1
|
Gao M, Yuan X, Ji Z, Yang B, Li H, Zhang B. Great diverse rhizobial community nodulating Astragalus mongholicus in the northeastern region of China. Front Microbiol 2024; 15:1507637. [PMID: 39735190 PMCID: PMC11671508 DOI: 10.3389/fmicb.2024.1507637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Astragalus mongholicus Bunge is an important medicinal legume species widely cultivated in northeastern China (NEC) and northwestern China (NWC) and can establish a symbiotic relationship with nitrogen-fixing rhizobial strains. However, there are limited reports comparing the genetic diversity, differentiation, and gene flow of rhizobial strains associated with this plant in different geographic regions. Methods We used multilocus sequence analysis (MLSA) to investigate the phylogeny and genetic diversity of rhizobia and to estimate their intra- and inter-regional gene flow and genetic differentiation based on the analysis of concatenated core genes (recA, atpD, and glnII) and the critical symbiotic gene nodC. Results We isolated eight known and three novel genospecies representing four genera, among which Rhizobium yanglingense was the most predominant microsymbiont. Phylogenetic analysis revealed a highly diverse rhizobial community nodulating Astragalus mongholicus in NEC, consisting of the four genera Rhizobium, Bradyrhizobium, Sinorhizobium, and Mesorhizobium. This community differed markedly from the rhizobial community found in NWC. Various rhizobial genospecies with different symbiotic gene nodC sequences were capable of nodulating A. mongholicus in NEC. Therefore, A. mongholicus exhibits promiscuity in its association with symbionts in the natural environment, showing no strong preference for either the species-defining core genes or the symbiotic genes of rhizobia. We also found that the Glyco_tranf_GTA_type superfamily (Glycosyltransferase family A) is the most highly conserved and essential domain in the NodC protein, which is encoded by the symbiotic nodC gene, across nodulating rhizobia. In addition, we found independent genetic differentiation among rhizobial communities geographically, and the frequency of gene flow among microsymbionts between NEC and NWC was low. We speculate that the formation of the highly diverse rhizobial community in NEC resulted from the independent evolution of each ancestral lineage. This diversity likely arose from intraregional genetic differentiation driven by mutations rather than recombination. Conclusion Ecogeographical isolation between NEC and NWC restricted inter-regional genetic drift and gene flow. Therefore, intraregional genetic differentiation is the major evolutionary force underlying the genetic diversity of rhizobia.
Collapse
Affiliation(s)
- Mengzhe Gao
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Xiaoxia Yuan
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Autonomous Region Engineering Technology Research Center for Prevention and Control of Pathogenic Bacteria in Milk, Tongliao, China
| | - Zhaojun Ji
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Autonomous Region Engineering Technology Research Center for Prevention and Control of Pathogenic Bacteria in Milk, Tongliao, China
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, China
| | - Bingjie Yang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Hua Li
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Autonomous Region Engineering Technology Research Center for Prevention and Control of Pathogenic Bacteria in Milk, Tongliao, China
| | - Bo Zhang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Autonomous Region Engineering Technology Research Center for Prevention and Control of Pathogenic Bacteria in Milk, Tongliao, China
| |
Collapse
|
2
|
Kozieł M, Kalita M, Janczarek M. Genetic diversity of microsymbionts nodulating Trifolium pratense in subpolar and temperate climate regions. Sci Rep 2022; 12:12144. [PMID: 35840628 PMCID: PMC9287440 DOI: 10.1038/s41598-022-16410-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Rhizobia are soil-borne bacteria forming symbiotic associations with legumes and fixing atmospheric dinitrogen. The nitrogen-fixation potential depends on the type of host plants and microsymbionts as well as environmental factors that affect the distribution of rhizobia. In this study, we compared genetic diversity of bacteria isolated from root nodules of Trifolium pratense grown in two geographical regions (Tromsø, Norway and Lublin, Poland) located in distinct climatic (subpolar and temperate) zones. To characterize these isolates genetically, three PCR-based techniques (ERIC, BOX, and RFLP of the 16S-23S rRNA intergenic spacer), 16S rRNA sequencing, and multi-locus sequence analysis of chromosomal house-keeping genes (atpD, recA, rpoB, gyrB, and glnII) were done. Our results indicate that a great majority of the isolates are T. pratense microsymbionts belonging to Rhizobium leguminosarum sv. trifolii. A high diversity among these strains was detected. However, a lower diversity within the population derived from the subpolar region in comparison to that of the temperate region was found. Multi-locus sequence analysis showed that a majority of the strains formed distinct clusters characteristic for the individual climatic regions. The subpolar strains belonged to two (A and B) and the temperate strains to three R. leguminosarum genospecies (B, E, and K), respectively.
