1
|
Mhamdi R, Gtari M. Tracking the trajectory of frankia research through bibliometrics: trends and future directions. Can J Microbiol 2024. [PMID: 39255516 DOI: 10.1139/cjm-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Frankia represent a unique group of filamentous, sporangia-forming bacteria, renowned for their exceptional capacity to establish symbiotic partnerships with actinorhizal plants. The objective of this paper is to offer quantitative insights into the current state of frankia research and its future potential. A comprehensive bibliometric analysis covering the years 2000-2022 was conducted using Scopus and SciVal. A steady increase in both annual publication and international collaboration has been observed, particularly since 2013. Research performance metrics for the last 5 years (2018-2022) indicate China and India as leaders with high Field-Weighted Citation Impact scores. This analysis highlighted prominent authors, research groups, and the evolving research landscape, suggesting an increasing focus on molecular and genomic aspects. The genomic era has transformed our understanding of frankia biology, highlighting their significance in diverse ecological and agricultural contexts. This study comprehensively maps the evolving landscape of frankia research, emphasizing key milestones that have catalysed international interest in frankia-actinorhizal research, expanding our perception of frankia's capabilities beyond its traditional symbiotic role. As research in this field progresses, a deeper comprehension of frankia-plant interactions, symbiotic signalling, and the intricacies of metabolic pathways holds the promise of revealing innovative techniques for optimizing nitrogen fixation and broadening the spectrum of host plants.
Collapse
Affiliation(s)
- Ridha Mhamdi
- Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| |
Collapse
|
2
|
Gtari M, Maaoui R, Ghodhbane-Gtari F, Ben Slama K, Sbissi I. MAGs-centric crack: how long will, spore-positive Frankia and most Protofrankia, microsymbionts remain recalcitrant to axenic growth? Front Microbiol 2024; 15:1367490. [PMID: 39144212 PMCID: PMC11323853 DOI: 10.3389/fmicb.2024.1367490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Nearly 50 years after the ground-breaking isolation of the primary Comptonia peregrina microsymbiont under axenic conditions, efforts to isolate a substantial number of Protofrankia and Frankia strains continue with enduring challenges and complexities. This study aimed to streamline genomic insights through comparative and predictive tools to extract traits crucial for isolating specific Frankia in axenic conditions. Pangenome analysis unveiled significant genetic diversity, suggesting untapped potential for cultivation strategies. Shared metabolic strategies in cellular components, central metabolic pathways, and resource acquisition traits offered promising avenues for cultivation. Ecological trait extraction indicated that most uncultured strains exhibit no apparent barriers to axenic growth. Despite ongoing challenges, potential caveats, and errors that could bias predictive analyses, this study provides a nuanced perspective. It highlights potential breakthroughs and guides refined cultivation strategies for these yet-uncultured strains. We advocate for tailored media formulations enriched with simple carbon sources in aerobic environments, with atmospheric nitrogen optionally sufficient to minimize contamination risks. Temperature adjustments should align with strain preferences-28-29°C for Frankia and 32-35°C for Protofrankia-while maintaining an alkaline pH. Given potential extended incubation periods (predicted doubling times ranging from 3.26 to 9.60 days, possibly up to 21.98 days), patience and rigorous contamination monitoring are crucial for optimizing cultivation conditions.
Collapse
Affiliation(s)
- Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Radhi Maaoui
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
- Higher Institute of Biotechnology Sidi Thabet, University of La Manouba, Tunisia
| | - Karim Ben Slama
- LR Bioresources, Environment, and Biotechnology (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imed Sbissi
- LR Pastoral Ecology, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| |
Collapse
|
3
|
Berckx F, Wibberg D, Brachmann A, Morrison C, Obaid NB, Blom J, Kalinowski J, Wall LG, Pawlowski K. Genome analysis and biogeographic distribution of the earliest divergent Frankia clade in the southern hemisphere. FEMS Microbiol Ecol 2024; 100:fiae042. [PMID: 38520167 DOI: 10.1093/femsec/fiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024] Open
Abstract
Coriariaceae are a small plant family of 14-17 species and subspecies that currently have a global but disjunct distribution. All species can form root nodules in symbiosis with diazotrophic Frankia cluster-2 strains, which form the earliest divergent symbiotic clade within this bacterial genus. Studies on Frankia cluster-2 mostly have focused on strains occurring in the northern hemisphere. Except for one strain from Papua New Guinea, namely Candidatus Frankia meridionalis Cppng1, no complete genome of Frankia associated with Coriaria occurring in the southern hemisphere has been published thus far, yet the majority of the Coriariaceae species occur here. We present field sampling data of novel Frankia cluster-2 strains, representing two novel species, which are associated with Coriaria arborea and Coriaria sarmentosa in New Zealand, and with Coriaria ruscifolia in Patagonia (Argentina), in addition to identifying Ca. F. meridionalis present in New Zealand. The novel Frankia species were found to be closely related to both Ca. F. meridionalis, and a Frankia species occurring in the Philippines, Taiwan, and Japan. Our data suggest that the different Frankia cluster-2 species diverged early after becoming symbiotic circa 100 million years ago.
