1
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Liu J, Ding Y, Yu X, Ye S, Guo P, Yang B. Fabric Fiber as a Biofilm Carrier for Halomonas sp. H09 Mixed with Lactobacillus rhamnosus GG. Appl Biochem Biotechnol 2024; 196:3974-3991. [PMID: 37801273 DOI: 10.1007/s12010-023-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Biofilm bacteria have stronger resistance to the adverse external environment compared to planktonic bacteria, and biofilms of non-pathogenic bacteria have strong potential for applications in food. In this experiment, Halomonas sp. H09 and Lactobacillus rhamnosus GG, which have film-forming ability in monoculture and better film-forming ability in mixed culture than the two strains alone, were selected as the target strains for mixed culture. According to SEM observation and bacterial dry weight measurement, the target strain formed a dense biofilm on a 0.1 g/L chitosan-modified cellulose III carrier. Furthermore, the presence of extracellular polymeric substances in biofilms was verified by EDS and FTIR. The results showed that 0.1 g/L chitosan-modified cellulose III was an ideal carrier material for immobilization of Halomonas sp. H09 with Lactobacillus rhamnosus GG biofilm. This research provided a basis for the selection of non-pathogenic mixed-bacteria biofilm carriers.
Collapse
Affiliation(s)
- Jing Liu
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| | - Yan Ding
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| | - Xinqi Yu
- College of Life Science, Beijing Normal University, Beijing, 100000, People's Republic of China
| | - Shuhong Ye
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China.
| | - Pengfei Guo
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| | - Biying Yang
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| |
Collapse
|
3
|
Karim AS, Brown DM, Archuleta CM, Grannan S, Aristilde L, Goyal Y, Leonard JN, Mangan NM, Prindle A, Rocklin GJ, Tyo KJ, Zoloth L, Jewett MC, Calkins S, Kamat NP, Tullman-Ercek D, Lucks JB. Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists. Nat Commun 2024; 15:5425. [PMID: 38926339 PMCID: PMC11208543 DOI: 10.1038/s41467-024-49626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Synthetic biology allows us to reuse, repurpose, and reconfigure biological systems to address society's most pressing challenges. Developing biotechnologies in this way requires integrating concepts across disciplines, posing challenges to educating students with diverse expertise. We created a framework for synthetic biology training that deconstructs biotechnologies across scales-molecular, circuit/network, cell/cell-free systems, biological communities, and societal-giving students a holistic toolkit to integrate cross-disciplinary concepts towards responsible innovation of successful biotechnologies. We present this framework, lessons learned, and inclusive teaching materials to allow its adaption to train the next generation of synthetic biologists.
Collapse
Affiliation(s)
- Ashty S Karim
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Dylan M Brown
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chloé M Archuleta
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sharisse Grannan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Independent Evaluator, Lake Geneva, WI, 53147, USA
| | - Ludmilla Aristilde
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yogesh Goyal
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Josh N Leonard
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Niall M Mangan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, 60201, USA
| | - Arthur Prindle
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA
| | - Gabriel J Rocklin
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Keith J Tyo
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Laurie Zoloth
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- The Divinity School, University of Chicago, Chicago, IL, 60637, USA
| | - Michael C Jewett
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Susanna Calkins
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Searle Center for Advancing Learning and Teaching, Northwestern University, Evanston, IL, 60208, USA
- Nexus for Faculty Success, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Neha P Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Biomedical Engineering Northwestern University, Evanston, IL, 60208, USA
| | - Danielle Tullman-Ercek
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Julius B Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Cruz JN, Muzammil S, Ashraf A, Ijaz MU, Siddique MH, Abbas R, Sadia M, Saba, Hayat S, Lima RR. A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents. Heliyon 2024; 10:e29500. [PMID: 38660254 PMCID: PMC11040063 DOI: 10.1016/j.heliyon.2024.e29500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The emergence of antimicrobial resistance among biofilm forming pathogens aimed to search for the efficient and novel alternative strategies. Metallic nanoparticles have drawn a considerable attention because of their significant applications in various fields. Numerous methods are developed for the generation of these nanoparticles however, mycogenic (fungal-mediated) synthesis is attractive due to high yields, easier handling, eco-friendly and being energy efficient when compared with conventional physico-chemical methods. Moreover, mycogenic synthesis provides fungal derived biomolecules that coat the nanoparticles thus improving their stability. The process of mycogenic synthesis can be extracellular or intracellular depending on the fungal genera used and various factors such as temperature, pH, biomass concentration and cultivation time may influence the synthesis process. This review focuses on the synthesis of metallic nanoparticles by using fungal mycelium, mechanism of synthesis, factors affecting the mycosynthesis and also describes their potential applications as antioxidants and antibiofilm agents. Moreover, the utilization of mycogenic nanoparticles as quorum quenching agent in hampering the bacterial cell-cell communication (quorum sensing) has also been discussed.