Collapse
Affiliation(s)
- Marta Kozieł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland.
| |
Collapse
|
3
|
Guo Y, Ma J, Li J. The complete chloroplast genome of Vicia cracca L. Mitochondrial DNA B Resour 2021; 6:1793-1795. [PMID: 34179462 PMCID: PMC8205000 DOI: 10.1080/23802359.2021.1926355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vicia cracca L. is a widespread perennial herb in the Northern Hemisphere. It has purple flowers and leave tendrils for climbing on neighboring vegetation. For knowing the chloroplast genome, a sample’s genomic was extracted, sequenced, assembled and annotated. The chloroplast genome of this plant is a circular form of 126,272bp in length with IR loss. After annotation, a total of 108 genes were predicted, of which, 75 encode proteins, 3 rRNA, 30 tRNA. The evolutionary history, inferred using Maximum Likelihood method, indicates that V. cracca was grouped within Vicia in Fabaceae. The complete cp genome will be helpful for further studies on molecular biology, evolution, population genetics, taxonomy or resources protection.
Collapse
Affiliation(s)
- Yupeng Guo
- Qinghai Provincial Key Laboratory of High value Utilization of Characteristic Economic Plants, College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, P. R. China
| | - Jiali Ma
- Qinghai Provincial Key Laboratory of High value Utilization of Characteristic Economic Plants, College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, P. R. China
| | - Junqiao Li
- Qinghai Provincial Key Laboratory of High value Utilization of Characteristic Economic Plants, College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, P. R. China
| |
Collapse
|
4
|
Van Cauwenberghe J, Santamaría RI, Bustos P, Juárez S, Ducci MA, Figueroa Fleming T, Etcheverry AV, González V. Spatial patterns in phage-Rhizobium coevolutionary interactions across regions of common bean domestication. THE ISME JOURNAL 2021; 15:2092-2106. [PMID: 33558688 PMCID: PMC8245606 DOI: 10.1038/s41396-021-00907-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Bacteriophages play significant roles in the composition, diversity, and evolution of bacterial communities. Despite their importance, it remains unclear how phage diversity and phage-host interactions are spatially structured. Local adaptation may play a key role. Nitrogen-fixing symbiotic bacteria, known as rhizobia, have been shown to locally adapt to domesticated common bean at its Mesoamerican and Andean sites of origin. This may affect phage-rhizobium interactions. However, knowledge about the diversity and coevolution of phages with their respective Rhizobium populations is lacking. Here, through the study of four phage-Rhizobium communities in Mexico and Argentina, we show that both phage and host diversity is spatially structured. Cross-infection experiments demonstrated that phage infection rates were higher overall in sympatric rhizobia than in allopatric rhizobia except for one Argentinean community, indicating phage local adaptation and host maladaptation. Phage-host interactions were shaped by the genetic identity and geographic origin of both the phage and the host. The phages ranged from specialists to generalists, revealing a nested network of interactions. Our results suggest a key role of local adaptation to resident host bacterial communities in shaping the phage genetic and phenotypic composition, following a similar spatial pattern of diversity and coevolution to that in the host.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico.
