1
|
Peña-Salinas ME, Speth DR, Utter DR, Spelz RM, Lim S, Zierenberg R, Caress DW, Núñez PG, Vázquez R, Orphan VJ. Thermotogota diversity and distribution patterns revealed in Auka and JaichMaa 'ja 'ag hydrothermal vent fields in the Pescadero Basin, Gulf of California. PeerJ 2024; 12:e17724. [PMID: 39175749 PMCID: PMC11340630 DOI: 10.7717/peerj.17724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
Discovering new deep hydrothermal vent systems is one of the biggest challenges in ocean exploration. They are a unique window to elucidate the physical, geochemical, and biological processes that occur on the seafloor and are involved in the evolution of life on Earth. In this study, we present a molecular analysis of the microbial composition within the newly discovered hydrothermal vent field, JaichMaa 'ja 'ag, situated in the Southern Pescadero Basin within the Gulf of California. During the cruise expedition FK181031 in 2018, 33 sediment cores were collected from various sites within the Pescadero vent fields and processed for 16S rRNA amplicon sequence variants (ASVs) and geochemical analysis. Correlative analysis of the chemical composition of hydrothermal pore fluids and microbial abundances identified several sediment-associated phyla, including Thermotogota, that appear to be enriched in sediment horizons impacted by hydrothermal fluid flow. Comparative analysis of Thermotogota with the previously explored Auka hydrothermal vent field situated 2 km away displayed broad similarity between the two locations, although at finer scales (e.g., ASV level), there were notable differences that point to core-to-core and site-level factors revealing distinct patterns of distribution and abundance within these two sediment-hosted hydrothermal vent fields. These patterns are intricately linked to the specific physical and geochemical conditions defining each vent, illuminating the complexity of this unique deep ocean chemosynthetic ecosystem.
Collapse
Affiliation(s)
- Manet E. Peña-Salinas
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Daan R. Speth
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Daniel R. Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Ronald M. Spelz
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Sujung Lim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Robert Zierenberg
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States
| | - David W. Caress
- Science Division, Monterey Bay Aquarium Research Institute, Moss Landing, California, United States
| | - Patricia G. Núñez
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Roberto Vázquez
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| |
Collapse
|
2
|
Postec A, Galès G, Prime AH, Bartoli M, Price RE, Vandecasteele C, Erauso G. Marinitoga aeolica sp. nov., a novel thermophilic anaerobic heterotroph isolated from a shallow hydrothermal field of Panarea Island in the Aeolian archipelago, Italy. Int J Syst Evol Microbiol 2023; 73. [PMID: 38015056 DOI: 10.1099/ijsem.0.006186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
A novel thermophilic strain, designated BP5-C20AT, was isolated from the shallow hydrothermal field of the Panarea island in the Aeolian archipelago close to Sicily, Italy. Cells are motile rods surrounded with a 'toga', Gram-stain-negative and display a straight to curved morphology during the exponential phase. Strain BP5-C20AT is thermophilic (optimum 55 °C), moderately acidophilic (optimum pH 5.6) and halotolerant (optimum 25 g l-1 NaCl). It can use yeast extract, peptone and tryptone. It uses the following carbohydrates: cellobiose, fructose, glucose, maltose, starch, sucrose and xylan. Elemental sulphur is used as an electron acceptor and reduced to hydrogen sulphide. The predominant cellular fatty acid is C16 : 0. Phylogenetic analysis showed that strain BP5-C20AT shared 97.3 % 16S rRNA gene sequence identity with the closest related species Marinitoga lauensis LG1T. The complete genome of strain BP5-C20AT is 2.44 Mb in size with a G+C content of 27.3 mol%. The dDDH and ANI values between the genomes of strains BP5-C20AT and M. lauensis LG1T are 31.0 and 85.70% respectively. Finally, from its physiological, metabolic and genomic characteristics, strain BP5-C20AT (=DSM 112332T=JCM 39183 T) is proposed as representative of a novel species of the genus Marinitoga named Marinitoga aeolica sp. nov. and belonging to the order Petrotogales, in the phylum Thermotogota.
