyanobacteria were analyzed with microscopic techniques, and cyanotoxin-producing genes were targeted through conventional PCR. Statistical analysis (DistLM) showed that lake typology-associated variables (lake’s depth, area, and altitude) were the most explanatory variables of cyanobacteria biomass and cyanotoxin-producing genes presence, although trophic variables (chlorophyll a and total phosphorus) influence species distribution in each lake type. Our main results revealed higher cyanobacteria biomass/diversity, and higher toxicity risk in lakes located at lower altitudes, associated with deep anthropogenic pressures and eutrophication scenarios. These results emphasize the need for cyanobacteria blooms control measures, mainly by decreasing anthropogenic pressures surrounding these lakes, thus decreasing eutrophication. We also highlight the potential for microcystin, saxitoxin, and anatoxin-a production in these lakes, hence the necessity to implement continuous mitigation protocols to avoid environmental and public health toxicity events.
Collapse
|
9
|
Asukabe H, Akahori S, Ueno E, Nakayama T, Yamashita R, Arii S, Harada KI, Imanishi SY. Cyanobacterial Classification with the Toxicity Using MALDI Biotyper. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1572-1578. [PMID: 32501712 DOI: 10.1021/jasms.0c00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An abnormal growth of cyanobacteria in eutrophicated freshwaters can cause various environmental problems. In particular, Microcystis producing hepatotoxic cyclic heptapeptides microcystins (MCs) has been globally observed. Recent studies have demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) offers a rapid classification of cyanobacteria; however, they have not fully considered the toxicity yet. In this study, we have performed MALDI-TOF MS for intact cyanobacterial cells using Biotyper software and optimized their conditions to achieve cyanobacterial classification with the toxicity. The detection mass range used for Biotyper was extended to cover small molecules, but their intense ions were suppressed as a function of the used instrument Autoflex Speed, which enabled simultaneous observations of large molecular fingerprints and small MCs with comparable ion intensity. Hierarchical clustering of mass spectra obtained under the optimized conditions differentiated toxic and non-toxic clusters of Microcystis strains and furthermore formed a tight cluster of non-toxic strains possessing the MC biosynthesis gene mcyG. Spectral libraries were expanded to >30 genera (>80 strains) under the default and optimized conditions to improve the confidence of cyanobacterial classification. Consequently, spectral library searching allowed for characterization of cyanobacteria from a field sample as mixed toxic and non-toxic Microcystis cells, without isolating those cells.
Collapse
Affiliation(s)
- Hirohiko Asukabe
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Satoko Akahori
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Ema Ueno
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Takuma Nakayama
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Ryuji Yamashita
- Graduate School of Environmental and Human Sciences, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Suzue Arii
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Ken-Ichi Harada
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
- Graduate School of Environmental and Human Sciences, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Susumu Y Imanishi
- Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| |
Collapse
|
10
|
Vico P, Bonilla S, Cremella B, Aubriot L, Iriarte A, Piccini C. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: Integrating genomics, phylogenetic and toxicity data. Mol Phylogenet Evol 2020; 148:106824. [PMID: 32294544 DOI: 10.1016/j.ympev.2020.106824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Raphidiopsis (Cylindrospermopsis) raciborskii, a globally distributed bloom-forming cyanobacterium, produces either the cytotoxin cylindrospermopsin (CYL) in Oceania, Asia and Europe or the neurotoxin saxitoxin (STX) and analogues (paralytic shellfish poison, PSP) in South America (encoded by sxt genetic cluster) and none of them in Africa. Nevertheless, this particular geographic pattern is usually overlooked in current hypotheses about the species dispersal routes. Here, we combined genomics, phylogenetic analyses, toxicity data and a literature survey to unveil the evolutionary history and spread of the species. Phylogenies based on 354 orthologous genes from all the available genomes and ribosomal ITS sequences of the taxon showed two well-defined clades: the American, having the PSP producers; and the Oceania/Europe/Asia, including the CYL producers. We propose central Africa as the original dispersion center (non-toxic populations), reaching North Africa and North America (in former Laurasia continent). The ability to produce CYL probably took place in populations that advanced to sub-Saharan Africa and then to Oceania and South America. According to the genomic context of the sxt cluster found in PSP-producer strains, this trait was acquired once by horizontal transfer in South America, where the ability to produce CYL was lost.
