1
|
Aasfar A, Meftah Kadmiri I, Azaroual SE, Lemriss S, Mernissi NE, Bargaz A, Zeroual Y, Hilali A. Agronomic advantage of bacterial biological nitrogen fixation on wheat plant growth under contrasting nitrogen and phosphorus regimes. FRONTIERS IN PLANT SCIENCE 2024; 15:1388775. [PMID: 38779073 PMCID: PMC11109382 DOI: 10.3389/fpls.2024.1388775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Introduction Given their remarkable capacity to convert atmospheric nitrogen into plant-accessible ammonia, nitrogen-fixing microbial species hold promise as a sustainable alternative to chemical nitrogen fertilizers, particularly in economically significant crops like wheat. This study aimed to identify strains with optimal attributes for promoting wheat growth sustainably, with a primary emphasis on reducing reliance on chemical nitrogen fertilizers. Methods We isolated free nitrogen-fixing strains from diverse rhizospheric soils across Morocco. Subsequently, we conducted a rigorous screening process to evaluate their plant growth-promoting traits, including nitrogen fixation, phosphate solubilization, phytohormone production and their ability to enhance wheat plant growth under controlled conditions. Two specific strains, Rhodotorula mucilaginosa NF 516 and Arthrobacter sp. NF 528, were selected for in-depth evaluation, with the focus on their ability to reduce the need for chemical nitrogen supply, particularly when used in conjunction with TSP fertilizer and natural rock phosphate. These two sources of phosphate were chosen to assess their agricultural effectiveness on wheat plants. Results and discussion Twenty-two nitrogen-fixing strains (nif-H+) were isolated from various Moroccan rhizospheric soils, representing Bacillus sp., Pseudomonas sp., Arthrobacter sp., Burkholderia sp. and a yeast-like microorganism. These strains were carefully selected based on their potential to promote plant growth. The findings revealed that the application of Rhodotorula mucilaginosa NF 516 and Arthrobacter sp. NF 528 individually or in combination, significantly improved wheat plant growth and enhanced nutrients (N and P) uptake under reduced nitrogen regimes. Notably, their effectiveness was evident in response to both natural rock phosphate and TSP, demonstrating their important role in wheat production under conditions of low nitrogen and complex phosphorus inputs. This research underscores the significant role of nitrogen-fixing microorganisms, particularly Rhodotorula mucilaginosa NF 516 and Arthrobacter sp. NF 528, in wheat production under conditions of low nitrogen and complex phosphorus inputs. It showcases their potential to reduce chemical nitrogen fertilization requirements by up to 50% without compromising wheat plant yields. Our study emphasizes the importance of bacterial biological nitrogen fixation in meeting the remaining nitrogen requirements beyond this reduction. This underscores the vital role of microbial contributions in providing essential nitrogen for optimal plant growth and highlights the significance of biological nitrogen fixation in sustainable agriculture practices.
