1
|
Li T, Li S, Kang Y, Zhou J, Yi M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J Transl Med 2024; 22:749. [PMID: 39118151 PMCID: PMC11312220 DOI: 10.1186/s12967-024-05570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It's conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China
| | - Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Yue Kang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Stuecker TN, Hood SE, Pineda JM, Lenaduwe S, Winter J, Sadhu MJ, Lewis JA. Improved vectors for retron-mediated CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606807. [PMID: 39149293 PMCID: PMC11326209 DOI: 10.1101/2024.08.06.606807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In vivo site-directed mutagenesis is a powerful genetic tool for testing the effects of specific alleles in their normal genomic context. While the budding yeast Saccharomyces cerevisiae possesses classical tools for site-directed mutagenesis, more efficient recent CRISPR-based approaches use Cas 'cutting' combined with homologous recombination of a 'repair' template that introduces the desired edit. However, current approaches are limited for fully prototrophic yeast strains, and rely on relatively low efficiency cloning of short gRNAs. We were thus motivated to simplify the process by combining the gRNA and its cognate repair template in cis on a single oligonucleotide. Moreover, we wished to take advantage of a new approach that uses an E. coli retron (EcRT) to amplify repair templates as multi-copy single-stranded (ms)DNA in vivo, which are more efficient templates for homologous recombination. To this end, we have created a set of plasmids that express Cas9-EcRT, allowing for co-transformation with the gRNA-repair template plasmid in a single step. Our suite of plasmids contains different antibiotic (Nat, Hyg, Kan) or auxotrophic (HIS3, URA3) selectable markers, allowing for editing of fully prototrophic wild yeast strains. In addition to classic galactose induction, we generated a β-estradiol-inducible version of each plasmid to facilitate editing in yeast strains that grow poorly on galactose. The plasmid-based system results in >95% editing efficiencies for point mutations and >50% efficiencies for markerless deletions, in a minimum number of steps and time. We provide a detailed step-by-step guide for how to use this system.
Collapse
Affiliation(s)
- Tara N. Stuecker
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Stephanie E. Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Julio Molina Pineda
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Sonali Lenaduwe
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Joshua Winter
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Meru J. Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey A. Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
3
|
Motorina DM, Galimova YA, Battulina NV, Omelina ES. Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals. Int J Mol Sci 2024; 25:5231. [PMID: 38791270 PMCID: PMC11121118 DOI: 10.3390/ijms25105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
At present, there are a variety of different approaches to the targeted regulation of gene expression. However, most approaches are devoted to the activation of gene transcription, and the methods for gene silencing are much fewer in number. In this review, we describe the main systems used for the targeted suppression of gene expression (including RNA interference (RNAi), chimeric transcription factors, chimeric zinc finger proteins, transcription activator-like effectors (TALEs)-based repressors, optogenetic tools, and CRISPR/Cas-based repressors) and their application in eukaryotes-plants and animals. We consider the advantages and disadvantages of each approach, compare their effectiveness, and discuss the peculiarities of their usage in plant and animal organisms. This review will be useful for researchers in the field of gene transcription suppression and will allow them to choose the optimal method for suppressing the expression of the gene of interest depending on the research object.
Collapse
Affiliation(s)
| | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr Gene Ther 2024; 24:193-207. [PMID: 38310456 DOI: 10.2174/0115665232275754231204072320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/05/2024]
Abstract
With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.