Collapse
Affiliation(s)
- Paula Vico
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay
| | - Sylvia Bonilla
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Bruno Cremella
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay; Laboratory of Environmental Analysis, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luis Aubriot
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay.
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay.
| |
Collapse
|
11
|
Barka S, Gdara I, Ouanes-Ben Othmen Z, Mouelhi S, El Bour M, Hamza-Chaffai A. Seasonal ecotoxicological monitoring of freshwater zooplankton in Bir Mcherga dam (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5670-5680. [PMID: 30693446 DOI: 10.1007/s11356-019-04271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Dams represent large semi-closed reservoirs of pesticides and various organic and inorganic pollutants from agricultural and human activities, and their monitoring should receive special attention. This study evaluated the environmental health status of Bir Mcherga dam using zooplankton species. The dam has a capacity of 130 Mm3 and its waters are used for irrigation, water drinking supply, and fishery. Copepods and cladocerans (crustaceans) were collected in situ monthly between October and August 2012. Oxidative stress (CAT, MDA), neurotoxicity (AChE), and genotoxicity (micronucleus test) biomarkers were analyzed in two zooplankton species: Acanthocyclops robustus and Diaphanosoma mongolianum. High values of cells with a micronucleus were observed during summer. AChE activities were inhibited during early winter and summer. The high seasonal variability of CAT and MDA levels indicates that zooplankton is continuously exposed to different oxidative stresses. These results suggest that there is an obvious and continuous multi-faceted stress in Bir Mcherga reservoir and, consequently, an urgent monitoring of freshwater environments in Tunisia is needed, particularly those intended for human consumption and irrigation.
Collapse
Affiliation(s)
- Sabria Barka
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia.
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia.
| | - Imene Gdara
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| | - Zouhour Ouanes-Ben Othmen
- Institut Supérieur de Biotechnologie de Monastir, Monastir, Tunisia
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| | - Samia Mouelhi
- Unité de Recherche de Biologie Animale et Systématique Evolutive 2092, Campus Universitaire, Manar II, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - Monia El Bour
- Laboratoire de Biotechnologie et Biodiversité Aquatiques, National Institute of Sea Sciences and Technologies INSTM, Salammbô, Tunisia
| | - Amel Hamza-Chaffai
- Unité de Recherche de Toxicologie Environnementale et Marine, UR 09-03, IPEIS, Sfax University, Sfax, Tunisia
| |
Collapse
|
12
|
Boukari A, Benabdallah S, Everbecq E, Magermans P, Grard A, Habaieb H, Deliège JF. Assessment of Agriculture Pressures Impact on the Joumine River Water Quality Using the PEGASE Model. ENVIRONMENTAL MANAGEMENT 2019; 64:520-535. [PMID: 31542813 DOI: 10.1007/s00267-019-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The protection of the aquatic environment while managing the risk of water scarcity in the Mediterranean region is challenging. Ensuring future sustainability of water resources needs improved monitoring networks and early warning system of future trends of water quality. A specific concern is given to nonpoint source pollution from agriculture, which is often the main source of water quality degradation in rivers. In this work, we focused on the Joumine river basin, a rural-catchment situated north Tunisia dominated by agricultural activities and exposed to eutrophication problems. Aiming to present an assessment framework of the spatial-temporal water quality variability and quantify "pressure-impact" relationships, we used a physically based modeling approach involving the river/basin integrated model PEGASE (Planification Et Gestion de l'ASsainissement des Eaux). PEGASE simulates watercourses physicochemical quality depending on the morphology of the drainage network, hydrometeorological conditions and natural and anthropogenic influences. Simulation results showed a better description of Joumine river water quality and helped in identifying exposed areas to nutrients export. Results have also emphasized the contribution of different pollution sources. We were able to examine the potential impact of agriculture diffuse pollution and we found that Nitrate is the element mostly threatening water quality. The nutrients patterns suggest that climate and farming practices are important factors controlling their transfer. These findings demonstrate that the adopted assessment approach in investigating the behavior of the studied hydrosystem can be a useful support to develop an appropriate surface water quality management program in a semiarid context.
Collapse
Affiliation(s)
- Amira Boukari
- National Agronomy Institute of Tunisia, GREEN-TEAM Laboratory, University of Carthage, 43 Avenue Charles Nicolle, 1082, Tunis Mahrajène, Tunisia.
