1
|
Ge HY, Zhang YH, Hu YQ, Li HR, Han W, Du Y, Hu T, Luo W, Zeng YX. Pseudomonas paeninsulae sp. nov. and Pseudomonas svalbardensis sp. nov., isolated from Antarctic intertidal sediment and Arctic soil, respectively. Int J Syst Evol Microbiol 2024; 74. [PMID: 39073408 DOI: 10.1099/ijsem.0.006466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Two Gram-stain-negative, aerobic, rod-shaped, non-endospore-forming and motile bacterial strains, designated IT1137T and S025T, were isolated from an intertidal sediment sample collected from the Fildes Peninsula (King George Island, Maritime Antarctica) and a soil sample under red snow in the Ny-Ålesund region (Svalbard, High Arctic), respectively. The 16S rRNA gene sequence similarity values grouped them in the genus Pseudomonas. The two strains were characterized phenotypically using API 20E, API 20NE, API ZYM and Biolog GENIII tests and chemotaxonomically by their fatty acid contents, polar lipids and respiratory quinones. Multilocus sequence analysis (concatenated 16S rRNA, gyrB, rpoB and rpoD sequences), together with genome comparisons by average nucleotide identity and digital DNA-DNA hybridization, were performed. The results showed that the similarity values of the two isolates with the type strains of related Pseudomonas species were below the recognized thresholds for species definition. Based on polyphasic taxonomy analysis, it can be concluded that strains IT1137T and S025T represent two novel species of the genus Pseudomonas, for which the names Pseudomonas paeninsulae sp. nov. (type strain IT1137T=PMCC 100533T=CCTCC AB 2023226T=JCM 36637T) and Pseudomonas svalbardensis sp. nov. (type strain S025T=PMCC 200367T= CCTCC AB 2023225T=JCM 36638T) are proposed.
Collapse
Affiliation(s)
- Hui-Yan Ge
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
| | - Yi-He Zhang
- College of Science, Shantou University, Shantou 515063, PR China
| | - Yong-Qiang Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
| | - Hui-Rong Li
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
| | - Wei Han
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
| | - Yu Du
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
| | - Ting Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
| | - Yin-Xin Zeng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
- Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, PR China
- Shanghai Key Laboratory of Polar Life and Environment Sciences (Shanghai Jiao Tong University), Shanghai 200030, PR China
- Key Laboratory of Polar Ecosystem and Climate Change (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200030, PR China
| |
Collapse
|
2
|
Li N, Yuan Q, Qi Y, Wu P, Cui S, Zheng G. The Potential Implications of Sex-Specific Differences in the Intestinal Bacteria of the Overwintering Wolf Spider Pardosa astrigera (Araneae: Lycosidae). INSECTS 2024; 15:490. [PMID: 39057223 PMCID: PMC11276740 DOI: 10.3390/insects15070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Gut microbiota can promote the resistance of host arthropods to low-temperature stress. Female Pardosa astrigera have a lower anti-freeze compound level and weaker resistance to cold temperatures than the males in winter, which implies that their intestinal bacteria may be different during overwintering. This study primarily compared the intestinal bacterial communities between the two sexes of P. astrigera in a temperate region using 16S rRNA gene sequencing. Our findings indicated that the Chao1 and Shannon indices of intestinal bacteria in females were significantly higher than those in males, while the Simpson index in females was significantly lower than that in males. The male intestinal bacterial community was characterized by Proteobacteria and Actinobacteriota at the phylum level and by Pseudomonas and Rhodococcus at the genus level, with total relative abundances of 89.58% and 85.22%, respectively, which were also significantly higher than those in females, whose total relative abundances were 47.49% and 43.68%, respectively. In contrast, the total relative abundances of Bacteroidota and Firmicutes were significantly lower in males (4.26% and 4.75%, respectively) than in females (26.25% and 22.31%, respectively). Noteworthy divergences in bacterial communities were also found through an LEfSe analysis between females and males. Additionally, the results of the PICRUSt2 analysis showed that six out of eleven level-2 pathways related to key metabolic functions were significantly (or marginally significantly) higher in females than males, and five other level-2 pathways were significantly (or marginally significantly) lower in females than males. Our results imply that significant gender differences exist in intestinal bacterial communities of overwintering P. astrigera. We suggest that Pseudomonas versuta (belonging to Proteobacteria) and Rhodococcus erythropolis (belonging to Actinobacteriota) may have the potential to play key roles in overwintering P. astrigera.