Collapse
Affiliation(s)
- Dilip Kumar Chanchal
- Department of Pharmacy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| | | | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Neha Agnihotri
- Department of Pharmacy, Maharana Pratap College of Pharmacy, Kothi, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Prateek Porwal
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| |
Collapse
|
5
|
Agrawal D, Budakoti M, Kumar V. Strategies and tools for the biotechnological valorization of glycerol to 1, 3-propanediol: Challenges, recent advancements and future outlook. Biotechnol Adv 2023; 66:108177. [PMID: 37209955 DOI: 10.1016/j.biotechadv.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Global efforts towards decarbonization, environmental sustainability, and a growing impetus for exploiting renewable resources such as biomass have spurred the growth and usage of bio-based chemicals and fuels. In light of such developments, the biodiesel industry will likely flourish, as the transport sector is taking several initiatives to attain carbon-neutral mobility. However, this industry would inevitably generate glycerol as an abundant waste by-product. Despite being a renewable organic carbon source and assimilated by several prokaryotes, presently realizing glycerol-based biorefinery is a distant reality. Among several platform chemicals such as ethanol, lactic acid, succinic acid, 2, 3-butanediol etc. 1, 3-propanediol (1, 3-PDO) is the only chemical naturally produced by fermentation with glycerol as a native substrate. The recent commercialization of glycerol-based 1, 3-PDO by Metabolic Explorer, France, has revived research interests in developing alternate cost-competitive, scalable and marketable bioprocesses. The current review outlines natural glycerol assimilating and 1, 3-PDO-producing microbes, their metabolic pathways, and associated genes. Later, technical barriers are carefully examined, such as the direct use of industrial glycerol as input material and genetic and metabolic issues related to microbes alleviating their industrial use. Biotechnological interventions exploited in the past five years, which can substantially circumvent these challenges, such as microbial bioprospecting, mutagenesis, metabolic, evolutionary and bioprocess engineering, including their combinations, are discussed in detail. The concluding section sheds light on some of the emerging and most promising breakthroughs which have resulted in evolving new, efficient, and robust microbial cell factories and/or bioprocesses for glycerol-based 1, 3-PDO production.
Collapse
Affiliation(s)
- Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India.
| | - Mridul Budakoti
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
6
|
Past, Present, and Future of Genome Modification in Escherichia coli. Microorganisms 2022; 10:microorganisms10091835. [PMID: 36144436 PMCID: PMC9504249 DOI: 10.3390/microorganisms10091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K-12 is one of the most well-studied species of bacteria. This species, however, is much more difficult to modify by homologous recombination (HR) than other model microorganisms. Research on HR in E. coli has led to a better understanding of the molecular mechanisms of HR, resulting in technical improvements and rapid progress in genome research, and allowing whole-genome mutagenesis and large-scale genome modifications. Developments using λ Red (exo, bet, and gam) and CRISPR-Cas have made E. coli as amenable to genome modification as other model microorganisms, such as Saccharomyces cerevisiae and Bacillus subtilis. This review describes the history of recombination research in E. coli, as well as improvements in techniques for genome modification by HR. This review also describes the results of large-scale genome modification of E. coli using these technologies, including DNA synthesis and assembly. In addition, this article reviews recent advances in genome modification, considers future directions, and describes problems associated with the creation of cells by design.
Collapse
|
7
|
Dhakal D, Chen M, Luesch H, Ding Y. Heterologous production of cyanobacterial compounds. J Ind Microbiol Biotechnol 2021; 48:6119914. [PMID: 33928376 PMCID: PMC8210676 DOI: 10.1093/jimb/kuab003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Importantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli, Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent advances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications of synthetic biology tools in the discovery of new cyanobacterial natural products.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| |
Collapse
|
8
|
CRISPR/Cas based gene editing: marking a new era in medical science. Mol Biol Rep 2021; 48:4879-4895. [PMID: 34143395 PMCID: PMC8212587 DOI: 10.1007/s11033-021-06479-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9 system, a bacterial adaptive immune system developed into a genome editing technology, has emerged as a powerful tool revolutionising genome engineering in all branches of biological science including agriculture, research and medicine. Rapid evolution of CRISPR/Cas9 system from the generation of double strand breaks to more advanced applications on gene regulation has made the wide-spread use of this technology possible. Medical science has benefited greatly from CRISPR/Cas9; being both a versatile and economical tool, it has brought gene therapy closer to reality. In this review, the development of CRISPR/Cas9 system, variants thereof and its application in different walks of medical science- research, diagnostics and therapy, will be discussed.
