1
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Tshikhudo PP, Ntushelo K, Mudau FN. Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review. Microorganisms 2023; 11:microorganisms11020453. [PMID: 36838418 PMCID: PMC9967847 DOI: 10.3390/microorganisms11020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Bacterial endophytes reside within the tissues of living plant species without causing any harm or disease to their hosts. These endophytes can be isolated, identified, characterized, and used as biofertilizers. Moreover, bacterial endophytes increase the plants' resistance against diseases, pests, and parasites, and are a promising source of pharmaceutically important bioactives. For instance, the production of antibiotics, auxins, biosurfactants, cytokinin's, ethylene, enzymes, gibberellins, nitric oxide organic acids, osmolytes, and siderophores is accredited to the existence of various bacterial strains. Thus, this manuscript intends to review the sustainable applications of endophytic bacteria to promote the growth, development, and chemical integrity of medicinal and herbal plants, as well as their role in plant physiology. The study of the importance of bacterial endophytes in the suppression of diseases in medicinal and herbal plants is crucial and a promising area of future investigation.
Collapse
Affiliation(s)
- Phumudzo Patrick Tshikhudo
- Department of Agriculture, Land Reform and Rural Development, Directorate Plant Health, Division Pest Risk Analysis, Arcadia, Pretoria 0001, South Africa
- Correspondence:
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Fhatuwani Nixwell Mudau
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
3
|
Kozieł M, Kalita M, Janczarek M. Genetic diversity of microsymbionts nodulating Trifolium pratense in subpolar and temperate climate regions. Sci Rep 2022; 12:12144. [PMID: 35840628 PMCID: PMC9287440 DOI: 10.1038/s41598-022-16410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Rhizobia are soil-borne bacteria forming symbiotic associations with legumes and fixing atmospheric dinitrogen. The nitrogen-fixation potential depends on the type of host plants and microsymbionts as well as environmental factors that affect the distribution of rhizobia. In this study, we compared genetic diversity of bacteria isolated from root nodules of Trifolium pratense grown in two geographical regions (Tromsø, Norway and Lublin, Poland) located in distinct climatic (subpolar and temperate) zones. To characterize these isolates genetically, three PCR-based techniques (ERIC, BOX, and RFLP of the 16S-23S rRNA intergenic spacer), 16S rRNA sequencing, and multi-locus sequence analysis of chromosomal house-keeping genes (atpD, recA, rpoB, gyrB, and glnII) were done. Our results indicate that a great majority of the isolates are T. pratense microsymbionts belonging to Rhizobium leguminosarum sv. trifolii. A high diversity among these strains was detected. However, a lower diversity within the population derived from the subpolar region in comparison to that of the temperate region was found. Multi-locus sequence analysis showed that a majority of the strains formed distinct clusters characteristic for the individual climatic regions. The subpolar strains belonged to two (A and B) and the temperate strains to three R. leguminosarum genospecies (B, E, and K), respectively.
Collapse
Affiliation(s)
- Marta Kozieł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland.
| |
Collapse
|
4
|
Distribution and biodiversity of rhizobia nodulating Chamaecrista mimosoides in the Shandong peninsula of china. Syst Appl Microbiol 2021; 45:126280. [PMID: 34864282 DOI: 10.1016/j.syapm.2021.126280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Chamaecrista mimosoides is an annual herb legume widely distributed in tropical and subtropical Asia and Africa. It may have primitive and independently-evolved root nodule types but its rhizobia have not been systematically studied. Therefore, in order to learn the diversity and species affinity of its rhizobia, root nodules were sampled from C. mimosoides plants growing in seven geographical sites along the coast line of Shandong Peninsula, China. A total of 422 rhizobial isolates were obtained from nodules, and they were classified into 28 recA haplotypes. By using multilocus sequence analysis of the concatenated housekeeping genes dnaK, glnII, gyrB, recA and rpoB, the representative strains for these haplotypes were designated as eight defined and five candidate novel genospecies in the genus Bradyrhizobium. Bradyrhizobium elkanii and Bradyrhizobium ferriligni were predominant and universally distributed. The symbiotic genes nodC and nifH of the representative strains showed very similar topology in their phylogenetic trees indicating their co-evolution history. All the representative strains formed effective root nodules in nodulation tests. The correlation between genospecies and soil characteristics analyzed by CANOCO software indicated that available potassium (AK), organic carbon (OC) and available nitrogen (AN) in the soil samples were the main factors affecting the distribution of the symbionts involved in this current study. The study is the first systematic survey of Chamaecrista mimosoides-nodulating rhizobia, and it showed that Chamaecrista spp. were nodulated by bradyrhizobia in natural environments. In addition, the host spectrum of the corresponding rhizobial species was extended, and the study provided novel information on the biodiversity and biogeography of rhizobia.