Collapse
Affiliation(s)
- Ningkun Li
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Quan Yuan
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Yaru Qi
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Pengfeng Wu
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Shuyan Cui
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Guo Zheng
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
- Liaoning Key Laboratory for Biological Evolution and Agricultural Ecology, Shenyang 110034, China
| |
Collapse
|
3
|
Lick S, Wibberg D, Busche T, Blom J, Grimmler C, Goesmann A, Kalinowski J. Pseudomonas kulmbachensis sp. nov. and Pseudomonas paraveronii sp. nov., originating from chilled beef and chicken breast. Int J Syst Evol Microbiol 2024; 74. [PMID: 38587505 DOI: 10.1099/ijsem.0.006293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
By investigating wet and dry age-related ripening of beef, Pseudomonas strains V3/3/4/13T and V3/K/3/5T were isolated. Strain V3/3/4/13T exhibited more than 99 % 16S rRNA gene-based similarity to Pseudomonas fragi and other members of this group, while isolate V3/K/3/5T was very close to Pseudomonas veronii and a number of relatives within the Pseudomonas fluorescens group. Additional comparisons of complete rpoB sequences and draft genomes allowed us to place isolate V3/3/4/13T close to Pseudomonas deceptionensis DSM 26521T. In the case of V3/K/3/5T the closest relative was P. veronii DSM 11331T. Average nucleotide identity (ANIb) and digital DNA-DNA hybridization (dDDH) values calculated from the draft genomes of V3/3/4/13T and P. deceptionensis DSM 26521T were 88.5 and 39.8 %, respectively. For V3/K/3/5T and its closest relative P. veronii DSM 11331T, the ANIb value was 95.1 % and the dDDH value was 60.7 %. The DNA G+C contents of V3/3/4/13T and V3/K/3/5T were 57.4 and 60.8 mol%, respectively. Predominant fatty acids were C16 : 0, C18 : 1 ω7c, C17 : 0 cyclo and summed feature C16 : 1 ω7ct/C15 : 0 iso 2OH. The main respiratory quinones were Q9, with minor proportions of Q8 and, in the case of V3/K/3/5T, additional Q10. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and, in the case of V3/K/3/5T, additional phosphatidylcholine. Based on the combined data, isolates V3/3/4/13T and V3/K/3/5T should be considered as representatives of two novel Pseudomonas species. The type strain of the newly proposed Pseudomonas kulmbachensis sp. nov. is V3/3/4/13T (=DSM 113654T=LMG 32520T), a second strain belonging to the same species is FLM 004-28 (=DSM 113604=LMG 32521); the type strain for the newly proposed Pseudomonas paraveronii sp. nov. is V3/K/3/5T (=DSM 113573T=LMG 32518T) with a second isolate FLM 11 (=DSM 113572=LMG 32519).