- Aquapôle Research and Development unit, Freshwater and Oceanic Science Unit of Research, University of Liège, Quartier Polytech 1, Allée de la découverte, 11-bât.B53, 4000, Liège, Belgium.
| | - Sihem Benabdallah
- Center for Water Research and Technologies, CERTE, BP 273, 8020, Soliman, Tunisia
| | - Etienne Everbecq
- Aquapôle Research and Development unit, Freshwater and Oceanic Science Unit of Research, University of Liège, Quartier Polytech 1, Allée de la découverte, 11-bât.B53, 4000, Liège, Belgium
| | - Pol Magermans
- Aquapôle Research and Development unit, Freshwater and Oceanic Science Unit of Research, University of Liège, Quartier Polytech 1, Allée de la découverte, 11-bât.B53, 4000, Liège, Belgium
| | - Aline Grard
- Aquapôle Research and Development unit, Freshwater and Oceanic Science Unit of Research, University of Liège, Quartier Polytech 1, Allée de la découverte, 11-bât.B53, 4000, Liège, Belgium
| | - Hamadi Habaieb
- National Agronomy Institute of Tunisia, GREEN-TEAM Laboratory, University of Carthage, 43 Avenue Charles Nicolle, 1082, Tunis Mahrajène, Tunisia
| | - Jean-François Deliège
- Aquapôle Research and Development unit, Freshwater and Oceanic Science Unit of Research, University of Liège, Quartier Polytech 1, Allée de la découverte, 11-bât.B53, 4000, Liège, Belgium
| |
Collapse
|
13
|
Velichko NV, Pinevich AV. Classification and Identification Tasks in Microbiology: Mass Spectrometric Methods Coming to the Aid. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Riba M, Kiss-Szikszai A, Gonda S, Boros G, Vitál Z, Borsodi AK, Krett G, Borics G, Ujvárosi AZ, Vasas G. Microcystis Chemotype Diversity in the Alimentary Tract of Bigheaded Carp. Toxins (Basel) 2019; 11:E288. [PMID: 31121822 PMCID: PMC6563263 DOI: 10.3390/toxins11050288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/04/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Most cyanobacterial organisms included in the genus Microcystis can produce a wide repertoire of secondary metabolites. In the mid-2010s, summer cyanobacterial blooms of Microcystis sp. occurred regularly in Lake Balaton. During this period, we investigated how the alimentary tract of filter-feeding bigheaded carps could deliver different chemotypes of viable cyanobacteria with specific peptide patterns. Twenty-five Microcystis strains were isolated from pelagic plankton samples (14 samples) and the hindguts of bigheaded carp (11 samples), and three bloom samples were collected from the scums of cyanobacterial blooms. An LC-MS/MS-based untargeted approach was used to analyze peptide patterns, which identified 36 anabaenopeptin, 17 microginin, and 13 microcystin variants. Heat map clustering visualization was used to compare the identified chemotypes. A lack of separation was observed in peptide patterns of Microcystis that originated from hindguts, water samples, and bloom-samples. Except for 13 peptides, all other congeners were detected from the viable and cultivated chemotypes of bigheaded carp. This finding suggests that the alimentary tract of bigheaded carps is not simply an extreme habitat, but may also supply the cyanobacterial strains that represent the pelagic chemotypes.
Collapse
Affiliation(s)
- Milán Riba
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gergely Boros
- Balaton Limnological Institute, MTA Centre for Ecological Research, H-8237 Tihany, Hungary.
| | - Zoltán Vitál
- Balaton Limnological Institute, MTA Centre for Ecological Research, H-8237 Tihany, Hungary.
| | - Andrea Kériné Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary.
- Danube Research Institute, MTA Centre for Ecological Research, H-1113 Budapest, Hungary.