Collapse
Affiliation(s)
- Abderrahim Aasfar
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Laboratory of Health Sciences and Technologies, High Institute of Health Sciences, Hassan 1st University, Settat, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Salah Eddine Azaroual
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Sanaâ Lemriss
- Department of Biosecurity PCL3, Laboratory of Research and Medical Analysis of Gendarmerie Royale, Rabat, Morocco
| | - Najib El Mernissi
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Adnane Bargaz
- AgroBioSciences, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Youssef Zeroual
- Situation Innovation Group–Office Chérifien des Phosphates (OCP Group), Jorf Lasfar, Morocco
| | - Abderraouf Hilali
- Laboratory of Health Sciences and Technologies, High Institute of Health Sciences, Hassan 1st University, Settat, Morocco
| |
Collapse
|
2
|
Lacava PT, Bogas AC, Cruz FDPN. Plant Growth Promotion and Biocontrol by Endophytic and Rhizospheric Microorganisms From the Tropics: A Review and Perspectives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.796113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Currently, the tropics harbor a wide variety of crops to feed the global population. Rapid population expansion and the consequent major demand for food and agriculture-based products generate initiatives for tropical forest deforestation, which contributes to land degradation and the loss of macro and micronative biodiversity of ecosystems. Likewise, the entire dependence on fertilizers and pesticides also contributes to negative impacts on environmental and human health. To guarantee current and future food safety, as well as natural resource preservation, systems for sustainable crops in the tropics have attracted substantial attention worldwide. Therefore, the use of beneficial plant-associated microorganisms is a promising sustainable way to solve issues concerning modern agriculture and the environment. Efficient strains of bacteria and fungi are a rich source of natural products that might improve crop yield in numerous biological ways, such as nitrogen fixation, hormone production, mobilization of insoluble nutrients, and mechanisms related to plant biotic and abiotic stress alleviation. Additionally, these microorganisms also exhibit great potential for the biocontrol of phytopathogens and pest insects. This review addresses research regarding endophytic and rhizospheric microorganisms associated with tropical plants as a sustainable alternative to control diseases and enhance food production to minimize ecological damage in tropical ecosystems.
Collapse
|
3
|
Ahmed W, Azmat R, Chendouh-Brahmi N, Hussain I, Ahmed R, Ahmad Z, Qayyum A, Moin S, Bibi Y. Adhatoda vasica and Calotropis procera as a resource of novel chemical compounds, their biological bioluminescence assay, and investigation of morphological features of bacterial growth through advanced technologies. Microsc Res Tech 2021; 85:1757-1767. [PMID: 34953112 DOI: 10.1002/jemt.24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/02/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022]
Abstract
This article reports the three principal groups of compounds for the first time from Adhatoda vasica and Calotropis procera plants species using nuclear magnetic resonance methods in which aliphatic, oxy heterocyclic, and tannins compounds were detected from these plants. The leaves of both species were subjected to testing tyrosinase inhibition and antioxidant activities. ATP bioluminescence use for indirect measurement of the amount of organic residue on the surface of the leaves that provide support to microbial growth. The distinguishing characteristics and intraoperative findings of bacterial diseases involved in treatments were conducted against the positive and negative microbial strains using a scanning electron microscope (SEM). The methanolic extracts of leaves of both species were applied to bacterial strains through broth microdilution method to determine the minimum inhabitation concentrations (MICs) for both species. It was concluded that both plants are a rich resource of bioactive compounds. Their extract may also be used to treat various bacterial diseases and in drug manufacturing. HIGHLIGHTS: New chemical compounds of oxy-heterocyclic, aliphatic, and tannins derivatives are isolated from herbal plants as a source of various drugs. 1 H NMR spectrum and 13 C NMR spectrum of each new derivate were calculated. NMR-spectral analysis of new compound of chemistry class was studied and further applied in various bacterial strains. Tyrosinase inhibition property of bacteria strains by application of active compounds on these strains. Agar overlay bioassays were used to evaluate intercellular morphological features of strains applied on extracts by electron microscope (SEM). a-Glucosidase inhibition assay determined with antioxidants activity through FRAP assay methods.