Collapse
|
9
|
Kim MS, Kim HR, Jeong DE, Choi SK. Cytosine Base Editor-Mediated Multiplex Genome Editing to Accelerate Discovery of Novel Antibiotics in Bacillus subtilis and Paenibacillus polymyxa. Front Microbiol 2021; 12:691839. [PMID: 34122396 PMCID: PMC8193733 DOI: 10.3389/fmicb.2021.691839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Genome-based identification of new antibiotics is emerging as an alternative to traditional methods. However, uncovering hidden antibiotics under the background of known antibiotics remains a challenge. To over this problem using a quick and effective genetic approach, we developed a multiplex genome editing system using a cytosine base editor (CBE). The CBE system achieved simultaneous double, triple, quadruple, and quintuple gene editing with efficiencies of 100, 100, 83, and 75%, respectively, as well as the 100% editing efficiency of single targets in Bacillus subtilis. Whole-genome sequencing of the edited strains showed that they had an average of 8.5 off-target single-nucleotide variants at gRNA-independent positions. The CBE system was used to simultaneously knockout five known antibiotic biosynthetic gene clusters to leave only an uncharacterized polyketide biosynthetic gene cluster in Paenibacillus polymyxa E681. The polyketide showed antimicrobial activities against gram-positive bacteria, but not gram-negative bacteria and fungi. Therefore, our findings suggested that the CBE system might serve as a powerful tool for multiplex genome editing and greatly accelerating the unraveling of hidden antibiotics in Bacillus and Paenibacillus species.
Collapse
Affiliation(s)
- Man Su Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | - Ha-Rim Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Da-Eun Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
10
|
|
11
|
Jiang XR, Yan X, Yu LP, Liu XY, Chen GQ. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nat Commun 2021; 12:1513. [PMID: 33686068 PMCID: PMC7940609 DOI: 10.1038/s41467-021-21632-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
3-Hydroxypropionic acid (3HP), an important three carbon (C3) chemical, is designated as one of the top platform chemicals with an urgent need for improved industrial production. Halomonas bluephagenesis shows the potential as a chassis for competitive bioproduction of various chemicals due to its ability to grow under an open, unsterile and continuous process. Here, we report the strategy for producing 3HP and its copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) by the development of H. bluephagenesis. The transcriptome analysis reveals its 3HP degradation and synthesis pathways involving endogenous synthetic enzymes from 1,3-propanediol. Combing the optimized expression of aldehyde dehydrogenase (AldDHb), an engineered H. bluephagenesis strain of whose 3HP degradation pathway is deleted and that overexpresses alcohol dehydrogenases (AdhP) on its genome under a balanced redox state, is constructed with an enhanced 1.3-propanediol-dependent 3HP biosynthetic pathway to produce 154 g L-1 of 3HP with a yield and productivity of 0.93 g g-1 1,3-propanediol and 2.4 g L-1 h-1, respectively. Moreover, the strain could also accumulate 60% poly(3-hydroxybutyrate-co-32-45% 3-hydroxypropionate) in the dry cell mass, demonstrating to be a suitable chassis for hyperproduction of 3HP and P3HB3HP.
Collapse
Affiliation(s)
- Xiao-Ran Jiang
- Department of Microbiology, Army Medical University, Chongqing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin-Ping Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Kim B, Kim, HJ, Lee SJ. Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference. J Microbiol Biotechnol 2020; 30:1919-1926. [PMID: 32958732 PMCID: PMC9728369 DOI: 10.4014/jmb.2008.08058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 12/15/2022]
Abstract
CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.
Collapse
Affiliation(s)
- Bumjoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun Ju Kim,
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
13
|
Walker LP, Buhler D. Catalyzing Holistic Agriculture Innovation Through Industrial Biotechnology. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.29222.lpw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Larry P. Walker
- Biosystems and Agricultural Engineering Department, Michigan State University, East Lansing, Michigan, USA
- Somaiya Vidyavihar University, Mumbai, India
- Biological and Environmental Engineering Department, Cornell University, Ithaca, New York, USA
| | - Douglas Buhler
- Michigan State University AgBioResearch and Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Hashemi A. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli. World J Microbiol Biotechnol 2020; 36:96. [PMID: 32583135 DOI: 10.1007/s11274-020-02872-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
The innovative CRISPR-Cas based genome editing technology provides some functionality and advantages such as the high efficiency and specificity as well as ease of handling. Both aspects of the CRISPR-Cas9 system including genetic engineering and gene regulation are advantageously applicable to the construction of microbial cell factories. As one of the most extensively used cell factories, E. coli has been engineered to produce various high value-added chemical compounds such as pharmaceuticals, biochemicals, and biofuels. Therefore, to improve the production of valuable metabolites, many investigations have been performed by focusing on CRISPR-Cas- based metabolic engineering of this host. In the current review, the biology underlying CRISPR-Cas9 system was briefly explained and then the applications of CRISPR-Cas9/CRISPRi tools were considered for cell factory construction in E. coli.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, Iran.