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary.
| | - Gábor Borics
- Danube Research Institute, MTA Centre for Ecological Research, H-1113 Budapest, Hungary.
| | - Andrea Zsuzsanna Ujvárosi
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
15
|
Díez-Quijada L, Puerto M, Gutiérrez-Praena D, Llana-Ruiz-Cabello M, Jos A, Cameán AM. Microcystin-RR: Occurrence, content in water and food and toxicological studies. A review. ENVIRONMENTAL RESEARCH 2019; 168:467-489. [PMID: 30399604 DOI: 10.1016/j.envres.2018.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Microcystins (MCs) are hepatotoxins, produced by various species of cyanobacteria, whose occurrence is increasing worldwide owing to climate change and anthropogenic activities. More than 100 variants have been reported, and among them MC-LR is the most extensively studied, but there are other MC congeners that deserve to be investigated. The need for data to characterize the toxicological profile of MC variants other than MC-LR has been identified in order to improve risk assessment in humans and wildlife. Accordingly, the aim of this study was to evaluate the information available in the scientific literature dealing with MC-RR, as this congener is the second most common cyanotoxin in the environment. The review focuses on aspects such as occurrence in water and food, and toxicity studies both in vitro and in vivo. It reveals that, although MC-RR is a real hazard with a high exposure potential in some countries, little is known yet about its specific toxicological properties that differ from those of MC-LR, and important aspects such as genotoxicity and chronic effects have not yet been sufficiently addressed.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - María Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| |
Collapse
|
16
|
Díez-Quijada L, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem Toxicol 2018; 125:106-132. [PMID: 30597222 DOI: 10.1016/j.fct.2018.12.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
The occurrence of cyanobacterial toxins is being increasingly reported. This is a reason for concern as they can induce toxic effects both in humans and in the environment. Among them, microcystins (MCs) are the best described and most diverse group of cyanobacterial toxins, and MC-LR and MC-RR are the congeners most widely investigated. However, the number of MC variants has also increased in recent years. Some of these minority variants have been shown to have a different toxicokinetic and toxicodynamic profile, but research focused on them is still limited. Moreover, in some water bodies these minority variants can be the predominant toxins. Nonetheless, MC-LR is the only one used for risk evaluation purposes at present. In order to contribute to more realistic risk assessments in the future, the aim of this review was to compile the available information in the scientific literature regarding the occurrence and concentration of minority MCs in water and food samples, and their toxic effects. The data retrieved demonstrate the congener-specific toxicity of MCs, as well as many data gaps in relation to analytical or mechanistic aspects, among others. Therefore, further research is needed to improve the toxicological characterization of these toxins and the exposure scenarios.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| |
Collapse
|
17
|
Kurobe T, Lehman PW, Hammock BG, Bolotaolo MB, Lesmeister S, Teh SJ. Biodiversity of cyanobacteria and other aquatic microorganisms across a freshwater to brackish water gradient determined by shotgun metagenomic sequencing analysis in the San Francisco Estuary, USA. PLoS One 2018; 13:e0203953. [PMID: 30248115 PMCID: PMC6152961 DOI: 10.1371/journal.pone.0203953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/30/2018] [Indexed: 11/19/2022] Open
Abstract
Blooms of Microcystis and other harmful cyanobacteria can degrade water quality by producing cyanotoxins or other toxic compounds. The goals of this study were (1) to facilitate understanding of community structure for various aquatic microorganisms in brackish water and freshwater regions with emphasis on cyanobacteria, and (2) to test a hypothesis that Microcystis genotypes that tolerate higher salinity were blooming in brackish water environments during the severe drought, 2014. Shotgun metagenomic analysis revealed that cyanobacteria dominated the brackish water region while bacteria dominated the freshwater region. A group of cyanobacteria (e.g., Aphanizomenon, Microcystis, Planktothrix, Pseudanabaena), bacteria (e.g., Bacillus, Porphyrobacter), and diatoms (Phaeodactylum and Thalassiosira) were abundant in the brackish water region. In contrast, Hassallia (cyanobacteria) and green algae (Nannochloropsis, Chlamydomonas, and Volvox) were abundant in the landward freshwater region. Station variation was also apparent. One landward sampling station located downstream of an urbanized area differed substantially from the other stations in terms of both water chemistry and community structure, with a higher percentage of arthropods, green algae, and eukaryotes. Screening of the Microcystis internal transcribed spacer region revealed six representative genotypes, and two of which were successfully quantified using qPCR (Genotypes I and VI). Both genotypes occurred predominantly in the freshwater region, so the data from this study did not support the hypothesis that salinity tolerant Microcystis genotypes bloomed in the brackish water region in 2014.