Collapse
Affiliation(s)
- Waseem Ahmed
- Department of Horticulture, The University of Haripur, Pakistan
| | - Rafia Azmat
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Nabila Chendouh-Brahmi
- Laboratory of 3BS, Faculty of Life and Nature Sciences, University of Bejaia, Bejaia, Algeria
| | - Ijaz Hussain
- Department of Horticulture, The University of Haripur, Pakistan
| | - Rasheed Ahmed
- Department of Soil Science & Climate Science, The University of Haripur, Haripur, Pakistan
| | - Zahoor Ahmad
- Department of Soil Science & Climate Science, The University of Haripur, Haripur, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Sumeira Moin
- Department of Botany, University of Karachi, Karachi, Pakistan
| | - Yamin Bibi
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
4
|
Paulitsch F, Dos Reis FB, Hungria M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch Microbiol 2021; 203:4785-4803. [PMID: 34245357 DOI: 10.1007/s00203-021-02466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that β-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of β-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70040-020, Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil. .,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
5
|
Tapia-García EY, Hernández-Trejo V, Guevara-Luna J, Rojas-Rojas FU, Arroyo-Herrera I, Meza-Radilla G, Vásquez-Murrieta MS, Estrada-de los Santos P. Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiol Res 2020; 239:126522. [DOI: 10.1016/j.micres.2020.126522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
|
6
|
Depoorter E, De Canck E, Peeters C, Wieme AD, Cnockaert M, Zlosnik JEA, LiPuma JJ, Coenye T, Vandamme P. Burkholderia cepacia Complex Taxon K: Where to Split? Front Microbiol 2020; 11:1594. [PMID: 32760373 PMCID: PMC7372133 DOI: 10.3389/fmicb.2020.01594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
The objective of the present study was to provide an updated classification for Burkholderia cepacia complex (Bcc) taxon K isolates. A representative set of 39 taxon K isolates were analyzed through multilocus sequence typing (MLST) and phylogenomic analyses. MLST analysis revealed the presence of at least six clusters of sequence types (STs) within taxon K, two of which contain the type strains of Burkholderia contaminans (ST-102) and Burkholderia lata (ST-101), and four corresponding to the previously defined taxa Other Bcc groups C, G, H and M. This clustering was largely supported by a phylogenomic tree which revealed three main clades. Isolates of B. contaminans and of Other Bcc groups C, G, and H represented a first clade which generally shared average nucleotide identity (ANI) and average digital DNA-DNA hybridization (dDDH) values at or above the 95-96% ANI and 70% dDDH thresholds for species delineation. A second clade consisted of Other Bcc group M bacteria and of four B. lata isolates and was supported by average ANI and dDDH values of 97.2 and 76.1% within this clade and average ANI and dDDH values of 94.5 and 57.2% toward the remaining B. lata isolates (including the type strain), which represented a third clade. We therefore concluded that isolates known as Other Bcc groups C, G, and H should be classified as B. contaminans, and propose a novel species, Burkholderia aenigmatica sp. nov., to accommodate Other Bcc M and B. lata ST-98, ST-103, and ST-119 isolates. Optimized MALDI-TOF MS databases for the identification of clinical Burkholderia isolates may provide correct species-level identification for some of these bacteria but would identify most of them as B. cepacia complex. MLST facilitates species-level identification of many taxon K strains but some may require comparative genomics for accurate species-level assignment. Finally, the inclusion of Other Bcc groups C, G, and H into B. contaminans affects the phenotype of this species minimally and the proposal to classify Other Bcc group M and B. lata ST-98, ST-103, and ST-119 strains as a novel Burkholderia species is supported by a distinctive phenotype, i.e., growth at 42°C and lysine decarboxylase activity.
Collapse
Affiliation(s)
- Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium.,BCCM/LMG Bacteria Collection, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - James E A Zlosnik
- Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium.,BCCM/LMG Bacteria Collection, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms 2020; 8:microorganisms8030442. [PMID: 32245141 PMCID: PMC7143980 DOI: 10.3390/microorganisms8030442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
Collapse
|
8
|
Tang A, Haruna AO, Majid NMA, Jalloh MB. Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms 2020; 8:microorganisms8030442. [PMID: 32245141 DOI: 10.1101/351916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 05/22/2023] Open
Abstract
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
Collapse
Affiliation(s)
- Amelia Tang
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
| | - Ahmed Osumanu Haruna
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nik Muhamad Ab Majid
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamadu Boyie Jalloh
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan Branch, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
9
|
de Amaral Leite A, de Souza Cardoso AA, de Almeida Leite R, de Oliveira-Longatti SM, Filho JFL, de Souza Moreira FM, Melo LCA. Selected bacterial strains enhance phosphorus availability from biochar-based rock phosphate fertilizer. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01550-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Purpose
The co-pyrolysis of biomass and soluble phosphates generates biochar-based phosphate fertilizers (BBF), which may enhance phosphorus (P) input in soil and P uptake by plants. Conversely, pyrolysis of biomass impregnated with rock phosphate results in low P solubility and may not supplement plant requirement in short term. However, bacterial strains promoting rock phosphate solubilization increases P use efficiency and can be applied to BBFs.