| |
Collapse
|
15
|
Ferreira S, Pereira R, Wahl SA, Rocha I. Metabolic engineering strategies for butanol production in Escherichia coli. Biotechnol Bioeng 2020; 117:2571-2587. [PMID: 32374413 DOI: 10.1002/bit.27377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/06/2022]
Abstract
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Rui Pereira
- SilicoLife Lda, Braga, Portugal.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
16
|
Ho J, Zhao M, Wojcik S, Taiaroa G, Butler M, Poulter R. The application of the CRISPR–Cas9 system in Pseudomonas syringae pv. actinidiae. J Med Microbiol 2020; 69:478-486. [DOI: 10.1099/jmm.0.001124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction.Pseudomonas syringaepv. actinidiae (Psa) has emerged as a major bacterial pathogen of kiwifruit cultivation throughout the world.Aim.We aim to introduce a CRISPR–Cas9 system, a commonly used genome editing tool, into Psa. The protocols may also be useful in otherPseudomonasspecies.Methodology.Using standard molecular biology techniques, we modified plasmid pCas9, which carries the CRISPR–Cas9 sequences fromStreptococcus pyogenes,for use in Psa. The final plasmid, pJH1, was produced in a series of steps and is maintained with selection in bothEscherichia coliand Psa.Results.We have constructed plasmids carrying a CRISPR–Cas9 system based on that ofS. pyogenes, which can be maintained, under selection, in Psa. We have shown that the gene targeting capacity of the CRISPR–Cas9 system is active and that the Cas9 protein is able to cleave the targeted sites. The Cas9 was directed to several different sites in theP. syringaegenome. Using Cas9 we have generated Psa transformants that no longer carry the native plasmid present in Psa, and other transformants that lack the integrative, conjugative element, Pac_ICE1. Targeting of a specific gene, a chromosomal non-ribosomal peptide synthetase, led to gene knockouts with the transformants having deletions encompassing the target site.Conclusion.We have constructed shuttle plasmids carrying a CRISPR–Cas9 system that are maintained in bothE. coliandP. syringaepv. actinidiae. We have used this gene editing system to eliminate features of the accessory genome (plasmids or ICEs) from Psa and to target a single chromosomal gene.
Collapse
Affiliation(s)
- Joycelyn Ho
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Min Zhao
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Samuel Wojcik
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - George Taiaroa
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Margi Butler
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Russell Poulter
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Srivastava A, Ballal A, Forchhammer K, Tripathi AK. Construction of Antisense RNA-mediated Gene Knock-downStrains in the Cyanobacterium Anabaena sp. PCC 7120. Bio Protoc 2020; 10:e3528. [PMID: 33654752 DOI: 10.21769/bioprotoc.3528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/02/2022] Open
Abstract
Anabaena sp. PCC 7120 (hereafter Anabaena) is a model cyanobacterium to study nitrogen fixation, cellular differentiation and several other key biological functions that are analogous in plants. As with any other organism, many genes in Anabaena encode an essential life function and hence cannot be deleted, causing a bottleneck in the elucidation of its genomic function. Antisense RNA (asRNA) mediated approach renders the study of essential genes possible by suppressing (but not completely eliminating) expression of the target gene, thus allowing them to function to some extent. Recently, we have successfully implemented this approach using the strong endogenous promoter of the psbA1 gene (D1 subunit of Photosystem II) introduced into a high-copy replicative plasmid (pAM1956) to suppress the transcript level of the target gene alr0277 (encoding a sigma factor, SigJ/Alr0277) in Anabaena. This protocol represents an efficient and easy procedure to further explore the functional genomics, expanding the scope of basic and applied research in these ecologically important cyanobacteria.