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
| | - Rosa I Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Maria Antonella Ducci
- Instituto Nacional de Tecnología Agropecuaria, Universidad Nacional de Salta, Salta, Argentina
| | | | | | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico.
| |
Collapse
|
5
|
Cao Y, Tie D, Zhao JL, Wang XB, Yi JJ, Chai YF, Wang KF, Wang ET, Yue M. Diversity and distribution of Sophora davidii rhizobia in habitats with different irradiances and soil traits in Loess Plateau area of China. Syst Appl Microbiol 2021; 44:126224. [PMID: 34218028 DOI: 10.1016/j.syapm.2021.126224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
To investigate the diversity and distribution of rhizobia associated with Sophora davidii in habitats with different light and soil conditions at the Loess Plateau, we isolated rhizobia from root nodules of this plant grown at 14 sites at forest edge or understory in Shaanxi Province. Based on PCR-RFLP and phylogenies of 16S rRNA gene, housekeeping genes (atpD, dnaK, recA), and symbiosis genes (nodC and nifH), a total of 271 isolates were identified as 16 Mesorhizobium genospecies, belonging to four nodC lineages, and three nifH lineages. The dominance of M. waimense in the forest edge and of M. amorphae/Mesorhizobium sp. X in the understory habitat evidenced the illumination as a possible factor to affect the diversity and biogeographic patterns of rhizobia. However, the results of Canonical Correlation Analysis (CCA) among the environmental factors and distribution of rhizobial genospecies illustrated that soil pH and contents of total phosphorus, total potassium and total organic carbon were the main determinants for the community structure of S. davidii rhizobia, while the illumination conditions and available P presented similar and minor effects. In addition, high similarity of nodC and nifH genes between Mesorhizobium robiniae and some S. davidii rhizobia under the forest of Robinia pseudoacacia might be evidence for symbiotic gene lateral transfer. These findings firstly brought an insight into the diversity and distribution of rhizobia associated with S. davidii, and revealed illumination conditions a possible factor with impacts less than the soil traits to drive the symbiosis association between rhizobia and their host legumes.
Collapse
Affiliation(s)
- Ying Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China.
| | - Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Jia Le Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Xu Bo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Jun Jie Yi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Yong Fu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Ke Feng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Cd. México, Mexico
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
6
|
Gilbert PJ, Taylor S, Cooke DA, Deary ME, Jeffries MJ. Quantifying organic carbon storage in temperate pond sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111698. [PMID: 33349511 DOI: 10.1016/j.jenvman.2020.111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Ponds may hold significant stocks of organic carbon in their sediments and pond creation may offer a practical application for land managers to increase carbon storage. However, ponds are overlooked in global carbon budgets. Their potential significance is suggested by the abundance of ponds throughout terrestrial biomes and their high carbon burial rates, but we lack measures of sediment carbon stocks from typical ponds. We sampled sediment from lowland temperate ponds in north east England comparing carbon stocks from ponds categorised by surrounding land use, or dominant vegetation, or drying regime, along with measures of variation within ponds. Sediment carbon varied considerably between ponds. This variation was more important than any systematic variation between pond types grouped by land use, vegetation or drying, or any variation within an individual pond. Our estimates of pond sediment organic carbon give measures that are higher than from soils in widespread habitats such as temperate grassland and woodland, suggesting that ponds are significant for carbon budgets in their own right. Ponds are relatively easy to create, are ubiquitous throughout temperate biomes and can be fitted in amongst other land uses; our results show that pond creation would be a useful and practical application to boost carbon sequestration in temperate landscapes.
Collapse
Affiliation(s)
- Peter J Gilbert
- Environmental Research Institute (UHI), Castle Street, Thurso, KW14 7JD, UK
| | - Scott Taylor
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - David A Cooke
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Michael E Deary
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Michael J Jeffries
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle Upon Tyne, UK.