Methods
An in vitro assay was conducted to investigate the solubilization profile of five bacterial strains (Pseudomonas sp.—UFPI-B5-8A, Burkholderia fungorum—UFLA 04-155, Acinetobacter sp.—UFLA 03-09, Paenebacillus kribbensis—UFLA 03-10, and Paenibacillus sp.—UFLA 03-116) isolated from common bean and cowpea nodules in a rock phosphate BBF. Additionally, a pot trial was carried out aiming to investigate the influence on maize growth by inoculation of three selected strains under a rock phosphate BBF fertilization.
Results
Inoculations with UFPI B5-8A, UFLA 04-155, and UFLA 03-09 were efficient in solubilizing P in vitro, being closely associated with pH decrease, likely due to the release of organic acids. As for the pot trial, the dose of 400 mg kg−1 of P in the BBF using UFPI B5-8A significantly increased maize shoot dry matter. All strains significantly enhanced P availability in the soil.
Conclusions
Bacterial inoculation in biochar-based rock phosphate aiming to improve its fertilizer value is an inexpensive and sustainable strategy to improve maize growth and enhance available P in soil and should be further explored.
Collapse
|
10
|
Su X, Shi Y, Li R, Lu ZN, Zou X, Wu JX, Han ZG. Application of qPCR assays based on haloacids transporter gene dehp2 for discrimination of Burkholderia and Paraburkholderia. BMC Microbiol 2019; 19:36. [PMID: 30744555 PMCID: PMC6371555 DOI: 10.1186/s12866-019-1411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 12/05/2022] Open
Abstract
Background A major facilitator superfamily transporter Dehp2 was recently shown to be playing an important role in transport and biodegradation of haloacids in Paraburkholderia caribensis MBA4, and Dehp2 is phylogenetically conserved in Burkholderia sensu lato. Results We designed both Burkholderia sensu stricto-specific and Paraburkholderia-specific qPCR assays based on dehp2 and 16S rRNA, and validated the qPCR assays in 12 bacterial strains. The qPCR assays could detect single species of Burkholderia sensu stricto or Paraburkholderia with high sensitivity and discriminate them in mixtures with high specificity over a wide dynamic range of relative concentrations. At relatively lower cost compared with sequencing-based approach, the qPCR assays will facilitate discrimination of Burkholderia sensu stricto and Paraburkholderia in a large number of samples. Conclusions For the first time, we report the utilization of a haloacids transporter gene for discriminative purpose in Burkholderia sensu lato. This enables not only quick decision on proper handling of putative pathogenic samples in Burkholderia sensu stricto group but also future exploitation of relevant species in Paraburkholderia group for haloacids biodegradation purposes. Electronic supplementary material The online version of this article (10.1186/s12866-019-1411-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihong Li
- Shanghai Quality Safety Centre of Agricultural Products, Shanghai, China
| | - Zhao-Ning Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao-Xiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Rodrigues AA, Araújo MVF, Soares RS, Oliveira BFRDE, Ribeiro IDA, Sibov ST, Vieira JDG. Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. AN ACAD BRAS CIENC 2018; 90:3813-3829. [PMID: 30379271 DOI: 10.1590/0001-3765201820180319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022] Open
Abstract
Microorganisms associated with organic management are essential in nutrient transformation and release for plant use. The present study aimed to isolate, identify and characterize plant growth promoting diazotrophic rhizobacteria associated with sugarcane under organic management. Rhizospheres of organic sugarcane varieties IAC 911099 and CTC4 were sampled and inoculated onto nitrogen free NFb and Burk media. The isolated microorganisms were screened in vitro concerning their ability to produce plant growth promoting factors. Eighty-one bacteria were isolated; 45.6% were positive for the nifH gene and produced at least one of the evaluated plant growth promotion factors. The production of indole-3-acetic acid was observed in 46% of the isolates, while phosphate solubilization was observed in 86.5%. No isolates were hydrogen cyanide producers, while 81% were ammonia producers, 19% produced cellulases and 2.7%, chitinases. Microorganisms belonging to the Burkholderia genus were able to inhibit Fusarium moniliforme growth in vitro. Plant growth promoting microorganisms associated with organic sugarcane, especially belonging to Burkholderia, Sphingobium, Rhizobium and Enterobacter genera, can be environmentally friendly alternatives to improve sugarcane production.