Collapse
Affiliation(s)
- Fede Berckx
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | | | - Andreas Brachmann
- LMU München, Faculty of Biology, Genetics, 82152 Planegg-Martinsried, Germany
| | - Ciara Morrison
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Nadia B Obaid
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | | | - Luis G Wall
- CONICET, National Council for Scientific and Technical Research, Argentina
- Department of Science and Technology, National University of Quilmes, B12876BXD Bernal, Argentina
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Nouioui I, Neumann-Schaal M, Pujic P, Fournier P, Normand P, Herrera-Belaroussi A, Vemulapally S, Guerra T, Hahn D. Frankia nepalensis sp. nov., a non-infective non-nitrogen-fixing isolate from root nodules of Coriaria nepalensis Wall. Int J Syst Evol Microbiol 2023; 73. [PMID: 38098135 DOI: 10.1099/ijsem.0.006199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Strains CN4T, CN6, CN7 and CNm7 were isolated from root nodules of Coriaria nepalensis from Murree in Pakistan. They do not form root nodules on C. nepalensis nor on Alnus glutinosa although they deformed root hairs of Alnus. The colonies are bright red-pigmented, the strains form hyphae and sporangia but no N2-fixing vesicles and do not fix nitrogen in vitro. The peptidoglycan of strain CN4T contains meso-diaminopimelic acid; whole cell sugars consist of ribose, mannose, glucose, galactose and rhamnose. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unknown lipids represent the major polar lipids; MK-9(H4) and MK-9(H6) are the predominant menaquinones (>15 %), and iso-C16 : 0 and C17 : 1ω8c are the major fatty acids (>15 %). The results of comparative 16S rRNA gene sequence analyses indicated that strain CN4T is most closely related to Frankia saprophytica CN 3T. An MLSA phylogeny using amino acids sequences of AtpD, DnaA, FtsZ, Pgk and RpoB, assigned the strain to cluster 4 non-nodulating species, close to F. saprophytica CN 3T , Frankia asymbiotica M16386T and Frankia inefficax EuI1cT with 0.04 substitutions per site, while that value was 0.075 with other strains. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between CN4T and all species of the genus Frankia with validly published names were below the defined threshold for prokaryotic species demarcation, with dDDH and ANI values at or below 27.8 and 83.7 %, respectively. The four strains CN4T, CN6, CN7 and CNm7 had dDDH (98.6-99.6 %) and ANI values that grouped them as representing a single species. CN4T has a 10.76 Mb genome. CN4T was different from its close phylogenetic neighbours with validly published names in being red-pigmented, in having several lantibiotic-coding clusters, a carbon monoxide dehydrogenase cluster and a clustered regularly interspaced short palindromic repeats (CRISPR) cluster. The results of phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain CN4T (=DSM 114740T = LMG 32595T) to a novel species, with CN4T as type strain, for which the name Frankia nepalensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Petar Pujic
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Pascale Fournier
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Philippe Normand
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Aude Herrera-Belaroussi
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Spandana Vemulapally
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
5
|
Kim Tiam S, Boubakri H, Bethencourt L, Abrouk D, Fournier P, Herrera-Belaroussi A. Genomic Insights of Alnus-Infective Frankia Strains Reveal Unique Genetic Features and New Evidence on Their Host-Restricted Lifestyle. Genes (Basel) 2023; 14:530. [PMID: 36833457 PMCID: PMC9956245 DOI: 10.3390/genes14020530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
The present study aimed to use comparative genomics to explore the relationships between Frankia and actinorhizal plants using a data set made of 33 Frankia genomes. The determinants of host specificity were first explored for "Alnus-infective strains" (i.e., Frankia strains belonging to Cluster Ia). Several genes were specifically found in these strains, including an agmatine deiminase which could possibly be involved in various functions as access to nitrogen sources, nodule organogenesis or plant defense. Within "Alnus-infective strains", Sp+ Frankia genomes were compared to Sp- genomes in order to elucidate the narrower host specificity of Sp+ strains (i.e., Sp+ strains being capable of in planta sporulation, unlike Sp- strains). A total of 88 protein families were lost in the Sp+ genomes. The lost genes were related to saprophytic life (transcriptional factors, transmembrane and secreted proteins), reinforcing the proposed status of Sp+ as obligatory symbiont. The Sp+ genomes were also characterized by a loss of genetic and functional paralogs, highlighting a reduction in functional redundancy (e.g., hup genes) or a possible loss of function related to a saprophytic lifestyle (e.g., genes involved in gas vesicle formation or recycling of nutrients).
