1
|
Martínez-Espinosa RM. Halophilic archaea as tools for bioremediation technologies. Appl Microbiol Biotechnol 2024; 108:401. [PMID: 38951176 PMCID: PMC11217053 DOI: 10.1007/s00253-024-13241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Haloarchaea are extremophilic microorganisms belonging to the Archaea domain that require high salt concentrations to be alive, thus inhabiting ecosystems like salty ponds, salty marshes, or extremely salty lagoons. They are more abundantly and widely distributed worldwide than initially expected. Most of them are grouped into two families: Halobacteriaceae and Haloferacaceae. The extreme conditions under which haloarchaea survive contribute to their metabolic and molecular adaptations, thus making them good candidates for the design of bioremediation strategies to treat brines, salty water, and saline soils contaminated with toxic compounds such as nitrate, nitrite, oxychlorates such as perchlorate and chlorate, heavy metals, hydrocarbons, and aromatic compounds. New advances in understanding haloarchaea physiology, metabolism, biochemistry, and molecular biology suggest that biochemical pathways related to nitrogen and carbon, metals, hydrocarbons, or aromatic compounds can be used for bioremediation proposals. This review analyses the novelty of the most recent results showing the capability of some haloarchaeal species to assimilate, modify, or degrade toxic compounds for most living beings. Several examples of the role of these microorganisms in the treatment of polluted brine or salty soils are also discussed in connection with circular economy-based processes. KEY POINTS: • Haloarchaea are extremophilic microorganisms showing genuine metabolism • Haloarchaea can metabolise compounds that are highly toxic to most living beings • These metabolic capabilities are useful for designing soil and water bioremediation strategies.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
2
|
Sorokin DY, Elcheninov AG, Merkel AY, Bale NJ, Sininghe-Damste J, Kublanov IV. Halapricum hydrolyticum sp. nov., a beta-1,3-glucan utilizing haloarchaeon from hypersaline lakes. Syst Appl Microbiol 2023; 46:126471. [PMID: 37826928 DOI: 10.1016/j.syapm.2023.126471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Two strains of neutrophilic haloaloarchaea were selectively enriched from hypersaline lakes in southwestern Siberia using β-1,3-glucans as a substrate. The strains were nearly identical in their phenotypes and according to phylogenomic analysis, and represent a distant novel species group in the genus Halapricum of the family Haloarculaceae. The main phenotypic property of the novel isolates is the ability to hydrolyze and grow with the polysaccharides curdlan and pachyman. Such potential has, to date, not been seen in any other haloarchaea in pure cultures. The strains are obligately aerobic saccharolytics. Apart from the insoluble β-1,3-glucans, they utilized soluble α-glucans (starch, pullulan and glycogen) and a limited number of sugars. The major ether-bound polar phospholipids include PGP-Me and PG. The glyco- and sulfolipids were absent. The major respiratory menaquinone is MK-8:8. On the basis of their unique physiological properties and the results of phylogenomic analysis, the isolates are suggested to be classified into a novel species Halapricum hydrolyticum sp. nov. (type strain HArc-curdl5-1T = DSM 114193T = UQM 41587T).