Collapse
Affiliation(s)
- Sonja Lick
- Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Meat, E.-C.-Baumann Straße 20, D-95326 Kulmbach, Germany
| | - Daniel Wibberg
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
- ELIXIR DE Administration Office, Institute of Bio- and Geosciences IBG-5, Forschungszentrum Jülich GmbH - Branch office Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
- Medical School East Westphalia-Lippe, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Ludwigsstraße 23, D-35392 Gießen, Germany
| | - Christina Grimmler
- Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Meat, E.-C.-Baumann Straße 20, D-95326 Kulmbach, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Ludwigsstraße 23, D-35392 Gießen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| |
Collapse
|
4
|
Nováková D, Koublová V, Sedlář K, Staňková E, Králová S, Švec P, Neumann-Schaal M, Wolf J, Koudelková S, Barták M, Sedláček I. Pseudomonas petrae sp. nov. isolated from regolith samples in Antarctica. Syst Appl Microbiol 2023; 46:126424. [PMID: 37167755 DOI: 10.1016/j.syapm.2023.126424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023]
Abstract
A polyphasic taxonomic approach was used to characterize the four strains P2653T, P2652, P2498, and P2647, isolated from Antarctic regolith samples. Initial genotype screening performed by PCR fingerprinting based on repetitive sequences showed that the isolates studied formed a coherent cluster separated from the other Pseudomonas species. Identification results based on 16S rRNA gene sequences showed the highest sequence similarity with Pseudomonas graminis (99.7%), which was confirmed by multilocus sequence analysis using the rpoB, rpoD, and gyrB genes. Genome sequence comparison of P2653T with the most related P. graminis type strain DSM 11363T revealed an average nucleotide identity of 92.1% and a digital DNA-DNA hybridization value of 46.6%. The major fatty acids for all Antarctic strains were C16:0, Summed Feature 3 (C16:1ω7c/C16:1ω6c) and Summed Feature 8 (C18:1ω7c/C18:1ω6c). The predominant respiratory quinone was Q-9, and the major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. The regolith strains could be differentiated from related species by the absence of arginine dihydrolase, ornithine and lysine decarboxylase and by negative tyrosine hydrolysis. The results of this polyphasic study allowed the genotypic and phenotypic differentiation of four analysed strains from the closest related species, which confirmed that the strains represent a novel species within the genus Pseudomonas, for which the name Pseudomonas petrae sp. nov. is proposed with P2653T (CCM 8850T = DSM 112068T = LMG 30619T) as the type strain.
Collapse
Affiliation(s)
- Dana Nováková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Vendula Koublová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstraße 17, 803 33 Munich, Germany
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Sylva Koudelková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Section of Experimental Plant Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Lick S, Wibberg D, Winkler A, Blom J, Grimmler C, Goesmann A, Kalinowski J, Kröckel L. Pseudomonas paraversuta sp. nov. isolated from refrigerated dry-aged beef. Int J Syst Evol Microbiol 2021; 71. [PMID: 34097596 DOI: 10.1099/ijsem.0.004822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic approach was applied to investigate the diversity of microbiota that evolved during cold storage beef ripening. Isolate V4/DAB/S4/2aT with a unique BOX-rep-PCR fingerprint profile revealed more than 99 % nucleotide identities upon pairwise comparisons of 16S rDNA sequences from the type strains Pseudomonas versuta DSM 101070T, Pseudomonas saxonica DSM 108989T, Pseudomonas deceptionensis DSM 26521T and Pseudomonas weihenstephanensis DSM 29166T, placing it within the Pseudomonas fragi / lundensis branch of the genus Pseudomonas. Additional rpoB based comparison revealed P. versuta DSM 101070T as the nearest relative, with 98.5 % nucleotide identity. Calculation of ANIb values of the V4/DAB/S4/2aT draft genome identified P. versuta DSM 101070T with 90.1 %, P. deceptionensis DSM 26521T with 85.1 %, P. fragi DSM 3456T with 84.4 %, Pseudomonas psychrophila DSM 17535T and Pseudomonas bubulae DSM 107389T with 84.2 % similarities each. Pairwise genome-to-genome distance calculations [digital DNA-DNA hybridization (dDDH)] resulted in values of 47.1, 35.1, 34.8, 34.2 and 34.1 %, respectively. A second isolate was detected years later in ground beef and showed ANIb values of 99.3 % and dDDH of 96.1 % relatedness to V4/DAB/S4/2aT. The DNA G+C content was 58.6 mol% for both isolates. The predominant cellular fatty acids of V4/DAB/S4/2aT were C16 : 0, C18 : 1ω7c, C17 : 0 cyclo and a summed feature containing C16 : 1ω7c and/or C15 : 0 iso 2-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol, the major respiratory quinone was Q9, with a small portion of Q8. The combined data on genotypic and phenotypic features support the proposal of a novel species, for which the name Pseudomonas paraversuta sp. nov. is proposed. The type strain is V4/DAB/S4/2aT (=DSM 111361T=LMG 31844T) and a second isolate is UBT376 (=DSM 111360=LMG 31845).