Collapse
|
5
|
Soto-Valenzuela JO, Ormeño-Orrillo E, Zúñiga-Dávila D. Diversidad de rizobios y fijación biológica de nitrógeno en aislados de Clitoria brachystegia, en remanentes de bosque seco tropical de Ecuador y Perú. REV MEX BIODIVERS 2021. [DOI: 10.22201/ib.20078706e.2021.92.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Muindi MM, Muthini M, Njeru EM, Maingi J. Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon 2021; 7:e06867. [PMID: 33997399 PMCID: PMC8093882 DOI: 10.1016/j.heliyon.2021.e06867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important multipurpose legume crop grown in arid and semi-arid areas of sub-Saharan Africa. The crop associates with a wide diversity of high ecological value rhizobia bacteria, improving biological soil fertility and crop production. Here, we evaluated the symbiotic efficiency (SE) and genetic diversity of native rhizobia isolated from root nodules of cowpea genotypes cultivated in semi-arid areas of lower Eastern Kenya. Rhizobia trapping and SE experiments were done in the greenhouse while genetic diversity was evaluated based on 16S rRNA gene sequencing. Twenty morphologically distinct isolates representing a total of 94 isolates were used for genetic analysis. After 16S rRNA gene sequencing, the isolates closely resembled bacteria belonging to the genus Rhizobium, Paraburkholderia and non-rhizobial endophytes (Enterobacter, Strenotrophomonas and Pseudomonas). This study also reports for the first time the presence of an efficient native cowpea nodulating Beta-Rhizobia (Paraburkholderia phenoliruptrix BR3459a) in Africa. Symbiotic efficiency of the native rhizobia isolates varied (p < 0.0001) significantly. Remarkably, two isolates, M2 and M3 recorded higher SE of 82.49 % and 72.76 % respectively compared to the commercial strain Bradyrhizobium sp. USDA 3456 (67.68 %). Our results form an important step in the development of efficient microbial inoculum and sustainable food production.
Collapse
Affiliation(s)
- Mercy Martha Muindi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Morris Muthini
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Ezekiel Mugendi Njeru
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - John Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
7
|
Pang J, Palmer M, Sun HJ, Seymour CO, Zhang L, Hedlund BP, Zeng F. Diversity of Root Nodule-Associated Bacteria of Diverse Legumes Along an Elevation Gradient in the Kunlun Mountains, China. Front Microbiol 2021; 12:633141. [PMID: 33664721 PMCID: PMC7920992 DOI: 10.3389/fmicb.2021.633141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria in root nodules of legumes play important roles in promoting plant growth. In this study, we investigated root nodule-associated bacteria isolated from leguminous plants along an elevation gradient on the northern slope of the Kunlun Mountains, China, using a cultivation approach. In total, 300 isolates were obtained from seven legume species within six ecological zones. Isolates were identified based on 16S rRNA gene phylogenetic analysis and potential rhizobia were further identified using a recA gene phylogeny. Among the isolates, Bacillales (particularly Bacillus) were the dominant isolates from all host legumes and all elevations (63.5%), followed by Rhizobiales (13%) and Pseudomonadales (11.7%). Less than 3% of the isolates belonged to Burkholderiales, Paenibacillales, Enterobacteriales, Actinomycetales, Sphingomonadales, Xanthomonadales, Chitinophagales, Brevibacillales, Staphylococcales, or Mycobacteriales. A few elevation-specific patterns emerged within the Bacillales and Pseudomonadales. For example, isolates related to the psychrotroph Bacillus psychrosaccharolyticus were only isolated from the highest elevation sites (>3,500 m) whereas those related to the mesophile Bacillus endophyticus were only isolated from lowest elevation sites (1,350 m), suggestive of a role of soil temperature in their distribution. Similarly, isolates related to Pseudomonas brassicacearum were the dominant Pseudomonadales isolates, but they were only isolated from middle and low elevations (<3,200 m). A total of 39 isolates belonged to the Rhizobiales, 36 of which were confirmed to the genus level using the recA gene. In all, Rhizobiales isolates were obtained from five different host legumes spanning the entire elevation gradient. Those from the low-elevation Qira Desert-Oasis Transition Zone (1,350-1,960 m) suggested some patterns of host preference. For example, most isolates from Albizia julibrissin formed a monophyletic group related to Rhizobium lemnae and most from Alhagi sparsifolia were closely related to Ensifer kummerowiae. In general, this study shows that most bacteria associated with root nodules of legumes are widely distributed in distinct ecological zones within a single geographic region but suggests that both climate and host interactions may influence their distributions.