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nicole J Bale
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Jaap Sininghe-Damste
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Natranaeroarchaeum sulfidigenes gen. nov., sp. nov., carbohydrate-utilizing sulfur-respiring haloarchaeon from hypersaline soda lakes, a member of a new family Natronoarchaeaceae fam. nov. in the order Halobacteriales. Syst Appl Microbiol 2022; 45:126356. [DOI: 10.1016/j.syapm.2022.126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022]
|
4
|
Sorokin DY, Merkel AY, Messina E, Tugui C, Pabst M, Golyshin PN, Yakimov MM. Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes. THE ISME JOURNAL 2022; 16:1534-1546. [PMID: 35132120 PMCID: PMC9123189 DOI: 10.1038/s41396-022-01206-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 05/24/2023]
Abstract
Anaerobic carboxydotrophy is a widespread catabolic trait in bacteria, with two dominant pathways: hydrogenogenic and acetogenic. The marginal mode by direct oxidation to CO2 using an external e-acceptor has only a few examples. Use of sulfidic sediments from two types of hypersaline lakes in anaerobic enrichments with CO as an e-donor and elemental sulfur as an e-acceptor led to isolation of two pure cultures of anaerobic carboxydotrophs belonging to two genera of sulfur-reducing haloarchaea: Halanaeroarchaeum sp. HSR-CO from salt lakes and Halalkaliarchaeum sp. AArc-CO from soda lakes. Anaerobic growth of extremely halophilic archaea with CO was obligatory depended on the presence of elemental sulfur as the electron acceptor and yeast extract as the carbon source. CO served as a direct electron donor and H2 was not generated from CO when cells were incubated with or without sulfur. The genomes of the isolates encode a catalytic Ni,Fe-CODH subunit CooS (distantly related to bacterial homologs) and its Ni-incorporating chaperone CooC (related to methanogenic homologs) within a single genomic locus. Similar loci were also present in a genome of the type species of Halalkaliarchaeum closely related to AArc-CO, and the ability for anaerobic sulfur-dependent carboxydotrophy was confirmed for three different strains of this genus. Moreover, similar proteins are encoded in three of the four genomes of recently described carbohydrate-utilizing sulfur-reducing haloarchaea belonging to the genus Halapricum and in two yet undescribed haloarchaeal species. Overall, this work demonstrated for the first time the potential for anaerobic sulfur-dependent carboxydotrophy in extremely halophilic archaea.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Enzo Messina
- IRBIM-CNR, Spianata S.Raineri 86, 98122, Messina, Italy
| | - Claudia Tugui
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Peter N Golyshin
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | | |
Collapse
|
5
|
Pavlović J, Bosch-Roig P, Rusková M, Planý M, Pangallo D, Sanmartín P. Long-amplicon MinION-based sequencing study in a salt-contaminated twelfth century granite-built chapel. Appl Microbiol Biotechnol 2022; 106:4297-4314. [PMID: 35596787 PMCID: PMC9200699 DOI: 10.1007/s00253-022-11961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
The irregular damp dark staining on the stonework of a salt-contaminated twelfth century granite-built chapel is thought to be related to a non-homogeneous distribution of salts and microbial communities. To enhance understanding of the role of microorganisms in the presence of salt and damp stains, we determined the salt content and identified the microbial ecosystem in several paving slabs and inner wall slabs (untreated and previously bio-desalinated) and in the exterior surrounding soil. Soluble salt analysis and culture-dependent approaches combined with archaeal and bacterial 16S rRNA and fungal ITS fragment as well as with the functional genes nirK, dsr, and soxB long-amplicon MinION-based sequencing were performed. State-of-the-art technology was used for microbial identification, providing information about the microbial diversity and phylogenetic groups present and enabling us to gain some insight into the biological cycles occurring in the community key genes involved in the different geomicrobiological cycles. A well-defined relationship between microbial data and soluble salts was identified, suggesting that poorly soluble salts (CaSO4) could fill the pores in the stone and lead to condensation and dissolution of highly soluble salts (Ca(NO3)2 and Mg(NO3)2) in the thin layer of water formed on the stonework. By contrast, no direct relationship between the damp staining and the salt content or related microbiota was established. Further analysis regarding organic matter and recalcitrant elements in the stonework should be carried out. KEY POINTS : • Poorly (CaSO4) and highly (Ca(NO3)2, Mg(NO3)2) soluble salts were detected • Halophilic and mineral weathering microorganisms reveal ecological impacts of salts • Microbial communities involved in nitrate and sulfate cycles were detected.
Collapse
Affiliation(s)
- Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Pilar Bosch-Roig
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Magdalena Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Matej Planý
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
- Caravella, s.r.o., Tupolevova 2, 851 01, Bratislava, Slovakia
| | - Patricia Sanmartín
- Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Sorokin DY, Elcheninov AG, Khizhniak TV, Koenen M, Bale NJ, Damsté JSS, Kublanov IV. Natronocalculus amylovorans gen. nov., sp. nov., and Natranaeroarchaeum aerophilus sp. nov., dominant culturable amylolytic natronoarchaea from hypersaline soda lakes in southwestern siberia. Syst Appl Microbiol 2022; 45:126336. [DOI: 10.1016/j.syapm.2022.126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
7
|
Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203. Int J Syst Evol Microbiol 2022; 72. [PMID: 35108178 DOI: 10.1099/ijsem.0.005167] [Citation(s) in RCA: 275] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|