1
|
Sunithakumari VS, Menon RR, Suresh GG, Krishnan R, Rameshkumar N. Characterization of a novel root-associated diazotrophic rare PGPR taxa, Aquabacter pokkalii sp. nov., isolated from pokkali rice: new insights into the plant-associated lifestyle and brackish adaptation. BMC Genomics 2024; 25:424. [PMID: 38684959 PMCID: PMC11059613 DOI: 10.1186/s12864-024-10332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Salinity impacts crop growth and productivity and lowers the activities of rhizosphere microbiota. The identification and utilization of habitat-specific salinity-adapted plant growth-promoting rhizobacteria (PGPR) are considered alternative strategies to improve the growth and yields of crops in salinity-affected coastal agricultural fields. In this study, we characterize strain L1I39T, the first Aquabacter species with PGPR traits isolated from a salt-tolerant pokkali rice cultivated in brackish environments. L1I39T is positive for 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation and can promote pokkali rice growth by supplying fixed nitrogen under a nitrogen-deficient seawater condition. Importantly, enhanced plant growth and efficient root colonization were evident in L1I39T-inoculated plants grown under 20% seawater but not in zero-seawater conditions, identifying brackish conditions as a key local environmental factor critical for L1I39T-pokkali rice symbiosis. Detailed physiological studies revealed that L1I39T is well-adapted to brackish environments. In-depth genome analysis of L1I39T identified multiple gene systems contributing to its plant-associated lifestyle and brackish adaptations. The 16S rRNA-based metagenomic study identified L1I39T as an important rare PGPR taxon. Based on the polyphasic taxonomy analysis, we established strain L1I39T as a novel Aquabacter species and proposed Aquabacter pokkalii sp nov. Overall, this study provides a better understanding of a marine-adapted PGPR strain L1I39T that may perform a substantial role in host growth and health in nitrogen-poor brackish environments.
Collapse
Affiliation(s)
- V S Sunithakumari
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul R Menon
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gayathri G Suresh
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramya Krishnan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Athmic Biotech Solutions Pvt. Ltd. R&D Lab, Thiruvananthapuram, Kerala, India
| | - N Rameshkumar
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Judicial Opinions 112–122. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Opinion 112 denies the request to place
Seliberia
Aristovskaya and Parinkina 1963 (Approved Lists 1980) on the list of rejected names because the information provided is insufficient. For the same reason, Opinion 113 denies the request to reject
Shewanella irciniae
Lee et al. 2006 and Opinion 114 denies the request to reject the name
Enterobacter siamensis
Khunthongpan et al. 2014. Opinion 115 rejects the epithet of
Moorella thermoautotrophica
(Wiegel et al. 1981) Collins et al. 1994, which is regarded as a nomen confusum. To assess the consequences of Rule 8, Opinion 116 revisits names of taxa above the rank of genus which should comprise the stem of the name of a nomenclatural type and a category-specific ending but fail to do so. Such names should be orthographically corrected if the sole error is the inadvertent usage of an incorrect stem or be regarded as illegitimate if otherwise. The necessary corrections are made for a number of names. In Opinion 117, the request to designate
Methylothermus subterraneus
Hirayama et al. 2011 as the type species of the genus
Methylothermus
is denied because an equivalent action compatible with the Code was already conducted. In Opinion 118, the possible orthographical correction of the name
Flaviaesturariibacter
is treated, as are the analogous cases of
Fredinandcohnia
and
Hydrogeniiclostidium
. The genus names are corrected to Flaviaestuariibacter, Ferdinandcohnia and
Hydrogeniiclostridium
, respectively. Opinion 119 concludes that assigning
Actinomycetales
Buchanan 1917 (Approved Lists 1980) as nomenclatural type of the class
Actinobacteria
Stackebrandt et al. 1997 would not render that name legitimate if Rule 8 remained retroactive. The request is granted but
Actinomycetales
is also assigned as type of
Actinomycetes
Krassilnikov 1949 (Approved Lists 1980). In Opinion 120, the possible orthographical correction of the name
Amycolatopsis albidoflavus
is treated. It is grammatically corrected to Amycolatopsis albidoflava. Six names which could according to Rule 61 be grammatically corrected by anyone are also corrected. Opinion 121 denies the request to revise Opinion 69 and notes that Opinion 69 does not have the undesirable consequences emphasized in the request. In Opinion 122, the request to reject various taxon names of
Mollicutes
proposed in 2018 is denied because it is based on misinterpretations of the Code, which are clarified. Alternative ways to solve the perceived problems are outlined. These Opinions were ratified by the voting members of the International Committee on Systematics of Prokaryotes.