| |
Collapse
|
7
|
Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain. PLANTS 2020; 9:plants9121755. [PMID: 33322342 PMCID: PMC7763339 DOI: 10.3390/plants9121755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
Pisum sativum L. (pea) is one of the most cultivated grain legumes in European countries due to the high protein content of its seeds. Nevertheless, the rhizobial microsymbionts of this legume have been scarcely studied in these countries. In this work, we analyzed the rhizobial strains nodulating the pea in a region from Northwestern Spain, where this legume is widely cultivated. The isolated strains were genetically diverse, and the phylogenetic analysis of core and symbiotic genes showed that these strains belong to different clusters related to R. laguerreae sv. viciae. Representative strains of these clusters were able to produce cellulose and cellulases, which are two key molecules in the legume infection process. They formed biofilms and produced acyl-homoserine lactones (AHLs), which are involved in the quorum sensing regulation process. They also exhibited several plant growth promotion mechanisms, including phosphate solubilization, siderophore, and indole acetic acid production and symbiotic atmospheric nitrogen fixation. All strains showed high symbiotic efficiency on pea plants, indicating that strains of R. laguerreae sv. viciae are promising candidates for the biofertilization of this legume worldwide.
Collapse
|
8
|
Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. PLANTS 2020; 9:plants9121719. [PMID: 33297297 PMCID: PMC7762326 DOI: 10.3390/plants9121719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
In natural plant populations, a fine-scale spatial genetic structure (SGS) can result from limited gene flow, selection pressures or spatial autocorrelation. However, limited gene flow is considered the predominant determinant in the establishment of SGS. With limited dispersal ability of bacterial cells in soil and host influence on their variety and abundance, spatial autocorrelation of bacterial communities associated with plants is expected. For this study, we collected genetic data from legume host plants, Chamaecrista fasciculata, their Bradyrhizobium symbionts and rhizosphere free-living bacteria at a small spatial scale to evaluate the extent to which symbiotic partners will have similar SGS and to understand how plant hosts choose among nodulating symbionts. We found SGS across all sampled plants for both the host plants and nodulating rhizobia, suggesting that both organisms are influenced by similar mechanisms structuring genetic diversity or shared habitat preferences by both plants and microbes. We also found that plant genetic identity and geographic distance might serve as predictors of nodulating rhizobia genetic identity. Bradyrhizobium elkanii was the only type of rhizobia found in nodules, which suggests some level of selection by the host plant.
Collapse
|
9
|
Rajnovic I, Ramírez-Bahena MH, Sánchez-Juanes F, González-Buitrago JM, Kajic S, Peix Á, Velázquez E, Sikora S. Phylogenetic diversity of rhizobia nodulating Phaseolus vulgaris in Croatia and definition of the symbiovar phaseoli within the species Rhizobium pisi. Syst Appl Microbiol 2019; 42:126019. [PMID: 31635886 DOI: 10.1016/j.syapm.2019.126019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 11/27/2022]
Abstract
Phaseolus vulgaris is a legume indigenous to America which is currently cultivated in Europe including countries located at the Southeast of this continent, such as Croatia, where several local landraces are cultivated, most of them of Andean origin. In this work we identify at species and symbiovar levels several fast-growing strains able to form effective symbiosis with P. vulgaris in different Croatian soils. The identification at species level based on MALDI-TOF MS and core gene sequence analysis showed that most of these strains belong to the species R. leguminosarum, R. hidalgonense and R. pisi. In addition, several strains belong to putative new species phylogenetically close to R. ecuadorense and R. sophoriradicis. All Croatian strains belong to the symbiovar phaseoli and harbour the α and γ nodC alleles typical for American strains of this symbiovar. Nevertheless, most of Croatian strains harboured the γ nodC gene allele supporting its Andean origin since it is also dominant in other European countries, where Andean cultivars of P. vulgaris are traditionally cultivated, as occurs in Spain. The only strains harbouring the α nodC allele belong to R. hidalgonense and R. pisi, this last only containing the symbiovars viciae and trifolii to date. This is the first report about the presence in Europe of the species R. hidalgonense, the nodulation of P. vulgaris by R. pisi and the existence of the symbiovar phaseoli within this species. These results significantly increase the knowledge of the biogeography of Rhizobium-P. vulgaris symbiosis.