Collapse
Affiliation(s)
- Amit Srivastava
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen-72076, Germany
| | - Anil Kumar Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
18
|
Li JW, Zhang XY, Wu H, Bai YP. Transcription Factor Engineering for High-Throughput Strain Evolution and Organic Acid Bioproduction: A Review. Front Bioeng Biotechnol 2020; 8:98. [PMID: 32140463 PMCID: PMC7042172 DOI: 10.3389/fbioe.2020.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Metabolic regulation of gene expression for the microbial production of fine chemicals, such as organic acids, is an important research topic in post-genomic metabolic engineering. In particular, the ability of transcription factors (TFs) to respond precisely in time and space to various small molecules, signals and stimuli from the internal and external environment is essential for metabolic pathway engineering and strain development. As a key component, TFs are used to construct many biosensors in vivo using synthetic biology methods, which can be used to monitor the concentration of intracellular metabolites in organic acid production that would otherwise remain “invisible” within the intracellular environment. TF-based biosensors also provide a high-throughput screening method for rapid strain evolution. Furthermore, TFs are important global regulators that control the expression levels of key enzymes in organic acid biosynthesis pathways, therefore determining the outcome of metabolic networks. Here we review recent advances in TF identification, engineering, and applications for metabolic engineering, with an emphasis on metabolite monitoring and high-throughput strain evolution for the organic acid bioproduction.
Collapse
Affiliation(s)
- Jia-Wei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Najar IN, Sherpa MT, Das S, Thakur N. Bacterial diversity and functional metagenomics expounding the diversity of xenobiotics, stress, defense and CRISPR gene ontology providing eco-efficiency to Himalayan Hot Springs. Funct Integr Genomics 2020; 20:479-496. [PMID: 31897823 DOI: 10.1007/s10142-019-00723-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
Sikkim is one of the bio-diverse states of India, which harbors diverse alkaline and sulfur rich hot springs in its vicinity. However, there is a dearth of data present in terms of microbial and its functional diversity as only a few hot springs have been studied in this area. Thus, in this regard, microbial and functional diversity of two hot springs by NGS, PLFA, and culture-independent approaches were carried out. PLFA and culture-dependent analysis was complementary as the Gram-positive bacteria were abundant in both the hot springs with the dominance of phylum Firmicutes with Geobacillus. Metagenomic analysis revealed the abundance of Proteobacteria, Actinobacteria, and Firmicutes in both hot springs. Functional metagenomics suggested that both Yumthang and Reshi hot spring possess a diverse set of genes analogous to stress such as genes allied to osmotic, heat shock, and acid stresses; defense analogies such as multidrug resistance efflux pump, multidrug transport system, and β-lactamase; and CRISPR analogues such as related to Cas1, Cas2, Cas3, cmr1-5 proteins, CT1972, and CT1133 gene families. The xenobiotic analogues were found against benzoate, nitrotolune, xylene, DDT, and chlorocyclohexane/chlorobenzene degradation. Thus, these defensive mechanisms against environmental and anthropogenic hiccups and hindrances provide the eco-efficiency to such thermal habitats. The higher enzymatic, degradation, defense, stress potential and the lower percentage identity (< 95%) of isolates encourage the further exploration and exploitation of these habitats for industrial and biotechnological purposes.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India.
- Department of Chemical Engineering and Biomolecular Engineering, Korean Advance Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
20
|
Milon N, Chantry-Darmon C, Satge C, Fustier MA, Cauet S, Moreau S, Callot C, Bellec A, Gabrieli T, Saïas L, Boutonnet A, Ginot F, Bergès H, Bancaud A. μLAS technology for DNA isolation coupled to Cas9-assisted targeting for sequencing and assembly of a 30 kb region in plant genome. Nucleic Acids Res 2019; 47:8050-8060. [PMID: 31505675 PMCID: PMC6736094 DOI: 10.1093/nar/gkz632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/25/2019] [Accepted: 07/20/2019] [Indexed: 12/27/2022] Open
Abstract
Cas9-assisted targeting of DNA fragments in complex genomes is viewed as an essential strategy to obtain high-quality and continuous sequence data. However, the purity of target loci selected by pulsed-field gel electrophoresis (PFGE) has so far been insufficient to assemble the sequence in one contig. Here, we describe the μLAS technology to capture and purify high molecular weight DNA. First, the technology is optimized to perform high sensitivity DNA profiling with a limit of detection of 20 fg/μl for 50 kb fragments and an analytical time of 50 min. Then, μLAS is operated to isolate a 31.5 kb locus cleaved by Cas9 in the genome of the plant Medicago truncatula. Target purification is validated on a Bacterial Artificial Chromosome plasmid, and subsequently carried out in whole genome with μLAS, PFGE or by combining these techniques. PacBio sequencing shows an enrichment factor of the target sequence of 84 with PFGE alone versus 892 by association of PFGE with μLAS. These performances allow us to sequence and assemble one contig of 29 441 bp with 99% sequence identity to the reference sequence.