Collapse
Affiliation(s)
- Jinfeng Pang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Cele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Cele, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Henry J Sun
- Desert Research Institute, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Ling Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Cele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Cele, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, Las Vegas, NV, United States
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Cele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Cele, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Ji ZJ, Wu ZY, Chen WF, Wang ET, Yan H, Cui QG, Zhang JX, Wang L, Ma SJ. Physiological and symbiotic variation of a long-term evolved Rhizobium strain under alkaline condition. Syst Appl Microbiol 2020; 43:126125. [DOI: 10.1016/j.syapm.2020.126125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/15/2022]
|
9
|
Sazanova AL, Safronova VI, Kuznetsova IG, Karlov DS, Belimov AA, Andronov EE, Chirak ER, Popova JP, Verkhozina AV, Willems A, Tikhonovich IA. Bosea caraganae sp. nov. a new species of slow-growing bacteria isolated from root nodules of the relict species Caragana jubata (Pall.) Poir. originating from Mongolia. Int J Syst Evol Microbiol 2019; 69:2687-2695. [DOI: 10.1099/ijsem.0.003509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anna L. Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Vera I. Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Irina G. Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Denis S. Karlov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Andrey A. Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
- Kazan Institute of Biochemistry and Biophysics of the Russian Academy of Sciences (KIBB of RAS), 420111, Lobachevsky Str. 2/31, Kazan, Russian Federation
| | - Evgeny E. Andronov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Elizaveta R. Chirak
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Janna P. Popova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Alla V. Verkhozina
- Siberian Institute of Plant Physiology and Biochemistry (SIPPB), 664033, Lermontova Str. 132, Irkutsk, Russian Federation
| | - Anne Willems
- Ghent University, Department of Biochemistry and Microbiology, Faculty of Sciences, 9000, K.L. Ledeganckstraat 35, Ghent, Belgium
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
- Saint Petersburg State University, Department of Genetics and Biotechnology, 199034, Universitetskaya Emb. 7/9, St. Petersburg, Russian Federation
| |
Collapse
|
10
|
Stefan A, Van Cauwenberghe J, Rosu CM, Stedel C, Labrou NE, Flemetakis E, Efrose RC. Genetic diversity and structure of Rhizobium leguminosarum populations associated with clover plants are influenced by local environmental variables. Syst Appl Microbiol 2018; 41:251-259. [PMID: 29452714 DOI: 10.1016/j.syapm.2018.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/15/2022]
Abstract
The identification and conservation of indigenous rhizobia associated with legume plants and their application as biofertilizers is becoming an agricultural worldwide priority. However, little is known about the genetic diversity and phylogeny of rhizobia in Romania. In the present study, the genetic diversity and population composition of Rhizobium leguminosarum symbiovar trifolii isolates from 12 clover plants populations located across two regions in Romania were analyzed. Red clover isolates were phenotypically evaluated and genotyped by sequencing 16S rRNA gene, 16S-23S intergenic spacer, three chromosomal genes (atpD, glnII and recA) and two plasmid genes (nifH and nodA). Multilocus sequence typing (MLST) analysis revealed that red clover plants are nodulated by a wide genetic diversity of R. leguminosarum symbiovar trifolii sequence types (STs), highly similar to the ones previously found in white clover. Rhizobial genetic variation was found mainly within the two clover populations for both chromosomal and plasmid types. Many STs appear to be unique for this region and the genetic composition of rhizobia differs significantly among the clover populations. Furthermore, our results showed that both soil pH and altitude contributed to plasmid sequence type composition while differences in chromosomal composition were affected by the altitude and were strongly correlated with distance.