Collapse
Affiliation(s)
- Jorddy N. Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, PA, Brazil Brazil
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | | - Rasti Abbas
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Maimona Sadia
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saba
- Department of Microbiology and Molecular Genetics, The Women University Multan, Mattital Campus, Multan, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, PA, Brazil Brazil
| |
Collapse
|
5
|
Panthi VK, Fairfull-Smith KE, Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. Int J Pharm 2024; 655:124046. [PMID: 38554739 DOI: 10.1016/j.ijpharm.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Typical antibiotic treatments are often ineffectual against biofilm-related infections since bacteria residing within biofilms have developed various mechanisms to resist antibiotics. To overcome these limitations, antimicrobial-loaded liposomal nanoparticles are a promising anti-biofilm strategy as they have demonstrated improved antibiotic delivery and eradication of bacteria residing in biofilms. Antibiotic-loaded liposomal nanoparticles revealed remarkably higher antibacterial and anti-biofilm activities than free drugs in experimental settings. Moreover, liposomal nanoparticles can be used efficaciously for the combinational delivery of antibiotics and other antimicrobial compounds/peptide which facilitate, for instance, significant breakdown of the biofilm matrix, increased bacterial elimination from biofilms and depletion of metabolic activity of various pathogens. Drug-loaded liposomes have mitigated recurrent infections and are considered a promising tool to address challenges associated to antibiotic resistance. Furthermore, it has been demonstrated that surface charge and polyethylene glycol modification of liposomes have a notable impact on their antibacterial biofilm activity. Future investigations should tackle the persistent hurdles associated with development of safe and effective liposomes for clinical application and investigate novel antibacterial treatments, including CRISPR-Cas gene editing, natural compounds, phages, and nano-mediated approaches. Herein, we emphasize the significance of liposomes in inhibition and eradication of various bacterial biofilms, their challenges, recent advances, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia; Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Lee MS, Lee JA, Biondo JR, Lux JE, Raig RM, Berger PN, Bernhards CB, Kuhn DL, Gupta MK, Lux MW. Cell-Free Protein Expression in Polymer Materials. ACS Synth Biol 2024; 13:1152-1164. [PMID: 38467017 PMCID: PMC11036507 DOI: 10.1021/acssynbio.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
While synthetic biology has advanced complex capabilities such as sensing and molecular synthesis in aqueous solutions, important applications may also be pursued for biological systems in solid materials. Harsh processing conditions used to produce many synthetic materials such as plastics make the incorporation of biological functionality challenging. One technology that shows promise in circumventing these issues is cell-free protein synthesis (CFPS), where core cellular functionality is reconstituted outside the cell. CFPS enables genetic functions to be implemented without the complications of membrane transport or concerns over the cellular viability or release of genetically modified organisms. Here, we demonstrate that dried CFPS reactions have remarkable tolerance to heat and organic solvent exposure during the casting processes for polymer materials. We demonstrate the utility of this observation by creating plastics that have spatially patterned genetic functionality, produce antimicrobials in situ, and perform sensing reactions. The resulting materials unlock the potential to deliver DNA-programmable biofunctionality in a ubiquitous class of synthetic materials.