Collapse
Affiliation(s)
- Nicolas Milon
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400, Toulouse, France.,Adelis Technologies, 478 Rue de la Découverte, 31670 Labège, France
| | - Céline Chantry-Darmon
- French Plant Genomic Resource Center, INRA-CNRGV, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Carine Satge
- French Plant Genomic Resource Center, INRA-CNRGV, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Margaux-Alison Fustier
- French Plant Genomic Resource Center, INRA-CNRGV, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Stephane Cauet
- French Plant Genomic Resource Center, INRA-CNRGV, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Sandra Moreau
- Laboratory of Plant-Microbe Interactions, INRA-LIPM, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Caroline Callot
- French Plant Genomic Resource Center, INRA-CNRGV, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRA-CNRGV, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Tslil Gabrieli
- School of Chemistry, Center of Nanoscience and Nanotechnology, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Laure Saïas
- Adelis Technologies, 478 Rue de la Découverte, 31670 Labège, France
| | - Audrey Boutonnet
- Adelis Technologies, 478 Rue de la Découverte, 31670 Labège, France
| | - Frédéric Ginot
- Adelis Technologies, 478 Rue de la Découverte, 31670 Labège, France
| | - Hélène Bergès
- French Plant Genomic Resource Center, INRA-CNRGV, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Aurélien Bancaud
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400, Toulouse, France
| |
Collapse
|
21
|
Liu X, Gupta STP, Bhimsaria D, Reed JL, Rodríguez-Martínez J, Ansari AZ, Raman S. De novo design of programmable inducible promoters. Nucleic Acids Res 2019; 47:10452-10463. [PMID: 31552424 PMCID: PMC6821364 DOI: 10.1093/nar/gkz772] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
Ligand-responsive allosteric transcription factors (aTF) play a vital role in genetic circuits and high-throughput screening because they transduce biochemical signals into gene expression changes. Programmable control of gene expression from aTF-regulated promoter is important because different downstream effector genes function optimally at different expression levels. However, tuning gene expression of native promoters is difficult due to complex layers of homeostatic regulation encoded within them. We engineered synthetic promoters de novo by embedding operator sites with varying affinities and radically reshaped binding preferences within a minimal, constitutive Escherichia coli promoter. Multiplexed cell-based screening of promoters for three TetR-like aTFs generated with this approach gave rich diversity of gene expression levels, dynamic ranges and ligand sensitivities and were 50- to 100-fold more active over their respective native promoters. Machine learning on our dataset revealed that relative position of the core motif and bases flanking the core motif play an important role in modulating induction response. Our generalized approach yields customizable and programmable aTF-regulated promoters for engineering cellular pathways and enables the discovery of new small molecule biosensors.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- The Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sanjan T P Gupta
- The Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Devesh Bhimsaria
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer L Reed
- The Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- The Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- The Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- The Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
22
|
Pseudomonas putida in the quest of programmable chemistry. Curr Opin Biotechnol 2019; 59:111-121. [DOI: 10.1016/j.copbio.2019.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022]
|
23
|
Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019; 4:25-33. [PMID: 30560208 PMCID: PMC6290258 DOI: 10.1016/j.synbio.2018.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of this project is E. coli MGF-01, which has a reduced-genome size and exhibits better growth and higher threonine production characteristics than the parental strain [1]. The 'cell factory' project was carried out from 1998 to 2002 in the Fifth Framework Program of the EU (European Union), which tried to comprehensively understand microorganisms used in the application field. One of the outstanding results of this project was the elucidation of proteins secreted by Bacillus subtilis, which was summarized as the 'secretome' [2]. The GTL (Genomes to Life) program began in 2002 in the United States. In this program, researchers aimed to create artificial cells both in silico and in vitro, such as the successful design and synthesis of a minimal bacterial genome by John Craig Venter's group [3]. This review provides an update on recent advances in engineering, modification and application of synthetic microbial chassis, with particular emphasis on the value of learning about chassis as a way to better understand life and improve applications.