Collapse
Affiliation(s)
- Ariana A Rodrigues
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Marcus Vinícius F Araújo
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Renan S Soares
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Bruno F R DE Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 373, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Igor D A Ribeiro
- Centro de Microbiologia Agrícola, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91540-000 Porto Alegre, RS, Brazil
| | - Sergio T Sibov
- Laboratório de Cultura de Tecidos, Departamento de Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Av. Esperança, s/n, 74690-900 Goiânia, GO, Brazil
| | - José Daniel G Vieira
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| |
Collapse
|
12
|
Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N, Maluk M, Lafos M, Humm E, Arrabit M, Crook M, Gross E, Simon MF, Dos Reis Junior FB, Whitman WB, Shapiro N, Poole PS, Hirsch AM, Venter SN, James EK. Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera ( Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae. Genes (Basel) 2018; 9:genes9080389. [PMID: 30071618 PMCID: PMC6116057 DOI: 10.3390/genes9080389] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
Burkholderia sensu lato is a large and complex group, containing pathogenic, phytopathogenic, symbiotic and non-symbiotic strains from a very wide range of environmental (soil, water, plants, fungi) and clinical (animal, human) habitats. Its taxonomy has been evaluated several times through the analysis of 16S rRNA sequences, concantenated 4–7 housekeeping gene sequences, and lately by genome sequences. Currently, the division of this group into Burkholderia, Caballeronia, Paraburkholderia, and Robbsia is strongly supported by genome analysis. These new genera broadly correspond to the various habitats/lifestyles of Burkholderia s.l., e.g., all the plant beneficial and environmental (PBE) strains are included in Paraburkholderia (which also includes all the N2-fixing legume symbionts) and Caballeronia, while most of the human and animal pathogens are retained in Burkholderia sensu stricto. However, none of these genera can accommodate two important groups of species. One of these includes the closely related Paraburkholderia rhizoxinica and Paraburkholderia endofungorum, which are both symbionts of the fungal phytopathogen Rhizopus microsporus. The second group comprises the Mimosa-nodulating bacterium Paraburkholderia symbiotica, the phytopathogen Paraburkholderia caryophylli, and the soil bacteria Burkholderia dabaoshanensis and Paraburkholderia soli. In order to clarify their positions within Burkholderia sensu lato, a phylogenomic approach based on a maximum likelihood analysis of conserved genes from more than 100 Burkholderia sensu lato species was carried out. Additionally, the average nucleotide identity (ANI) and amino acid identity (AAI) were calculated. The data strongly supported the existence of two distinct and unique clades, which in fact sustain the description of two novel genera Mycetohabitans gen. nov. and Trinickia gen. nov. The newly proposed combinations are Mycetohabitans endofungorum comb. nov., Mycetohabitansrhizoxinica comb. nov., Trinickia caryophylli comb. nov., Trinickiadabaoshanensis comb. nov., Trinickia soli comb. nov., and Trinickiasymbiotica comb. nov. Given that the division between the genera that comprise Burkholderia s.l. in terms of their lifestyles is often complex, differential characteristics of the genomes of these new combinations were investigated. In addition, two important lifestyle-determining traits—diazotrophy and/or symbiotic nodulation, and pathogenesis—were analyzed in depth i.e., the phylogenetic positions of nitrogen fixation and nodulation genes in Trinickia via-à-vis other Burkholderiaceae were determined, and the possibility of pathogenesis in Mycetohabitans and Trinickia was tested by performing infection experiments on plants and the nematode Caenorhabditis elegans. It is concluded that (1) T. symbiotica nif and nod genes fit within the wider Mimosa-nodulating Burkholderiaceae but appear in separate clades and that T. caryophyllinif genes are basal to the free-living Burkholderia s.l. strains, while with regard to pathogenesis (2) none of the Mycetohabitans and Trinickia strains tested are likely to be pathogenic, except for the known phytopathogen T. caryophylli.