Collapse
Affiliation(s)
- Andrei Stefan
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania
| | - Jannick Van Cauwenberghe
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico; Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Craita M Rosu
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania
| | - Catalina Stedel
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Rodica C Efrose
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania.
| |
Collapse
|
11
|
Liu YH, Jiao YS, Liu LX, Wang D, Tian CF, Wang ET, Wang L, Chen WX, Wu SY, Guo BL, Guan ZG, Poinsot V, Chen WF. Nonspecific Symbiosis Between Sophora flavescens and Different Rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:224-232. [PMID: 29173048 DOI: 10.1094/mpmi-05-17-0117-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We explored the genetic basis of the promiscuous symbiosis of Sophora flavescens with diverse rhizobia. To determine the impact of Nod factors (NFs) on the symbiosis of S. flavescens, nodulation-related gene mutants of representative rhizobial strains were generated. Strains with mutations in common nodulation genes (nodC, nodM, and nodE) failed to nodulate S. flavescens, indicating that the promiscuous nodulation of this plant is strictly dependent on the basic NF structure. Mutations of the NF decoration genes nodH, nodS, nodZ, and noeI did not affect the nodulation of S. flavescens, but these mutations affected the nitrogen-fixation efficiency of nodules. Wild-type Bradyrhizobium diazoefficiens USDA110 cannot nodulate S. flavescens, but we obtained 14 Tn5 mutants of B. diazoefficiens that nodulated S. flavescens. This suggested that the mutations had disrupted a negative regulator that prevents nodulation of S. flavescens, leading to nonspecific nodulation. For Ensifer fredii CCBAU 45436 mutants, the minimal NF structure was sufficient for nodulation of soybean and S. flavescens. In summary, the mechanism of promiscuous symbiosis of S. flavescens with rhizobia might be related to its nonspecific recognition of NF structures, and the host specificity of rhizobia may also be controlled by currently unknown nodulation-related genes.
Collapse
Affiliation(s)
- Yuan Hui Liu
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Yin Shan Jiao
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Li Xue Liu
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Dan Wang
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Chang Fu Tian
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - En Tao Wang
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
- 2 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D. F. 11340, México
| | - Lei Wang
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Wen Xin Chen
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Shang Ying Wu
- 3 Changzhi County Agriculture Committee, Changzhi County Welcome West Street. No. 6, Shanxi Province 046000, China
| | - Bao Lin Guo
- 4 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zha Gen Guan
- 5 Shanxi Zhendong Pharmaceutical Co., Ltd. Changzhi, Shanxi Province 047100, China
| | - Véréna Poinsot
- 6 Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, Toulouse, France
| | - Wen Feng Chen
- 1 State Key Laboratory of Agrobiotechnology; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Yan H, Xie JB, Ji ZJ, Yuan N, Tian CF, Ji SK, Wu ZY, Zhong L, Chen WX, Du ZL, Wang ET, Chen WF. Evolutionarily Conserved nodE, nodO, T1SS, and Hydrogenase System in Rhizobia of Astragalus membranaceus and Caragana intermedia. Front Microbiol 2017; 8:2282. [PMID: 29209294 PMCID: PMC5702008 DOI: 10.3389/fmicb.2017.02282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 02/01/2023] Open
Abstract
Mesorhizobium species are the main microsymbionts associated with the medicinal or sand-fixation plants Astragalus membranaceus and Caragana intermedia (AC) in temperate regions of China, while all the Mesorhizobium strains isolated from each of these plants could nodulate both of them. However, Rhizobium yanglingense strain CCBAU01603 could nodulate AC plants and it's a high efficiency symbiotic and competitive strain with Caragana. Therefore, the common features shared by these symbiotic rhizobia in genera of Mesorhizobium and Rhizobium still remained undiscovered. In order to study the genomic background influencing the host preference of these AC symbiotic strains, the whole genomes of two (M. silamurunense CCBAU01550, M. silamurunense CCBAU45272) and five representative strains (M. septentrionale CCBAU01583, M. amorphae CCBAU01570, M. caraganae CCBAU01502, M. temperatum CCBAU01399, and R. yanglingense CCBAU01603) originally isolated from AC plants were sequenced, respectively. As results, type III secretion systems (T3SS) of AC rhizobia evolved in an irregular pattern, while an evolutionarily specific region including nodE, nodO, T1SS, and a hydrogenase system was detected to be conserved in all these AC rhizobia. Moreover, nodO was verified to be prevalently distributed in other AC rhizobia and was presumed as a factor affecting the nodule formation process. In conclusion, this research interpreted the multifactorial features of the AC rhizobia that may be associated with their host specificity at cross-nodulation group, including nodE, nodZ, T1SS as the possible main determinants; and nodO, hydrogenase system, and T3SS as factors regulating the bacteroid formation or nitrogen fixation efficiency.