Collapse
Affiliation(s)
- Anne Postec
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Grégoire Galès
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Anne-Hélène Prime
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Manon Bartoli
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Roy E Price
- Stony Brook University, SoMAS Stony Brook, New York 11794, USA
| | - Céline Vandecasteele
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Genomique, Université Fédérale de Toulouse, Castanet-Tolosan, France
| | - Gaël Erauso
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
3
|
Farrell AA, Nesbø CL, Zhaxybayeva O. Early Divergence and Gene Exchange Highways in the Evolutionary History of Mesoaciditogales. Genome Biol Evol 2023; 15:evad156. [PMID: 37616556 PMCID: PMC10476701 DOI: 10.1093/gbe/evad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The placement of a nonhyperthermophilic order Mesoaciditogales as the earliest branching clade within the Thermotogota phylum challenges the prevailing hypothesis that the last common ancestor of Thermotogota was a hyperthermophile. Yet, given the long branch leading to the only two Mesoaciditogales described to date, the phylogenetic position of the order may be due to the long branch attraction artifact. By testing various models and applying data recoding in phylogenetic reconstructions, we observed that early branching of Mesoaciditogales within Thermotogota is strongly supported by the conserved marker genes assumed to be vertically inherited. However, based on the taxonomic content of 1,181 gene families and a phylogenetic analysis of 721 gene family trees, we also found that a substantial number of Mesoaciditogales genes are more closely related to species from the order Petrotogales. These genes contribute to coenzyme transport and metabolism, fatty acid biosynthesis, genes known to respond to heat and cold stressors, and include many genes of unknown functions. The Petrotogales comprise moderately thermophilic and mesophilic species with similar temperature tolerances to that of Mesoaciditogales. Our findings hint at extensive horizontal gene transfer (HGT) between, or parallel independent gene gains by, the two ecologically similar lineages and suggest that the exchanged genes may be important for adaptation to comparable temperature niches.
Collapse
Affiliation(s)
- Anne A Farrell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Camilla L Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Lossouarn J, Nesbø CL, Bienvenu N, Geslin C. Plasmid pMO1 from Marinitoga okinawensis, first non-cryptic plasmid reported within Thermotogota. Res Microbiol 2023; 174:104044. [PMID: 36805054 DOI: 10.1016/j.resmic.2023.104044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
Mobile genetic elements (MGEs), such as viruses and plasmids, drive the evolution and adaptation of their cellular hosts from all three domains of life. This includes microorganisms thriving in the most extreme environments, like deep-sea hydrothermal vents. However, our knowledge about MGEs still remains relatively sparse in these abyssal ecosystems. Here we report the isolation, sequencing, assembly, and functional annotation of pMO1, a 28.2 kbp plasmid associated with the reference strain Marinitoga okinawensis. Carrying restriction/modification and chemotaxis protein-encoding genes, pMO1 likely affects its host's phenotype and represents the first non-cryptic plasmid described among the phylum Thermotogota.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Camilla L Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Biozone, Department of Chemical Engineering and Applied Chemistry and BioZone, University of Toronto, 200 College Street, Toronto, Ontario, Canada, M5S 3E5.
| | - Nadège Bienvenu
- Univ Brest, Ifremer, CNRS, Unité Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France.
| | - Claire Geslin
- Univ Brest, Ifremer, CNRS, Unité Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France. mailto:
| |
Collapse
|
5
|
Dai C, Yang L, Wang J, Li D, Zhang Y, Zhou X. Enhancing anaerobic digestion of pharmaceutical industries wastewater with the composite addition of zero valent iron (ZVI) and granular activated carbon (GAC). BIORESOURCE TECHNOLOGY 2022; 346:126566. [PMID: 34921919 DOI: 10.1016/j.biortech.2021.126566] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion of pharmaceutical wastewater is challenged by its contained toxic compounds which limits the stability and efficiency of methane production and organic degradation. In this study, zero valent iron (ZVI) and granular activated carbon (GAC) were added with different strategies to improve anaerobic digestion of pharmaceutical wastewater. The results confirmed synergy effects of ZVI + GAC for both COD removal (increased by 13.4%) and methane production (increased by 11.0%). Furthermore, ZVI + GAC improved the removal of pharmaceutical intermediates, in particular, the residues (%) of dehydroepiandrosterone (DHEA) and 2,2'-methylenebis(6-tert-butyl-4-methylphenol) were only 30.48 ± 6.53 and 39.92 ± 4.50, and effectively reduced biotoxicity. The promoted results were attributed to the establishment of direct interspecies electron transfer (DIET). Microbial community analysis revealed that ZVI + GAC decreased species evenness and richness in bacterial whereas increased in archaeal. The relative abundance of acetotrophic methanogens decreased but hydrogenotrophic and methylotrophic methanogens increased, which broadening the pathway of methane production.