Collapse
|
3
|
Torres N, Yu R, Kurtural SK. Inoculation with Mycorrhizal Fungi and Irrigation Management Shape the Bacterial and Fungal Communities and Networks in Vineyard Soils. Microorganisms 2021; 9:1273. [PMID: 34207954 PMCID: PMC8230719 DOI: 10.3390/microorganisms9061273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/05/2022] Open
Abstract
Vineyard-living microbiota affect grapevine health and adaptation to changing environments and determine the biological quality of soils that strongly influence wine quality. However, their abundance and interactions may be affected by vineyard management. The present study was conducted to assess whether the vineyard soil microbiome was altered by the use of biostimulants (arbuscular mycorrhizal fungi (AMF) inoculation vs. non-inoculated) and/or irrigation management (fully irrigated vs. half irrigated). Bacterial and fungal communities in vineyard soils were shaped by both time course and soil management (i.e., the use of biostimulants and irrigation). Regarding alpha diversity, fungal communities were more responsive to treatments, whereas changes in beta diversity were mainly recorded in the bacterial communities. Edaphic factors rarely influence bacterial and fungal communities. Microbial network analyses suggested that the bacterial associations were weaker than the fungal ones under half irrigation and that the inoculation with AMF led to the increase in positive associations between vineyard-soil-living microbes. Altogether, the results highlight the need for more studies on the effect of management practices, especially the addition of AMF on cropping systems, to fully understand the factors that drive their variability, strengthen beneficial microbial networks, and achieve better soil quality, which will improve crop performance.
Collapse
Affiliation(s)
| | | | - S. Kaan Kurtural
- Department of Viticulture and Enology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA; (N.T.); (R.Y.)
| |
Collapse
|
4
|
Flavobacterium pokkalii sp. nov., a novel plant growth promoting native rhizobacteria isolated from pokkali rice grown in coastal saline affected agricultural regions of southern India, Kerala. Microbiol Res 2020; 240:126533. [DOI: 10.1016/j.micres.2020.126533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/06/2020] [Indexed: 01/26/2023]
|
5
|
Sampangi-Ramaiah MH, Jagadheesh, Dey P, Jambagi S, Vasantha Kumari MM, Oelmüller R, Nataraja KN, Venkataramana Ravishankar K, Ravikanth G, Uma Shaanker R. An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Sci Rep 2020; 10:3237. [PMID: 32094443 PMCID: PMC7039991 DOI: 10.1038/s41598-020-59998-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 11/25/2022] Open
Abstract
Endophytes, both of bacterial and fungal origin, are ubiquitously present in all plants. While their origin and evolution are enigmatic, there is burgeoning literature on their role in promoting growth and stress responses in their hosts. We demonstrate that a salt-tolerant endophyte isolated from salt-adapted Pokkali rice, a Fusarium sp., colonizes the salt-sensitive rice variety IR-64, promotes its growth under salt stress and confers salinity stress tolerance to its host. Physiological parameters, such as assimilation rate and chlorophyll stability index were higher in the colonized plants. Comparative transcriptome analysis revealed 1348 up-regulated and 1078 down-regulated genes in plants colonized by the endophyte. Analysis of the regulated genes by MapMan and interaction network programs showed that they are involved in both abiotic and biotic stress tolerance, and code for proteins involved in signal perception (leucine-rich repeat proteins, receptor-like kinases) and transduction (Ca2+ and calmodulin-binding proteins), transcription factors, secondary metabolism and oxidative stress scavenging. For nine genes, the data were validated by qPCR analysis in both roots and shoots. Taken together, these results show that salt-adapted Pokkali rice varieties are powerful sources for the identification of novel endophytes, which can be used to confer salinity tolerance to agriculturally important, but salt-sensitive rice varieties.
Collapse
Affiliation(s)
| | - Jagadheesh
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Prajjal Dey
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Shridhar Jambagi
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - M M Vasantha Kumari
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Ralf Oelmüller
- Friedrich-Schiller - University, Institute of General Botany and Plant Physiology, Dornbuger Str. 159, 07743, Jena, Germany
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | | | - G Ravikanth
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
| | - R Uma Shaanker
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, 560065, India.
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India.