Collapse
Affiliation(s)
| | - Marike Palmer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Belén Chávez-Ramírez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, 11340 Cd. de Mexico, Mexico.
| | - Chrizelle Beukes
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Leah Briscoe
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Noor Khan
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Marta Maluk
- The James Hutton Institute, Dundee DD2 5DA, UK.
| | | | - Ethan Humm
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Monique Arrabit
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Matthew Crook
- 450G Tracy Hall Science Building, Weber State University, Ogden, 84403 UT, USA.
| | - Eduardo Gross
- Center for Electron Microscopy, Department of Agricultural and Environmental Sciences, Santa Cruz State University, 45662-900 Ilheus, BA, Brazil.
| | - Marcelo F Simon
- Embrapa CENARGEN, 70770-917 Brasilia, Distrito Federal, Brazil.
| | | | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Ann M Hirsch
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Stephanus N Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | | |
Collapse
|
13
|
[The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens]. Rev Argent Microbiol 2018; 51:84-92. [PMID: 29691107 DOI: 10.1016/j.ram.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
The Burkholderia cepacia complex is a group of 22 species, which are known as opportunistic pathogens in immunocompromised people, especially those suffering from cystic fibrosis. It is also found in nosocomial infections and is difficult to eradicate due to intrinsic resistance to several antibiotics. The species have large genomes (up to 9 Mbp), distributed into 2-5 replicons. These features significantly contribute to genome plasticity, which makes them thrive in different environments like soil, water, plants or even producing nodules in legume plants. Some B. cepacia complex species are beneficial in bioremediation, biocontrol and plant-growth promotion. However, because the B. cepacia complex is involved in human infection, its use in agriculture is restricted. B. cepacia complex is being constantly studied due to the health problems that it causes and because of its agricultural potential. In this review, the history of B. cepacia complex and the most recently published information related to this complex are revised.
Collapse
|
14
|
Wolińska A, Kuźniar A, Zielenkiewicz U, Banach A, Izak D, Stępniewska Z, Błaszczyk M. Metagenomic Analysis of Some Potential Nitrogen-Fixing Bacteria in Arable Soils at Different Formation Processes. MICROBIAL ECOLOGY 2017; 73:162-176. [PMID: 27581036 PMCID: PMC5209426 DOI: 10.1007/s00248-016-0837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/14/2016] [Indexed: 05/08/2023]
Abstract
The main goal of the study was to determine the diversity of the potential nitrogen-fixing (PNF) bacteria inhabiting agricultural (A) soils versus wastelands serving as controls (C). The soils were classified into three groups based on the formation process: autogenic soils (Albic Luvisols, Brunic Arenosols, Haplic Phaeozem) formed on loess material, hydrogenic soils (Mollic Gleysols, Eutric Fluvisol, Eutric Histosol) formed under the effect of stagnant water and lithogenic soils (Rendzina Leptosols) formed on limestone. In order to determine the preferable conditions for PNF bacteria, the relationships between the soil chemical features and bacterial operational taxonomic units (OTUs) were tested. Additionally, the nitrogen content and fertilisation requirement of the lithogenic (LG), autogenic (AG) and hydrogenic (HG) soils were discussed. The composition of the bacterial communities was analysed with the next-generation sequencing (NGS) by the Ion Torrent™ technology. The sequences were clustered into OTU based on a 99 % similarity threshold. The arable soils tested were distinctly dominated by β-Proteobacteria representatives of PNF bacteria belonging to the genus Burkholderia. Bacteria from the α-Proteobacteria class and Devosia genus were subdominants. A free-living Cyanobacteria population dominated in A rather than in C soils. We have found that both soil agricultural management and soil formation processes are the most conducive factors for PNF bacteria, as a majority of these microorganisms inhabit the AG group of soils, whilst the LG soils with the lowest abundance of PNF bacteria revealed the need for additional mineral fertilisation. Our studies have also indicated that there are close relationships between soil classification with respect to soil formation processes and PNF bacteria preference for occupation of soil niches.