Collapse
Affiliation(s)
- Chenbo Dai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China
| | - Jun Wang
- SPH XingLing Sci&Tech.Pharmaceutical Co.,Ltd., Shanghai 201703, PR China
| | - Dezhen Li
- SPH XingLing Sci&Tech.Pharmaceutical Co.,Ltd., Shanghai 201703, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Liu X, Tang P, Liu Y, Xie W, Chen C, Li T, He Q, Bao J, Tiraferri A, Liu B. Efficient removal of organic compounds from shale gas wastewater by coupled ozonation and moving-bed-biofilm submerged membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 344:126191. [PMID: 34710593 DOI: 10.1016/j.biortech.2021.126191] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Shale gas wastewater (SGW) with complex composition and high salinity needs an economical and efficient method of treatment with the main goal to remove organics. In this study, a coupled system consisting of ozonation and moving-bed-biofilm submerged membrane bioreactor (MBBF-SMBR) was comprehensively evaluated for SGW treatment and compared with a similar train comprising ozonation and submerged membrane bioreactor (SMBR) without addition of carriers attaching biofilm. The average removal rates of MBBF-SMBR were 77.8% for dissolved organic carbon (DOC) and 37.0% for total nitrogen (TN), higher than those observed in SMBR, namely, 73.9% for DOC and 18.6% for TN. The final total membrane resistance in SMBR was 40.1% higher than that in MBBF-SMBR. Some genera that specifically contribute to organic removal were identified. Enhanced gene allocation for membrane transport and nitrogen metabolism was found in MBBF-SMBR biofilm, implying that this system has significant industrial application potential for organics removal from SGW.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Peng Tang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Yuanhui Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Wancen Xie
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd., Haikou, Hainan 571126, PR China
| | - Tong Li
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Qiping He
- Chuanqing Drilling Engineering Company Limited, Chinese National Petroleum Corporation, Chengdu, Sichuan 610081, PR China
| | - Jin Bao
- Chuanqing Drilling Engineering Company Limited, Chinese National Petroleum Corporation, Chengdu, Sichuan 610081, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
7
|
Haverkamp THA, Lossouarn J, Zhaxybayeva O, Lyu J, Bienvenu N, Geslin C, Nesbø CL. Newly identified proviruses in Thermotogota suggest that viruses are the vehicles on the highways of interphylum gene sharing. Environ Microbiol 2021; 23:7105-7120. [PMID: 34398506 DOI: 10.1111/1462-2920.15723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
Phylogenomic analyses of bacteria from the phylum Thermotogota have shown extensive lateral gene transfer with distantly related organisms, particularly with Firmicutes. One likely mechanism of such DNA transfer is viruses. However, to date, only three temperate viruses have been characterized in this phylum, all infecting bacteria from the Marinitoga genus. Here we report 17 proviruses integrated into genomes of bacteria belonging to eight Thermotogota genera and induce viral particle production from one of the proviruses. All except an incomplete provirus from Mesotoga fall into two groups based on sequence similarity, gene synteny and taxonomic classification. Proviruses of Group 1 are found in the genera Geotoga, Kosmotoga, Marinitoga, Thermosipho and Mesoaciditoga and are similar to the previously characterized Marinitoga viruses, while proviruses from Group 2 are distantly related to the Group 1 proviruses, have different genome organization and are found in Petrotoga and Defluviitoga. Genes carried by both groups are closely related to Firmicutes and Firmicutes (pro)viruses in phylogenetic analyses. Moreover, one of the groups show evidence of recent gene exchange and may be capable of infecting cells from both phyla. We hypothesize that viruses are responsible for a large portion of the observed gene flow between Firmicutes and Thermotogota.
Collapse
Affiliation(s)
- Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Jie Lyu
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Nadège Bienvenu
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Claire Geslin
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Camilla L Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
8
|
Qin Y, Yin X, Xu X, Yan X, Bi F, Wu W. Specific surface area and electron donating capacity determine biochar's role in methane production during anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 303:122919. [PMID: 32035388 DOI: 10.1016/j.biortech.2020.122919] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 05/22/2023]
Abstract
The addition of biochar derived from different materials can have varying effects on anaerobic digestion (AD), depending on its physicochemical properties. Physicochemical properties of biochars, biomethanization performance and microbial communities were examined to evaluate the effectiveness of biochars made from different plant wastes on AD in this study. Results showed that all biochars significantly reduce the lag phases during AD, compared with a control treatment (CK). Woody biochars particularly performed much better than herbal ones. Correlation analysis revealed that specific surface area (SSA) and electron donating capacity (EDC) were the key properties of the plant-feedstock-derived biochar in AD enhancement. Microbial community structure analysis showed that higher SSA and EDC are conducive for the growth of bacteria decomposing glucose, further promoting daily methane production in the early AD stage. The results indicate that it is important to select biochar with higher SSA and EDC to enhance biomethanization in AD systems.
Collapse
Affiliation(s)
- Yong Qin
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang, China
| | - Xiaosi Yin
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang, China
| | - Xingkun Xu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang, China
| | - Xiangrui Yan
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang, China
| | - Feng Bi
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang, China.
| |
Collapse
|
9
|
Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2019; 71. [PMID: 33787483 DOI: 10.1099/ijsem.0.004688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|