Collapse
Affiliation(s)
- Ivana Rajnovic
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | - José-Manuel González-Buitrago
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | - Sanja Kajic
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain; Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain.
| | - Encarna Velázquez
- Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain; Departmento de Microbiología y Genética and CIALE, Universidad de Salamanca, Salamanca, Spain
| | - Sanja Sikora
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Exploring Genetic Diversity and Signatures of Horizontal Gene Transfer in Nodule Bacteria Associated with Lotus japonicus in Natural Environments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1110-1120. [PMID: 30880586 DOI: 10.1094/mpmi-02-19-0039-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To investigate the genetic diversity and understand the process of horizontal gene transfer (HGT) in nodule bacteria associated with Lotus japonicus, we analyzed sequences of three housekeeping and five symbiotic genes using samples from a geographically wide range in Japan. A phylogenetic analysis of the housekeeping genes indicated that L. japonicus in natural environments was associated with diverse lineages of Mesorhizobium spp., whereas the sequences of symbiotic genes were highly similar between strains, resulting in remarkably low nucleotide diversity at both synonymous and nonsynonymous sites. Guanine-cytosine content values were lower in symbiotic genes, and relative frequencies of recombination between symbiotic genes were also lower than those between housekeeping genes. An analysis of molecular variance showed significant genetic differentiation among populations in both symbiotic and housekeeping genes. These results confirm that the Mesorhizobium genes required for symbiosis with L. japonicus behave as a genomic island (i.e., a symbiosis island) and suggest that this island has spread into diverse genomic backgrounds of Mesorhizobium via HGT events in natural environments. Furthermore, our data compilation revealed that the genetic diversity of symbiotic genes in L. japonicus-associated symbionts was among the lowest compared with reports of other species, which may be related to the recent population expansion proposed in Japanese populations of L. japonicus.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, the University of Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | | |
Collapse
|
11
|
Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils. Syst Appl Microbiol 2019; 42:448-456. [DOI: 10.1016/j.syapm.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 11/30/2022]
|
12
|
Diversity and nodulation effectiveness of rhizobia and mycorrhizal presence in climbing dry beans grown in Prespa lakes plain, Greece. Arch Microbiol 2019; 201:1151-1161. [PMID: 31168635 DOI: 10.1007/s00203-019-01679-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/24/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
The Prespa lakes plain is an isolated area where about 1000 ha are seeded to Phaseolus vulgaris L. and Phaseolus coccineus L. Nodulation, arbuscular mycorrhizal fungal (AMF) presence and the genetic diversity of rhizobia were evaluated by 16S-ITS-23S-RFLP patterns and by sequencing. The bean rhizobial population in the region was diverse, despite its geographic isolation. No biogeographic relationships were detected, apart from a Rhizobium tropici-related strain that originated from an acidic soil. No clear pattern was detected in clustering with bean species and all isolates formed nodules with both bean species. Most strains were related to Rhizobium leguminosarum and a number of isolates were falling outside the already characterized species of genus Rhizobium. Application of heavy fertilization has resulted in high soil N and P levels, which most likely reduced nodulation and AMF spore presence. However, considerable AMF root length colonization was found in most of the fields.
Collapse
|
13
|
Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada. Syst Appl Microbiol 2018; 41:629-640. [DOI: 10.1016/j.syapm.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022]
|
14
|
Stefan A, Van Cauwenberghe J, Rosu CM, Stedel C, Labrou NE, Flemetakis E, Efrose RC. Genetic diversity and structure of Rhizobium leguminosarum populations associated with clover plants are influenced by local environmental variables. Syst Appl Microbiol 2018; 41:251-259. [PMID: 29452714 DOI: 10.1016/j.syapm.2018.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/15/2022]
Abstract
The identification and conservation of indigenous rhizobia associated with legume plants and their application as biofertilizers is becoming an agricultural worldwide priority. However, little is known about the genetic diversity and phylogeny of rhizobia in Romania. In the present study, the genetic diversity and population composition of Rhizobium leguminosarum symbiovar trifolii isolates from 12 clover plants populations located across two regions in Romania were analyzed. Red clover isolates were phenotypically evaluated and genotyped by sequencing 16S rRNA gene, 16S-23S intergenic spacer, three chromosomal genes (atpD, glnII and recA) and two plasmid genes (nifH and nodA). Multilocus sequence typing (MLST) analysis revealed that red clover plants are nodulated by a wide genetic diversity of R. leguminosarum symbiovar trifolii sequence types (STs), highly similar to the ones previously found in white clover. Rhizobial genetic variation was found mainly within the two clover populations for both chromosomal and plasmid types. Many STs appear to be unique for this region and the genetic composition of rhizobia differs significantly among the clover populations. Furthermore, our results showed that both soil pH and altitude contributed to plasmid sequence type composition while differences in chromosomal composition were affected by the altitude and were strongly correlated with distance.