Collapse
Affiliation(s)
- Sandra Kim Tiam
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
- UMR CNRS 5557 Ecologie Microbienne, INRA UMR 1418, Centre d’Etude des Substances Naturelles, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Lorine Bethencourt
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Aude Herrera-Belaroussi
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
6
|
Gtari M. Taxogenomic status of phylogenetically distant Frankia clusters warrants their elevation to the rank of genus: A description of Protofrankia gen. nov., Parafrankia gen. nov., and Pseudofrankia gen. nov. as three novel genera within the family Frankiaceae. Front Microbiol 2022; 13:1041425. [PMID: 36425027 PMCID: PMC9680954 DOI: 10.3389/fmicb.2022.1041425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
The genus Frankia is at present the sole genus in the family Frankiaceae and encompasses filamentous, sporangia-forming actinomycetes principally isolated from root nodules of taxonomically disparate dicotyledonous hosts named actinorhizal plants. Multiple independent phylogenetic analyses agree with the division of the genus Frankia into four well-supported clusters. Within these clusters, Frankia strains are well defined based on host infectivity range, mode of infection, morphology, and their behaviour in culture. In this study, phylogenomics, overall genome related indices (OGRI), together with available data sets for phenotypic and host-plant ranges available for the type strains of Frankia species, were considered. The robustness and the deep radiation observed in Frankia at the subgeneric level, fulfilling the primary principle of phylogenetic systematics, were strengthened by establishing genome criteria for new genus demarcation boundaries. Therefore, the taxonomic elevation of the Frankia clusters to the rank of the genus is proposed. The genus Frankia should be revised to encompass cluster 1 species only and three novel genera, Protofrankia gen. nov., Parafrankia gen. nov., and Pseudofrankia gen. nov., are proposed to accommodate clusters 2, 3, and 4 species, respectively. New combinations for validly named species are also provided.
Collapse
Affiliation(s)
- Maher Gtari
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| |
Collapse
|
7
|
Normand P, Pujic P, Abrouk D, Vemulapally S, Guerra T, Carlos-Shanley C, Hahn D. Draft Genomes of Symbiotic Frankia Strains AgB32 and AgKG'84/4 from Root Nodules of Alnus Glutinosa growing under Contrasted Environmental Conditions. J Genomics 2022; 10:61-68. [PMID: 35979511 PMCID: PMC9379372 DOI: 10.7150/jgen.75779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
The genomes of two nitrogen-fixing Frankia strains, AgB32 and AgKG'84/4, were isolated from spore-containing (spore+) and spore-free (spore-) root nodules of Alnus glutinosa, but they did not sporulate upon reinfection. The two strains are described as representatives of two novel candidate species. Phylogenomic and ANI analyses indicate that each strain represents a novel species within cluster 1, with genome sizes of 6.3 and 6.7 Mb smaller than or similar to those of other cultivated Alnus-infective cluster 1 strains. Genes essential for nitrogen-fixation, clusters of orthologous genes, secondary metabolite clusters and transcriptional regulators analyzed by comparative genomic analyses were typical of those from Alnus-infective cluster 1 cultivated strains in both genomes. Compared to other cultivated Alnus-infective strains with large genomes, those of AgB32 and AgKG'84/4 had lost 380 or 409 genes, among which one hup cluster, one shc gene and the gvp cluster, which indicates genome erosion is taking place in these two strains.
Collapse
Affiliation(s)
- Philippe Normand
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, Cedex 69622, France
| | - Petar Pujic
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, Cedex 69622, France
| | - Danis Abrouk
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, Cedex 69622, France
| | - Spandana Vemulapally
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Camila Carlos-Shanley
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
8
|
Chetri SPK, Rahman Z, Thomas L, Lal R, Gour T, Agarwal LK, Vashishtha A, Kumar S, Kumar G, Kumar R, Sharma K. Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives. J Basic Microbiol 2022; 62:764-778. [PMID: 35638879 DOI: 10.1002/jobm.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.
Collapse
Affiliation(s)
| | - Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, Delhi, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Akanksha Vashishtha
- Department of Plant Protection, CCS University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Botany, Shri Venkateshwara College, University of Delhi, New Delhi, Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, Delhi, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, New Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
9
|
Oren A, Garrity GM. CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35100104 DOI: 10.1099/ijsem.0.005186] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
10
|
Carlos-Shanley C, Guerra T, Hahn D. Draft genomes of non-nitrogen-fixing Frankia strains. J Genomics 2021; 9:68-75. [PMID: 34703504 PMCID: PMC8542509 DOI: 10.7150/jgen.65429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we describe the genomes of two novel candidate species of non-nitrogen fixing Frankia that were isolated from the root nodules of Coriaria nepalensis and Alnus glutinosa, genospecies CN and Ag, respectively. Comparative genomic analyses revealed that both genospecies lack genes essential for nitrogen-fixation and possess genes involved in the degradation of plant cell walls. Additionally, we found distinct biosynthetic gene clusters in each genospecies. The availability of these genomes will contribute to the study of the taxonomy and evolution of actinorhizal symbioses.
Collapse
Affiliation(s)
- Camila Carlos-Shanley
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
11
|
Maity PJ, Pawlowski K. Anthropogenic influences on the distribution of the Casuarina-Frankia symbiosis. Symbiosis 2021. [DOI: 10.1007/s13199-021-00765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|