Collapse
Affiliation(s)
- Marilyn S. Lee
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Jennifer A. Lee
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Defense
Threat Reduction Agency, 2800 Bush River Road, Gunpowder, Maryland 21010, United States
| | - John R. Biondo
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Excet
Inc., 6225 Brandon Avenue,
Suite 360, Springfield, Virginia 22150, United States
| | - Jeffrey E. Lux
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| | - Rebecca M. Raig
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| | - Pierce N. Berger
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Casey B. Bernhards
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Danielle L. Kuhn
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Maneesh K. Gupta
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
7
|
Pandey P, Pradhan S, Meher K, Lopus M, Vavilala SL. Exploring the efficacy of tryptone-stabilized silver nanoparticles against respiratory tract infection-causing bacteria: a study on planktonic and biofilm forms. Biomed Mater 2024; 19:025047. [PMID: 38364289 DOI: 10.1088/1748-605x/ad2a40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Respiratory tract infections (RTIs) are a common cause of mortality and morbidity in the human population. The overuse of antibiotics to overcome such infections has led to antibiotic resistance. The emergence of multidrug resistant bacteria is necessitating the development of novel therapeutic techniques in order to avoid a major global clinical threat. Our study aims to investigate the potential of tryptone stabilised silver nanoparticles (Ts-AgNPs) on planktonic and biofilms produced byKlebsiella pneumoniae(K. pneumoniae)and Pseudomonas aeruginosa(P. aeruginosa). The MIC50of Ts-AgNPs was found to be as low as 1.7 μg ml-1and 2.7 μg ml-1forK. pneumoniae and P.aeruginosarespectively. Ts-AgNPs ability to alter redox environment by producing intracellular ROS, time-kill curves showing substantial decrease in the bacterial growth and significantly reduced colony forming units further validate its antimicrobial effect. The biofilm inhibition and eradication ability of Ts-AgNPs was found to be as high as 93% and 97% in both the tested organisms. A significant decrease in the eDNA and EPS quantity in Ts-AgNPs treated cells proved its ability to successfully distort the matrix and matured biofilms. Interestingly Ts-AgNPs also attenuated QS-induced virulence factors production. This study paves way to develop Ts-AgNPs as novel antibiotics against RTIs causing bacterial biofilms.
Collapse
Affiliation(s)
- Pooja Pandey
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sristi Pradhan
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Kimaya Meher
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| |
Collapse
|
8
|
Akhash N, Farajzadeh Sheikh A, Farshadzadeh Z. Design of a novel analogue peptide with potent antibiofilm activities against Staphylococcus aureus based upon a sapecin B-derived peptide. Sci Rep 2024; 14:2256. [PMID: 38278972 PMCID: PMC10817945 DOI: 10.1038/s41598-024-52721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
Nowadays, antimicrobial peptides are promising to confront the existing global crisis of antibiotic resistance. Here, a novel analogue peptide (mKLK) was designed based upon a D-form amidated sapecin B-derived peptide (KLK) by replacing two lysine residues with two tryptophan and one leucine by lysine, and inserting one alanine. The mKLK displayed superior amphipathic helixes in which the most of hydrophobic residues are confined to one face of the helix and had a higher hydrophobic moment compared with KLK. The mKLK retained its antibacterial activity and structure in human serum, suggesting its stability to proteolytic degradation. The values of MIC and MBC for mKLK were equal to those of KLK against clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). However, mKLK showed more capability of in vitro inhibiting, eradicating, and dispersing MRSA and MSSA biofilms compared with KLK. Furthermore, a remarkable inhibitory activity of mKLK against MRSA and MSSA biofilms was seen in the murine model of catheter-associated biofilm infection. Results of this study show that mKLK not only exhibits antibacterial activity and serum stability but also a potent biofilm inhibitory activity at sub-MIC concentrations, confirming its potential therapeutic advantage for preventing biofilm-associated MRSA and MSSA infections.
Collapse
Affiliation(s)
- Nasim Akhash
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Farajzadeh Sheikh
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Farshadzadeh
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Qaralleh H. Chemical Composition and Quorum Sensing Inhibitory Effect of Nepeta curviflora Methanolic Extract against ESBL Pseudomonas aeruginosa. J Pharmacopuncture 2023; 26:307-318. [PMID: 38162474 PMCID: PMC10739471 DOI: 10.3831/kpi.2023.26.4.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives Bacterial biofilm is regarded as a significant threat to the production of safe food and the arise of antibiotic-resistant bacteria. The objective of this investigation is to evaluate the quorum sensing inhibitory effect of Nepeta curviflora methanolic extract. Methods The effectiveness of the leaves at sub-inhibitory concentrations of 2.5, 1.25, and 0.6 mg/mL on the virulence factors and biofilm formation of P. aeruginosa was evaluated. The effect of N. curviflora methanolic extract on the virulence factors of P. aeruginosa, including pyocyanin, rhamnolipid, protease, and chitinase, was evaluated. Other tests including the crystal violet assay, scanning electron microscopy (SEM), swarming motility, aggregation ability, hydrophobicity and exopolysaccharide production were conducted to assess the effect of the extract on the formation of biofilm. Insight into the mode of anti-quorum sensing action was evaluated by examining the effect of the extract on the activity of N-Acyl homoserine lactone (AHL) and the expression of pslA and pelA genes. Results The results showed a significant attenuation in the production of pyocyanin and rhamnolipid and in the activities of protease and chitinase enzymes at 2.5 and 1.25 mg/mL. In addition, N. curviflora methanolic extract significantly inhibited the formation of P. aeruginosa biofilm by decreasing aggregation, hydrophobicity, and swarming motility as well as the production of exopolysaccharide (EPS). A significant reduction in AHL secretion and pslA gene expression was observed, indicating that the extract inhibited quorum sensing by disrupting the quorum-sensing systems. The quorum-sensing inhibitory effect of N. curviflora extract appears to be attributed to the presence of kaempferol, quercetin, salicylic acid, rutin, and rosmarinic acid, as indicated by LCMS analysis. Conclusion The results of the present study provide insight into the potential of developing anti-quorum sensing agents using the extract and the identified compounds to treat infections resulting from quorum sensing-mediated bacterial pathogenesis.