Collapse
Affiliation(s)
- Andrei Stefan
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania
| | - Jannick Van Cauwenberghe
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico; Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Craita M Rosu
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania
| | - Catalina Stedel
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Rodica C Efrose
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania.
| |
Collapse
|
15
|
Molecular diversity and phylogeny of indigenous Rhizobium leguminosarum strains associated with Trifolium repens plants in Romania. Antonie van Leeuwenhoek 2017; 111:135-153. [DOI: 10.1007/s10482-017-0934-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|
16
|
Analysis of rhizobial endosymbionts of Vicia, Lathyrus and Trifolium species used to maintain mountain firewalls in Sierra Nevada National Park (South Spain). Syst Appl Microbiol 2017; 40:92-101. [DOI: 10.1016/j.syapm.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
17
|
Bamba M, Nakata S, Aoki S, Takayama K, Núñez-Farfán J, Ito M, Miya M, Kajita T. Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes. Antonie van Leeuwenhoek 2016; 109:1605-1614. [PMID: 27664091 DOI: 10.1007/s10482-016-0761-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/23/2016] [Indexed: 11/29/2022]
Abstract
To understand the geographic distributions of rhizobia that associated with widely distributed wild legumes, 66 nodules obtained from 41 individuals including three sea-dispersed legumes (Vigna marina, Vigna luteola, and Canavalia rosea) distributed across the tropical and subtropical coastal regions of the world were studied. Partial sequences of 16S rRNA and nodC genes extracted from the nodules showed that only Bradyrhizobium and Sinorhizobium were associated with the pantropical legumes, and some of the symbiont strains were widely distributed over the Pacific. Horizontal gene transfer of nodulation genes were observed within the Bradyrhizobium and Sinorhizobium lineages. BLAST searches in GenBank also identified records of these strains from various legumes across the world, including crop species. However, one of the rhizobial strains was not found in GenBank, which implies the strain may have adapted to the littoral environment. Our results suggested that some rhizobia, which associate with the widespread sea-dispersed legume, distribute across a broad geographic range. By establishing symbiotic relationships with widely distributed rhizobia, the pantropical legumes may also be able to extend their range much further than other legume species.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba-shi, Chiba, 263-8522, Japan
| | - Sayuri Nakata
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba-shi, Chiba, 263-8522, Japan.,Jumonji Junior and Senior High School, 1-10-33 Kitaohtsuka, Toshima-ku, Tokyo, Japan
| | - Seishiro Aoki
- Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Koji Takayama
- Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8017, Japan
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, México, Distrito Federal, México
| | - Motomi Ito
- Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaki Miya
- Natural History Museum & Institute, Chiba-shi, Chiba, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa, 907-1541, Japan.
| |
Collapse
|
18
|
Local genetic structure and worldwide phylogenetic position of symbiotic Rhizobium leguminosarum strains associated with a traditional cultivated crop, Vicia ervilia, from Northern Morocco. Syst Appl Microbiol 2016; 39:409-17. [DOI: 10.1016/j.syapm.2016.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022]
|
19
|
Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales. Appl Environ Microbiol 2016; 82:5099-115. [PMID: 27316955 DOI: 10.1128/aem.00591-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.