Collapse
Affiliation(s)
- Sonja Lick
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, E.-C.-Baumann Straße 20, D-95326 Kulmbach, Germany
| | - Daniel Wibberg
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Annika Winkler
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 58, D-35392 Gießen, Germany
| | - Christina Grimmler
- Chair of Bioanalytical Sciences and Food Analysis, University Bayreuth, Universitätsstraße 30, D-95447 Bayreuth and Max Rubner-Institut, E.C.-Baumann Straße 20, D-95326 Kulmbach, Germany.,Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, E.-C.-Baumann Straße 20, D-95326 Kulmbach, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 58, D-35392 Gießen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Lothar Kröckel
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, E.-C.-Baumann Straße 20, D-95326 Kulmbach, Germany
| |
Collapse
|
6
|
Pavlov MS, Lira F, Martinez JL, Olivares-Pacheco J, Marshall SH. Pseudomonas fildesensis sp. nov., a psychrotolerant bacterium isolated from Antarctic soil of King George Island, South Shetland Islands. Int J Syst Evol Microbiol 2020; 70:3255-3263. [PMID: 32375985 DOI: 10.1099/ijsem.0.004165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The strain KG01T was isolated from a soil sample from King George Island, Antarctica. Cells of KG01T are rod-shaped and motile by means of multiple polar flagella. The absence of arginine dihydrolase activity could be a key feature to readily distinguish KG01T from its closest phylogenetic relative species. The main fatty acids of the strain include summed feature 3 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH), C16 : 0 and C18 : 1 ω7c. Phylogenetic analysis based on the 16S rRNA gene sequence and on a multilocus sequence analysis (MLSA) using housekeeping genes (16S rRNA, rpoB, rpoD, gyrB) were carried out. These analyses allowed us to include the strain within the Pseudomonas fluorescens group, presenting the highest similarity of multilocus sequence with Pseudomonas veronii LMG 17761T (96.67 %). The genome of KG01T was sequenced and in silico compared with genomes of the most closely related species of the P. fluorescens group. The average nucleotide identity (ANIb) and average amino acid identity (AAI) values of the species phylogenetically closest to KG01T were less than 95-96 %, threshold currently accepted to define strain as belonging to a bacterial species, the highest scores being those to Pseudomonas veronii LMG 17761T (87.98 %) and Pseudomonas marginalis ICMP 3553T (91.90 %). Therefore, the phenotypic and genotypic analyses results, allow us to propose that KG01T represents a member of a novel species of the genus Pseudomonas, for which the name Pseudomonas fildesensis is proposed, and KG01T (=CECT 9084T;=DSM 102036T) is established as the type strain .
Collapse
Affiliation(s)
- Maria S Pavlov
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso, Chile
| | - Felipe Lira
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - José Luis Martinez
- Centro Nacional de Biotecnología, CNB, CSIC, Darwin 3, Campus de Cantoblanco, Madrid, Spain
| | - Jorge Olivares-Pacheco
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R). Santiago, Chile.,Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso, Chile
| | - Sergio H Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso, Chile
| |
Collapse
|
7
|
Li Y, Jia S, Hong H, Zhang L, Zhuang S, Sun X, Liu X, Luo Y. Assessment of bacterial contributions to the biochemical changes of chill-stored blunt snout bream (Megalobrama amblycephala) fillets: Protein degradation and volatile organic compounds accumulation. Food Microbiol 2020; 91:103495. [PMID: 32539953 DOI: 10.1016/j.fm.2020.103495] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/11/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023]
Abstract
In this study, we evaluated the contributions of three bacteria (Pseudomonas versuta, Shewanella putrefaciens, and Aeromonas sobria) to the proteolysis, biogenic amines formation, volatile organic compounds accumulation, lipid oxidation, nucleotide catabolism, discoloration, and water migration of bream flesh during chilled storage. The results showed that P. versuta exhibited hydrolyzing activity against sarcoplasmic proteins, and all three strains could degrade myofibrillar proteins, specifically actin. The highest producer of putrescine was S. putrefaciens, which reached a maximum level 5.05 mg/kg after 14 days. Compared with the A. sobria group, hypoxanthine riboside degraded faster in samples inoculated with P. versuta or S. putrefaciens, A. sobria, P. versuta, and S. putrefaciens were responsible for the production of alcohol and aldehydes, whereas only S. putrefaciens produced thiophene and partial esters. Fish flesh inoculated with P. versuta, S. putrefaciens, and A. sobria presented slight green, yellow, and pink discoloration, respectively.