Collapse
Affiliation(s)
- Hui Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Bo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhao Jun Ji
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Na Yuan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Shou Kun Ji
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Yu Wu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Liang Zhong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Zheng Lin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico, Mexico
| | - Wen Feng Chen
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Li O, Xiao R, Sun L, Guan C, Kong D, Hu X. Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing. PLoS One 2017; 12:e0184717. [PMID: 28931073 PMCID: PMC5607135 DOI: 10.1371/journal.pone.0184717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/29/2017] [Indexed: 01/22/2023] Open
Abstract
As an epiphyte orchid, Dendrobium catenatum relies on microorganisms for requisite nutrients. Metagenome pyrosequencing based on 16S rRNA and nifH genes was used to characterize the bacterial and diazotrophic communities associated with D. catenatum collected from 5 districts in China. Based on Meta-16S rRNA sequencing, 22 bacterial phyla and 699 genera were identified, distributed as 125 genera from 8 phyla and 319 genera from 10 phyla shared by all the planting bases and all the tissues, respectively. The predominant Proteobacteria varied from 71.81% (GZ) to 96.08% (YN), and Delftia (10.39-38.42%), Burkholderia (2.71-15.98%), Escherichia/Shigella (4.90-25.12%), Pseudomonas (2.68-30.72%) and Sphingomonas (1.83-2.05%) dominated in four planting bases. Pseudomonas (17.94-22.06%), Escherichia/Shigella (6.59-11.59%), Delftia (9.65-22.14%) and Burkholderia (3.12-11.05%) dominated in all the tissues. According to Meta-nifH sequencing, 4 phyla and 45 genera were identified, while 17 genera and 24 genera from 4 phyla were shared by all the planting bases and all the tissues, respectively. Burkholderia and Bradyrhizobium were the most popular in the planting bases, followed by Methylovirgula and Mesorhizobium. Mesorhizobium was the most popular in different tissues, followed by Beijerinckia, Xanthobacter, and Burkholderia. Among the genera, 39 were completely overlapped with the results based on the 16S rRNA gene. In conclusion, abundant bacteria and diazotrophs were identified in common in different tissues of D. catenatum from five planting bases, which might play a great role in the supply of nutrients such as nitrogen. The exact abundance of phylum and genus on the different tissues from different planting bases need deeper sequencing with more samples.