Collapse
Affiliation(s)
- Agnieszka Wolińska
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland.
| | - Agnieszka Kuźniar
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, 5a Pawińskiego Str, 02-206, Warsaw, Poland
| | - Artur Banach
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Dariusz Izak
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, 5a Pawińskiego Str, 02-206, Warsaw, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Mieczysław Błaszczyk
- Department of Microbial Biology, Warsaw University of Life Sciences, Nowoursynowska 159 Str, 02-776, Warsaw, Poland
| |
Collapse
|
15
|
Power RF, Linnane B, Martin R, Power N, Harnett P, Casserly B, O'Connell NH, Dunne CP. The first reported case of Burkholderia contaminans in patients with cystic fibrosis in Ireland: from the Sargasso Sea to Irish Children. BMC Pulm Med 2016; 16:57. [PMID: 27103163 PMCID: PMC4840893 DOI: 10.1186/s12890-016-0219-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/12/2016] [Indexed: 12/26/2022] Open
Abstract
Background Burkholderia contaminans is an emerging pathogen in the cystic fibrosis (CF) setting. Included in the Burkholderia cepacia complex (Bcc), B. contaminans is a Gram negative, motile, obligate aerobe previously classified as a pseudomonad. Previous reports have described B. contaminans isolation from patients in Portugal, Switzerland, Spain, Argentina and the USA. This, however, is the first report relating to B. contaminans affecting Irish patients with CF, initially detected in a paediatric setting. Case presentation Burkholderia contaminans was identified in the routine analysis of sputum from a fourteen year old boy, at his annual review and subsequently from the sputum from his 19 year old brother. RecA gene sequencing and pulsed field gel electrophoresis (PFGE) were unable to distinguish between the isolates, which demonstrated with susceptibility to ciprofloxacin, cotrimoxazole, meropenem, pipercillin/tazobactam and ceftazidime. Both isolates were resistant to aztreonam, with reduced susceptibility to tobramycin. Following treatment with intravenous meropenem and ceftazidime, oral ciprofloxacin and nebulised tobramycin for 6 weeks, sputum specimens from both patients were negative for B. contaminans. No other member of the local CF cohort proved positive. Conclusions Bcc bacteria are associated with poor prognosis in CF and decreased life expectancy, specifically leading to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the “cepacia syndrome”. Some species exhibit innate resistance to multiple antimicrobial agents and their transmission rate can be high in susceptible patients. In that context, we describe the first incidence of CF-related B. contaminans in Ireland and its successful eradication from two patients, one paediatric, using an aggressive antimicrobial regimen.