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India.
| |
Collapse
|
6
|
Khan SA, Jung HS, Kim HM, Oh J, Lee SS, Jeon CO. Aestuariirhabdus litorea gen. nov., sp. nov., isolated from a sea tidal flat and proposal of Aestuariirhabdaceae fam. nov. Int J Syst Evol Microbiol 2020; 70:2239-2246. [PMID: 32043957 DOI: 10.1099/ijsem.0.003976] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, moderately halophilic and facultatively aerobic bacterium, designated strain GTF13T, was isolated from a sea tidal flat. Cells were curved rods and motile by a single polar flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C, pH 5.0-8.5 and 1.0-6.0 % (w/v) NaCl. Strain GTF13T contained C16:0, summed feature 3 (comprising C16 : 1 ω6c/C16 : 1 ω7c), summed feature 8 (comprising C18 : 1 ω6c/C18 : 1 ω7c) and C12 : 0 3-OH as major fatty acids and ubiquinone-9 and ubiquinone-8 as major quinones. Phosphatidylethanolamine and two unidentified phospholipids were detected as major polar lipids. The G+C content of the genomic DNA was 59.8 mol%. Strain GTF13T was most closely related to Simiduia agarivorans SA1T, Endozoicomonas montiporae CL-33T and Pseudomonas segetis FR1439T, belonging to different families or orders of the class Gammaproteobacteria, with less than 92.0 % 16S rRNA gene sequence similarities. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GTF13T formed a phylogenetic lineage with the family Litoricolaceae, but the genome-based phylogenomic tree showed that strain GTF13T formed a distinct phylogenetic lineage within the order Oceanospirillales. The very low 16S rRNA gene sequence similarities and distinct phylogenetic relationships, together with distinct phenotypic and chemotaxonomic properties, served to differentiate strain GTF13T from phylogenetically closely related families. Here, strain GTF13T is proposed as a novel genus and species, for which the name Aestuariirhabdus litorea gen. nov., sp. nov. is proposed, within a new family Aestuariirhabdaceae fam. nov. of the order Oceanospirillales. The type strain is GTF13T (=KACC 19788T=JCM 32043T).
Collapse
Affiliation(s)
- Shehzad Abid Khan
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hye Su Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeill Oh
- Department of Civil and Environmental Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang-Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Jeonnam 57922, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Oren A, Garrity G. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2019; 69:1850-1851. [PMID: 31259679 DOI: 10.1099/ijsem.0.003451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
8
|
Menon RR, Kumari S, Kumar P, Verma A, Krishnamurthi S, Rameshkumar N. Sphingomonas pokkalii sp. nov., a novel plant associated rhizobacterium isolated from a saline tolerant pokkali rice and its draft genome analysis. Syst Appl Microbiol 2019; 42:334-342. [PMID: 30808585 DOI: 10.1016/j.syapm.2019.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 02/03/2023]
Abstract
Three strains L3B27T, 3CNBAF, L1A4 isolated from a brackish cultivated pokkali rice rhizosphere were characterised using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA and recA gene sequences revealed that these strains were highly similar among each other and formed a separate monophyletic cluster within the genus Sphingomonas with Sphingomonas pituitosa DSM 13101T, Sphingomonas azotifigens DSM 18530T and Sphingomonas trueperi DSM 7225T as their closest relatives sharing 97.9-98.3% 16S rRNA similarity and 91.3-94.0% recA similarity values, respectively. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridisation (dDDH) values between L3B27T (representative of the novel strains) and its phylogenetically closest Sphingomonas species were well below the established cut-off <94% (ANI/AAI) and <70% (dDDH) for species delineation. Further, the novel strains can be distinguished from its closest relatives based on several phenotypic traits. Thus, based on the polyphasic approach, we describe a novel Sphingomonas species for which the name Sphingomonas pokkalii sp. nov (type strain L3B27T=KCTC 42098T=MCC 3001T) is proposed. In addition, the novel strains were characterised for their plant associated properties and found to possess several phenotypic traits which probably explain its plant associated lifestyle. This was further confirmed by the presence of several plant associated gene features in the genome of L3B27T. Also, we could identify gene features which may likely involve in brackish water adaptation. Thus, this study provides first insights into the plant associated lifestyle, genome and taxonomy of a novel brackish adapted plant associated Sphingomonas.
Collapse
|
9
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:597-599. [PMID: 30829568 DOI: 10.1099/ijsem.0.003243] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|