Collapse
Affiliation(s)
- Yan Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shiliang Jia
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaohui Sun
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaochang Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, China; Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Nováková D, Švec P, Zeman M, Busse HJ, Mašlaňová I, Pantůček R, Králová S, Krištofová L, Sedláček I. Pseudomonas leptonychotis sp. nov., isolated from Weddell seals in Antarctica. Int J Syst Evol Microbiol 2020; 70:302-308. [PMID: 31617844 DOI: 10.1099/ijsem.0.003753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A taxonomic study was carried out on four Gram-stain-negative strains P5773T, P6169, P4708 and P6245, isolated from anus or mouth samples of Weddell seals at James Ross Island, Antarctica. The results of initial 16S rRNA gene sequence analysis showed that all four strains formed a group placed in the genus Pseudomonas and found Pseudomonas guineae and Pseudomonas peli to be their closest neighbours with 99.9 and 99.2 % sequence similarity, respectively. Sequence analysis of rpoD, rpoB and gyrB housekeeping genes confirmed the highest similarity of isolates to P. peli (rpoD) and to P. guineae (rpoB and gyrB). The average nucleotide identity value below 86 %, as calculated from the whole-genome sequence data, showed the low genomic relatedness of P5773T to its phylogenetic neighbours. The complete genome of strain P5773T was 4.4 Mb long and contained genes encoding proteins with biotechnological potential. The major fatty acids of the seal isolates were summed feature 8 (C18 : 1 ω7c), summed feature 3 (C16 : 1 ω 7 c/C16 : 1 ω6c) and C16:0. The major respiratory quinone was Q9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Putrescine and spermidine are predominant in the polyamine pattern. Further characterization performed using repetitive sequence-based PCR fingerprinting and MALDI-TOF MS analysis showed that the studied isolates formed a coherent cluster separated from the remaining Pseudomonas species and confirmed that they represent a novel species within the genus Pseudomonas, for which the name Pseudomonas leptonychotis sp. nov. is suggested. The type strain is P5773T (=CCM 8849T=LMG 30618T).
Collapse
Affiliation(s)
- Dana Nováková
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Zeman
- Section of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hans-Jürgen Busse
- Institute of Microbiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Ivana Mašlaňová
- Section of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Roman Pantůček
- Section of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stanislava Králová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucie Krištofová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Hofmann K, Huptas C, Doll EV, Scherer S, Wenning M. Pseudomonas saxonica sp. nov., isolated from raw milk and skimmed milk concentrate. Int J Syst Evol Microbiol 2020; 70:935-943. [DOI: 10.1099/ijsem.0.003851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Katharina Hofmann
- Chair of Microbial Ecology, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Christopher Huptas
- Chair of Microbial Ecology, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Etienne V. Doll
- Chair of Microbial Ecology, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Siegfried Scherer
- Chair of Microbial Ecology, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Mareike Wenning
- Bavarian Health and Food Safety Authority, Veterinärstraße 2, 85764 Oberschleißheim, Germany
- Chair of Microbial Ecology, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
10
|
|
11
|
Xiang W, Chen S, Tian D, Huang C, Gao T. Pseudomonas hutmensis sp. nov., a New Fluorescent Member of Pseudomonas putida Group. Curr Microbiol 2019; 76:872-878. [DOI: 10.1007/s00284-019-01701-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
|
12
|
Hilgarth M, Lehner E, Behr J, Vogel R. Diversity and anaerobic growth ofPseudomonasspp. isolated from modified atmosphere packaged minced beef. J Appl Microbiol 2019; 127:159-174. [DOI: 10.1111/jam.14249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- M. Hilgarth
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - E.M. Lehner
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - J. Behr
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - R.F. Vogel
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| |
Collapse
|
13
|
A Possibility of using Antagonistic Bacterial Isolates in Controlling Fusarium Wilt of Chrysanth (Chrysanthemum sp.). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
The current status on the taxonomy of Pseudomonas revisited: An update. INFECTION GENETICS AND EVOLUTION 2017; 57:106-116. [PMID: 29104095 DOI: 10.1016/j.meegid.2017.10.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.
Collapse
|
15
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67:3140-3143. [PMID: 28891789 DOI: 10.1099/ijsem.0.002278] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|