Collapse
|
20
|
Beukes CW, Stępkowski T, Venter SN, Cłapa T, Phalane FL, le Roux MM, Steenkamp ET. Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci. Mol Phylogenet Evol 2016; 100:206-218. [DOI: 10.1016/j.ympev.2016.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
|
21
|
Van Cauwenberghe J, Lemaire B, Stefan A, Efrose R, Michiels J, Honnay O. Symbiont abundance is more important than pre-infection partner choice in a Rhizobium - legume mutualism. Syst Appl Microbiol 2016; 39:345-9. [PMID: 27269381 DOI: 10.1016/j.syapm.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Abstract
It is known that the genetic diversity of conspecific rhizobia present in root nodules differs greatly among populations of a legume species, which has led to the suggestion that both dispersal limitation and the local environment affect rhizobial genotypic composition. However, it remains unclear whether rhizobial genotypes residing in root nodules are representative of the entire population of compatible symbiotic rhizobia. Since symbiotic preferences differ among legume populations, the genetic composition of rhizobia found within nodules may reflect the preferences of the local hosts, rather than the full diversity of potential nodulating rhizobia present in the soil. Here, we assessed whether Vicia cracca legume hosts of different provenances select different Rhizobium leguminosarum genotypes than sympatric V. cracca hosts, when presented a natural soil rhizobial population. Through combining V. cracca plants and rhizobia from adjacent and more distant populations, we found that V. cracca hosts are relatively randomly associated with rhizobial genotypes. This indicates that pre-infection partner choice is relatively weak in certain legume hosts when faced with a natural population of rhizobia.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Benny Lemaire
- Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Andrei Stefan
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I 20A, 700505 Iasi, Romania
| | - Rodica Efrose
- Department of Experimental and Applied Biology, NIRDBS-Institute of Biological Research Iasi, Lascar Catargi 47, 700107 Iasi, Romania
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
22
|
Genetic diversity of rhizobia nodulating native Vicia spp. in Sweden. Syst Appl Microbiol 2016; 39:203-210. [DOI: 10.1016/j.syapm.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/23/2022]
|
23
|
Cauwenberghe JV, Visch W, Michiels J, Honnay O. Selection mosaics differentiateRhizobium-host plant interactions across different nitrogen environments. OIKOS 2016. [DOI: 10.1111/oik.02952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jannick Van Cauwenberghe
- Plant Conservation and Population Biology; Biology Dept; KU Leuven, Kasteelpark Arenberg 31 BE-3001 Leuven Belgium
- Centre of Microbial and Plant Genetics; KU Leuven Leuven Belgium
| | - Wouter Visch
- Plant Conservation and Population Biology; Biology Dept; KU Leuven, Kasteelpark Arenberg 31 BE-3001 Leuven Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics; KU Leuven Leuven Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology; Biology Dept; KU Leuven, Kasteelpark Arenberg 31 BE-3001 Leuven Belgium
| |
Collapse
|
24
|
Lemaire B, Van Cauwenberghe J, Chimphango S, Stirton C, Honnay O, Smets E, Muasya AM. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome. FEMS Microbiol Ecol 2015; 91:fiv118. [PMID: 26433010 DOI: 10.1093/femsec/fiv118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 11/14/2022] Open
Abstract
The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.
Collapse
Affiliation(s)
- Benny Lemaire
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium
| | - Jannick Van Cauwenberghe
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Samson Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Charles Stirton
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Olivier Honnay
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium Naturalis Biodiversity Center, Leiden University, 2300 RA Leiden, the Netherlands
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| |
Collapse
|
25
|
Xu KW, Zou L, Penttinen P, Wang K, Heng NN, Zhang XP, Chen Q, Zhao K, Chen YX. Symbiotic effectiveness and phylogeny of rhizobia isolated from faba bean (Vicia faba L.) in Sichuan hilly areas, China. Syst Appl Microbiol 2015; 38:515-23. [DOI: 10.1016/j.syapm.2015.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
|