Collapse
Affiliation(s)
- Tomofumi Kurobe
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Peggy W. Lehman
- California Department of Fish and Wildlife, Stockton, California, United States of America
| | - Bruce G. Hammock
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Melissa B. Bolotaolo
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Sarah Lesmeister
- California Department of Water Resources, West Sacramento, California, United States of America
| | - Swee J. Teh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
18
|
Mtibaa S, Hotta N, Irie M. Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: A case study of the Joumine watershed, Tunisia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1-16. [PMID: 29107774 DOI: 10.1016/j.scitotenv.2017.10.290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Soil erosion can be reduced through the strategic selection and placement of best management practices (BMPs) in critical source areas (CSAs). In the present study, the Soil Water Assessment Tool (SWAT) model was used to identify CSAs and investigate the effectiveness of different BMPs in reducing sediment yield in the Joumine watershed, an agricultural river catchment located in northern Tunisia. A cost-benefit analysis (CBA) was used to evaluate the cost-effectiveness of different BMP scenarios. The objective of the present study was to determine the most cost-effective management scenario for controlling sediment yield. The model performance for the simulation of streamflow and sediment yield at the outlet of the Joumine watershed was good and satisfactory, respectively. The model indicated that most of the sediment was originated from the cultivated upland area. About 34% of the catchment area consisted of CSAs that were affected by high to very high soil erosion risk (sediment yield >10t/ha/year). Contour ridges were found to be the most effective individual BMP in terms of sediment yield reduction. At the watershed level, implementing contour ridges in the CSAs reduced sediment yield by 59%. Combinations of BMP scenarios were more cost-effective than the contour ridges alone. Combining buffer strips (5-m width) with other BMPs depending on land slope (> 20% slope: conversion to olive orchards; 10-20% slope: contour ridges; 5-10% slope: grass strip cropping) was the most effective approach in terms of sediment yield reduction and economic benefits. This approach reduced sediment yield by 61.84% with a benefit/cost ratio of 1.61. Compared with the cost of dredging, BMPs were more cost-effective for reducing sediment loads to the Joumine reservoir, located downstream of the catchment. Our findings may contribute to ensure the sustainability of future conservation programs in Tunisian regions.
Collapse
Affiliation(s)
- Slim Mtibaa
- Graduate school of life and environmental sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8577, Japan.
| | - Norifumi Hotta
- Faculty of life and environmental sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8577, Japan
| | - Mitsuteru Irie
- Faculty of Engineering, University of Miyazaki, 1-1 Kibanadainishi, Miyazaki-shi, Miyazaki, Japan
| |
Collapse
|
19
|
Guellati FZ, Touati H, Tambosco K, Quiblier C, Humbert JF, Bensouilah M. Unusual cohabitation and competition between Planktothrix rubescens and Microcystis sp. (cyanobacteria) in a subtropical reservoir (Hammam Debagh) located in Algeria. PLoS One 2017; 12:e0183540. [PMID: 28859113 PMCID: PMC5578670 DOI: 10.1371/journal.pone.0183540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/07/2017] [Indexed: 11/23/2022] Open
Abstract
Succession in bloom-forming cyanobacteria belonging to distant functional groups in freshwater ecosystems is currently an undescribed phenomenon. However in the Hammam Debagh reservoir (Algeria), P. rubescens and Microcystis sp. co-occur and sometimes proliferate. With the aim of identifying the main factors and processes involved in this unusual cohabitation, water samples were collected monthly from February 2013 to June 2015 at the subsurface at four sampling stations and along the entire water column at one sampling station. In addition, the composition of the cyanobacterial communities was estimated by Illumina sequencing of a 16S rRNA gene fragment from samples collected over one year (October 2013-November 2014). This molecular approach showed that the Hammam Debagh reservoir displays high species richness (89 species) but very low diversity due to the high dominance of Microcystis in this community. Furthermore, it appears that Planktothrix rubescens and Microcystis sp. coexisted (from September to January) but proliferated alternately (Spring 2015 for P. rubescens and Spring 2014 and Autumn 2014/2015 for Microcystis). The main factors and processes explaining these changes in bloom-forming species seem to be related to the variation in the depth of the lake during the mixing period and to the water temperatures during the winter prior to the bloom season in spring.