Collapse
Affiliation(s)
- Haotian Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoli Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Ying Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|
24
|
Schuster JA, Vogel RF, Ehrmann MA. Characterization and distribution of CRISPR–Cas systems in Lactobacillus sakei. Arch Microbiol 2019; 201:337-347. [DOI: 10.1007/s00203-019-01619-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
|
25
|
Millacura FA, Janssen PJ, Monsieurs P, Janssen A, Provoost A, Van Houdt R, Rojas LA. Unintentional Genomic Changes Endow Cupriavidus metallidurans with an Augmented Heavy-Metal Resistance. Genes (Basel) 2018; 9:E551. [PMID: 30428624 PMCID: PMC6266692 DOI: 10.3390/genes9110551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/04/2022] Open
Abstract
For the past three decades, Cupriavidus metallidurans has been one of the major model organisms for bacterial tolerance to heavy metals. Its type strain CH34 contains at least 24 gene clusters distributed over four replicons, allowing for intricate and multilayered metal responses. To gain organic mercury resistance in CH34, broad-spectrum mer genes were introduced in a previous work via conjugation of the IncP-1β plasmid pTP6. However, we recently noted that this CH34-derived strain, MSR33, unexpectedly showed an increased resistance to other metals (i.e., Co2+, Ni2+, and Cd2+). To thoroughly investigate this phenomenon, we resequenced the entire genome of MSR33 and compared its DNA sequence and basal gene expression profile to those of its parental strain CH34. Genome comparison identified 11 insertions or deletions (INDELs) and nine single nucleotide polymorphisms (SNPs), whereas transcriptomic analysis displayed 107 differentially expressed genes. Sequence data implicated the transposition of IS1088 in higher Co2+ and Ni2+ resistances and altered gene expression, although the precise mechanisms of the augmented Cd2+ resistance in MSR33 remains elusive. Our work indicates that conjugation procedures involving large complex genomes and extensive mobilomes may pose a considerable risk toward the introduction of unwanted, undocumented genetic changes. Special efforts are needed for the applied use and further development of small nonconjugative broad-host plasmid vectors, ideally involving CRISPR-related and advanced biosynthetic technologies.
Collapse
Affiliation(s)
- Felipe A Millacura
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, UK.
| | - Paul J Janssen
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Pieter Monsieurs
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Ann Janssen
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Ann Provoost
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Rob Van Houdt
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Luis A Rojas
- Chemistry Department, Faculty of Sciences, Universidad Católica del Norte, UCN, Antofagasta 1240000, Chile.
| |
Collapse
|
26
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Ro SY, Rosenzweig AC. Recent Advances in the Genetic Manipulation of Methylosinus trichosporium OB3b. Methods Enzymol 2018; 605:335-349. [PMID: 29909832 DOI: 10.1016/bs.mie.2018.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methanotrophic bacteria utilize methane as their sole carbon and energy source. Studies of the model Type II methanotroph Methylosinus trichosporium OB3b have provided insight into multiple aspects of methanotrophy, including methane assimilation, copper accumulation, and metal-dependent gene expression. Development of genetic tools for chromosomal editing was crucial for advancing these studies. Recent interest in methanotroph metabolic engineering has led to new protocols for genetic manipulation of methanotrophs that are effective and simple to use. We have incorporated these newer molecular tools into existing protocols for Ms. trichosporium OB3b. The modifications include additional shuttle and replicative plasmids as well as improved gene delivery and genotyping. The methods described here render gene editing in Ms. trichosporium OB3b efficient and accessible.
Collapse
Affiliation(s)
- Soo Y Ro
- Northwestern University, Evanston, IL, United States
| | | |
Collapse
|