Collapse
Affiliation(s)
- Ou Li
- College of Life Science, Zhejiang Sci-Tech University, Xiasha, Hangzhou, PR China
| | - Rong Xiao
- College of Life Science, Zhejiang Sci-Tech University, Xiasha, Hangzhou, PR China
| | - Lihua Sun
- Zhejiang Academy of Medical Sciences, Hangzhou, PR China
| | - Chenglin Guan
- College of Life Science, Zhejiang Sci-Tech University, Xiasha, Hangzhou, PR China
| | - Dedong Kong
- Agricultural Experiment Station, Zhejiang Univesity, Hangzhou, PR China
| | - Xiufang Hu
- College of Life Science, Zhejiang Sci-Tech University, Xiasha, Hangzhou, PR China
| |
Collapse
|
14
|
Diverse Bacteria Affiliated with the Genera Microvirga, Phyllobacterium, and Bradyrhizobium Nodulate Lupinus micranthus Growing in Soils of Northern Tunisia. Appl Environ Microbiol 2017; 83:AEM.02820-16. [PMID: 28062461 DOI: 10.1128/aem.02820-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of bacterial populations nodulating Lupinus micranthus in five geographical sites from northern Tunisia was examined. Phylogenetic analyses of 50 isolates based on partial sequences of recA and gyrB grouped strains into seven clusters, five of which belong to the genus Bradyrhizobium (28 isolates), one to Phyllobacterium (2 isolates), and one, remarkably, to Microvirga (20 isolates). The largest Bradyrhizobium cluster (17 isolates) grouped with the B. lupini species, and the other five clusters were close to different recently defined Bradyrhizobium species. Isolates close to Microvirga were obtained from nodules of plants from four of the five sites sampled. We carried out an in-depth phylogenetic study with representatives of the seven clusters using sequences from housekeeping genes (rrs, recA, glnII, gyrB, and dnaK) and obtained consistent results. A phylogeny based on the sequence of the symbiotic gene nodC identified four groups, three formed by Bradyrhizobium isolates and one by the Microvirga and Phyllobacterium isolates. Symbiotic behaviors of the representative strains were tested, and some congruence between symbiovars and symbiotic performance was observed. These data indicate a remarkable diversity of L. micranthus root nodule symbionts in northern Tunisia, including strains from the Bradyrhizobiaceae, Methylobacteriaceae, and Phyllobacteriaceae families, in contrast with those of the rhizobial populations nodulating lupines in the Old World, including L. micranthus from other Mediterranean areas, which are nodulated mostly by Bradyrhizobium strains.IMPORTANCELupinus micranthus is a legume broadly distributed in the Mediterranean region and plays an important role in soil fertility and vegetation coverage by fixing nitrogen and solubilizing phosphate in semiarid areas. Direct sowing to extend the distribution of this indigenous legume can contribute to the prevention of soil erosion in pre-Saharan lands of Tunisia. However, rhizobial populations associated with L. micranthus are poorly understood. In this context, the diversity of endosymbionts of this legume was investigated. Most Lupinus species are nodulated by Bradyrhizobium strains. This work showed that about half of the isolates from northern Tunisian soils were in fact Bradyrhizobium symbionts, but the other half were found unexpectedly to be bacteria within the genera Microvirga and Phyllobacterium These unusual endosymbionts may have a great ecological relevance. Inoculation with the appropriate selected symbiotic bacterial partners will increase L. micranthus survival with consequent advantages for the environment in semiarid areas of Tunisia.
Collapse
|
15
|
Ji ZJ, Yan H, Cui QG, Wang ET, Chen WF, Chen WX. Competition between rhizobia under different environmental conditions affects the nodulation of a legume. Syst Appl Microbiol 2017; 40:114-119. [DOI: 10.1016/j.syapm.2016.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 11/26/2022]
|
16
|
Liu X, Liu F, Gao S, Reske J, Li A, Wu CL, Yang C, Chen F, Luo R, Xiao H. A single non-synonymous NCOA5 variation in type 2 diabetic patients with hepatocellular carcinoma impairs the function of NCOA5 in cell cycle regulation. Cancer Lett 2017; 391:152-161. [PMID: 28137631 DOI: 10.1016/j.canlet.2017.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
Type 2 Diabetes (T2D) is a risk factor for hepatocellular carcinoma (HCC). We have previously described that haploinsufficiency of nuclear receptor coactivator 5 (NCOA5) is a genetic defect linking glucose intolerance to HCC. Here we report identification and characterization of a single nucleotide variation (T445A) in NCOA5, causing an amino acid Thr to Ala substitution, in adjacent non-tumorous liver tissues derived from patients with concurrent HCC and T2D. By using Tet-On inducible expression cells, we show that ectopic expression of NCOA5wt suppressed proliferation of HCC cells via induction of G2/M arrest, while ectopic expression of NCOA5T445A had a significantly lesser effect compared to ectopic expression of NCOA5wt. Furthermore, ectopic expression of NCOA5wt increased the occurrence of DNA damage and cell senescence, whereas expression of NCOA5T445A partly lost this activity. Xenograft tumor model analysis demonstrated that ectopic NCOA5wt expression reduced HCC tumor growth and the T445A variation impairs its tumor growth inhibitory function. Collectively, our data show that the T445A variation impairs the ability of NCOA5 to inhibit growth of HCC, suggesting that this variation may have potential to increase susceptibility to HCC comorbid with T2D.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA; Cancer Center, Southern Medical University, Guangzhou, Guangdong, 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Feiye Liu
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA; Cancer Center, Southern Medical University, Guangzhou, Guangdong, 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Shenglan Gao
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jake Reske
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Aimin Li
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA; Cancer Center, Southern Medical University, Guangzhou, Guangdong, 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Chengfeng Yang
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fengsheng Chen
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA; Cancer Center, Southern Medical University, Guangzhou, Guangdong, 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Rongcheng Luo
- Cancer Center, Southern Medical University, Guangzhou, Guangdong, 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, 510315, China.