Collapse
Affiliation(s)
- Fatma Zohra Guellati
- Ecobiologie des milieux marins et litoraux; Faculté des sciences, BP 12 El- Hadjar, University Badji Mokhtar, Annaba, Algerie
- Institut d’Ecologie et des Sciences de l‘Environnement de Paris (iEES), UMR 7618 UPMC-CNRS-INRA-IRD-Paris 7-UPEC, Paris, France
- * E-mail: (FZG); (JFH)
| | - Hassen Touati
- Ecobiologie des milieux marins et litoraux; Faculté des sciences, BP 12 El- Hadjar, University Badji Mokhtar, Annaba, Algerie
| | - Kevin Tambosco
- Institut d’Ecologie et des Sciences de l‘Environnement de Paris (iEES), UMR 7618 UPMC-CNRS-INRA-IRD-Paris 7-UPEC, Paris, France
| | - Catherine Quiblier
- Muséum, National d’Histoire Naturelle, UMR 7245 MNHN-CNRS, Paris, France
- Université Paris Diderot, Paris, France
| | - Jean-François Humbert
- Institut d’Ecologie et des Sciences de l‘Environnement de Paris (iEES), UMR 7618 UPMC-CNRS-INRA-IRD-Paris 7-UPEC, Paris, France
- * E-mail: (FZG); (JFH)
| | - Mourad Bensouilah
- Ecobiologie des milieux marins et litoraux; Faculté des sciences, BP 12 El- Hadjar, University Badji Mokhtar, Annaba, Algerie
| |
Collapse
|
20
|
Jiang Y, Xiao P, Yu G, Shao J, Liu D, Azevedo SMFO, Li R. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies. Appl Environ Microbiol 2014; 80:5219-30. [PMID: 24928879 PMCID: PMC4136083 DOI: 10.1128/aem.00551-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes.
Collapse
Affiliation(s)
- Yongguang Jiang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jihai Shao
- Resources and Environment College, Hunan Agricultural University, Changsha, People's Republic of China
| | - Deming Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| | - Sandra M F O Azevedo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
21
|
Moreira C, Vasconcelos V, Antunes A. Phylogeny and biogeography of cyanobacteria and their produced toxins. Mar Drugs 2013; 11:4350-69. [PMID: 24189276 PMCID: PMC3853732 DOI: 10.3390/md11114350] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/29/2013] [Accepted: 10/09/2013] [Indexed: 11/17/2022] Open
Abstract
Phylogeny is an evolutionary reconstruction of the past relationships of DNA or protein sequences and it can further be used as a tool to assess population structuring, genetic diversity and biogeographic patterns. In the microbial world, the concept that everything is everywhere is widely accepted. However, it is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. Biogeography can be defined as the science that documents the spatial and temporal distribution of a given taxa in the environment at local, regional and continental scales. Speciation, extinction and dispersal are proposed to explain the generation of biogeographic patterns. Cyanobacteria are a diverse group of microorganisms that inhabit a wide range of ecological niches and are well known for their toxic secondary metabolite production. Knowledge of the evolution and dispersal of these microorganisms is still limited, and further research to understand such topics is imperative. Here, we provide a compilation of the most relevant information regarding these issues to better understand the present state of the art as a platform for future studies, and we highlight examples of both phylogenetic and biogeographic studies in non-symbiotic cyanobacteria and cyanotoxins.
Collapse
Affiliation(s)
- Cristiana Moreira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 289, Porto 4050-123, Portugal; E-Mails: (C.M.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 289, Porto 4050-123, Portugal; E-Mails: (C.M.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 289, Porto 4050-123, Portugal; E-Mails: (C.M.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| |
Collapse
|
22
|
de la Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O'Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, Dionysiou DD. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1979-2003. [PMID: 24056894 DOI: 10.1039/c3em00353a] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cylindrospermopsin is an important cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria poses a potential threat to both human and ecosystem health. Its toxicity is associated with metabolic activation and may involve mechanisms that adversely affect a wide variety of targets in an organism. Cylindrospermopsin has been shown to be cytotoxic, dermatotoxic, genotoxic, hepatotoxic in vivo, developmentally toxic, and may be carcinogenic. Human exposure may occur through drinking water, during recreational activities and by consuming foods in which the toxin may have bioaccumulated. Drinking water shortages of sufficient quality coupled with growing human pressures and climate variability and change necessitate an integrated and sustainable water management program. This review presents an overview of the importance of cylindrospermopsin, its detection, toxicity, worldwide distribution, and lastly, its chemical and biological degradation and removal by natural processes and drinking water treatment processes.
Collapse
Affiliation(s)
- Armah A de la Cruz
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|