Collapse
Affiliation(s)
- Rachel F Power
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland.,University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Barry Linnane
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland.,University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Ruth Martin
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Noelle Power
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Peig Harnett
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Brian Casserly
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland.,University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Nuala H O'Connell
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland.,University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Colum P Dunne
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland.
| |
Collapse
|
16
|
|
17
|
da Silva MDCS, Paula TDA, Moreira BC, Carolino M, Cruz C, Bazzolli DMS, Silva CC, Kasuya MCM. Nitrogen-fixing bacteria in Eucalyptus globulus plantations. PLoS One 2014; 9:e111313. [PMID: 25340502 PMCID: PMC4207822 DOI: 10.1371/journal.pone.0111313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/23/2014] [Indexed: 11/23/2022] Open
Abstract
Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.
Collapse
Affiliation(s)
| | | | - Bruno Coutinho Moreira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Manuela Carolino
- Faculdade de Ciências da Universidade de Lisboa, Centro de Biologia Ambiental, Lisboa, Campo Grande, Portugal
| | - Cristina Cruz
- Faculdade de Ciências da Universidade de Lisboa, Centro de Biologia Ambiental, Lisboa, Campo Grande, Portugal
| | | | - Cynthia Canedo Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
18
|
Willems A, Tian R, Bräu L, Goodwin L, Han J, Liolios K, Huntemann M, Pati A, Woyke T, Mavrommatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of Burkholderia mimosarum strain LMG 23256(T), a Mimosa pigra microsymbiont from Anso, Taiwan. Stand Genomic Sci 2014; 9:484-94. [PMID: 25197434 PMCID: PMC4148967 DOI: 10.4056/sigs.4848627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia mimosarum strain LMG 23256(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Mimosa pigra (giant sensitive plant). LMG 23256(T) was isolated from a nodule recovered from the roots of the M. pigra growing in Anso, Taiwan. LMG 23256(T) is highly effective at fixing nitrogen with M. pigra. Here we describe the features of B. mimosarum strain LMG 23256(T), together with genome sequence information and its annotation. The 8,410,967 bp high-quality-draft genome is arranged into 268 scaffolds of 270 contigs containing 7,800 protein-coding genes and 85 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Begium
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Konstantinos Mavrommatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| |
Collapse
|
19
|
de Oliveira-Longatti SM, Marra LM, Lima Soares B, Bomfeti CA, da Silva K, Avelar Ferreira PA, de Souza Moreira FM. Bacteria isolated from soils of the western Amazon and from rehabilitated bauxite-mining areas have potential as plant growth promoters. World J Microbiol Biotechnol 2013; 30:1239-50. [PMID: 24197786 DOI: 10.1007/s11274-013-1547-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/29/2013] [Indexed: 12/01/2022]
Abstract
Several processes that promote plant growth were investigated in endophytic and symbiotic bacteria isolated from cowpea and siratro nodules and also in bacterial strains recommended for the inoculation of cowpea beans. The processes verified in 31 strains were: antagonism against phytopathogenic fungi, free-living biological nitrogen fixation, solubilization of insoluble phosphates and indole acetic acid (IAA) production. The resistance to antibiotics was also assessed. Sequencing of the partial 16S rRNA gene was performed and the strains were identified as belonging to different genera. Eight strains, including some identified as Burkholderia fungorum, fixed nitrogen in the free-living state. Eighteen strains exhibited potential to solubilize calcium phosphate, and 13 strains could solubilize aluminum phosphate. High levels of IAA production were recorded with L-tryptophan addition for the strain UFLA04-321 (42.3 μg mL⁻¹). Strains highly efficient in symbiosis with cowpea bean, including strains already approved as inoculants showed the ability to perform other processes that promote plant growth. Besides, these strains exhibited resistance to several antibiotics. The ability of the nitrogen-fixing bacteria to perform other processes and their adaptation to environmental conditions add value to these strains, which could lead to improved inoculants for plant growth and environmental quality.
Collapse
Affiliation(s)
- Silvia Maria de Oliveira-Longatti
- Postgraduate Program of Agricultural Microbiology, Department of Biology, Federal University of Lavras, P.O 3037, Lavras, MG, 37200-000, Brazil,
| | | | | | | | | | | | | |
Collapse
|