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
17
|
Li Y, Wang ET, Liu Y, Li X, Yu B, Ren C, Liu W, Li Y, Xie Z. Rhizobium anhuiense as the predominant microsymbionts of Lathyrus maritimus along the Shandong Peninsula seashore line. Syst Appl Microbiol 2016; 39:384-90. [PMID: 27480059 DOI: 10.1016/j.syapm.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
Beach pea [Lathyrus maritimus Bigelow, or Lathyrus japonicus subsp. maritimus (L.) P.W. Ball] is a wild legume distributed on the seashore line, and the rhizobia nodulating with this plant have been reported only rarely. In order to reveal the diversity of beach pea rhizobia on the seashore line of Shandong Peninsula, China, a total of 124 bacterial strains were isolated from the root nodules of beach pea plants collected from five sites. All the isolates were divided into five recA types after screening by recA gene sequence analysis and they consisted of Rhizobium anhuiense covering 122 symbiotic isolates in three recA types, as well as two single isolates Rhizobium sp. and Rhizobium lusitanum representing distinct recA types. The recA genotype III of R. anhuiense (103 isolates) represented by strain YIC11270 was dominant at all five sampling sites. Identical symbiotic genes (nodC and nifH) were detected in the three recA genotypes of R. anhuiense isolates that were closely related to those of the pea and faba rhizobia. This study clarified that R. anhuiense was the main symbiont for beach pea rhizobia on the seashore line of Shandong Peninsula. The low level genetic diversity of beach pea rhizobia revealed by both MLSA and the symbiotic genes might be related to the strong selection pressure produced by the saline-alkaline environment and the host plants.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C. P. 11340, Mexico City, Mexico
| | - Yajing Liu
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Xiangyue Li
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Bing Yu
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Chenggang Ren
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Wei Liu
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Yunzhao Li
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Zhihong Xie
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China.
| |
Collapse
|
18
|
Ji Z, Yan H, Cui Q, Wang E, Chen W, Chen W. Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana. Syst Appl Microbiol 2015; 38:176-83. [DOI: 10.1016/j.syapm.2015.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 11/16/2022]
|
19
|
Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 2014; 65:399-406. [PMID: 25376850 DOI: 10.1099/ijs.0.067017-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel Gram-stain-negative strains (CCBAU 03422(T) and CCBAU 03415) isolated from root nodules of Sophora flavescens were classified phylogenetically into the genus Phyllobacterium based on the comparative analysis of 16S rRNA and atpD genes. They showed 99.8 % rRNA gene sequence similarities to Phyllobacterium brassicacearum LMG 22836(T), and strain CCBAU 03422(T) showed 91.2 and 88.6 % atpD gene sequence similarities to strains Phyllobacterium endophyticum LMG 26470(T) and Phyllobacterium brassicacearum LMG 22836(T), respectively. Strain CCBAU 03422(T) contained Q-10 as its major quinone and showed a cellular fatty acid profile, carbon source utilization and other phenotypic characteristics differing from type strains of related species. DNA-DNA relatedness (lower than 48.8 %) further confirmed the differences between the novel strains and the type strains of related species. Strain CCBAU 03422(T) could nodulate and fix nitrogen effectively on its original host plant, Sophora flavescens. Based upon the results mentioned above, a novel species named Phyllobacterium sophorae is proposed and the type strain is CCBAU 03422(T) ( = A-6-3(T) = LMG 27899(T) = HAMBI 3508(T)).
Collapse
|