Collapse
Affiliation(s)
- Haitham Qaralleh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Mutah, Karak, Jordan
| |
Collapse
|
10
|
Romero-Montero A, Melgoza-Ramírez LJ, Ruíz-Aguirre JA, Chávez-Santoscoy A, Magaña JJ, Cortés H, Leyva-Gómez G, Del Prado-Audelo ML. Essential-Oils-Loaded Biopolymeric Nanoparticles as Strategies for Microbial and Biofilm Control: A Current Status. Int J Mol Sci 2023; 25:82. [PMID: 38203252 PMCID: PMC10778842 DOI: 10.3390/ijms25010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The emergence of bacterial strains displaying resistance to the currently available antibiotics is a critical global concern. These resilient bacteria can form biofilms that play a pivotal role in the failure of bacterial infection treatments as antibiotics struggle to penetrate all biofilm regions. Consequently, eradicating bacteria residing within biofilms becomes considerably more challenging than their planktonic counterparts, leading to persistent and chronic infections. Among various approaches explored, essential oils loaded in nanoparticles based on biopolymers have emerged, promising strategies that enhance bioavailability and biological activities, minimize side effects, and control release through regulated pharmacokinetics. Different available reviews analyze nanosystems and essential oils; however, usually, their main goal is the analysis of their antimicrobial properties, and progress in biofilm combat is rarely discussed, or it is not the primary objective. This review aims to provide a global vision of biofilm conformation and describes mechanisms of action attributed to each EO. Furthermore, we present a comprehensive overview of the latest developments in biopolymeric nanoparticles research, especially in chitosan- and zein-based nanosystems, targeting multidrug-resistant bacteria in both their sessile and biofilm forms, which will help to design precise strategies for combating biofilms.
Collapse
Affiliation(s)
- Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.R.-M.); (G.L.-G.)
| | - Luis Javier Melgoza-Ramírez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| | - Jesús Augusto Ruíz-Aguirre
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| | - Alejandra Chávez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
| | - Jonathan Javier Magaña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.R.-M.); (G.L.-G.)
| | - María Luisa Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| |
Collapse
|
11
|
Rodríguez-Suárez JM, Gershenson A, Onuh TU, Butler CS. The Heterogeneous Diffusion of Polystyrene Nanoparticles and the Effect on the Expression of Quorum-Sensing Genes and EPS Production as a Function of Particle Charge and Biofilm Age. ENVIRONMENTAL SCIENCE. NANO 2023; 10:2551-2565. [PMID: 37868332 PMCID: PMC10585598 DOI: 10.1039/d3en00219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Biofilms are abundantly present in both natural and engineered environmental systems and will likely influence broader particle fate and transport phenomena. While some developed models describe the interactions between nanoparticles and biofilms, studies are only beginning to uncover the complexity of nanoparticle diffusion patterns. With the knowledge of the nanoparticle potential to influence bacterial processes, more systematic studies are needed to uncover the dynamics of bacteria-nanoparticle interactions. This study explored specific microbial responses to nanoparticles and the heterogeneity of nanoparticle diffusion. Pseudomonas aeruginosa biofilms (cultivated for 48 and 96 hours, representing early and late stages of development) were exposed to charged (aminated and carboxylated) polystyrene nanoparticles. With a combination of advanced fluorescence microscopy and real time quantitative PCR, we characterized the diffusion of polystyrene nanoparticles in P. aeruginosa biofilms and evaluated how biofilms respond to the presence of nanoparticles in terms of the expression of key EPS production-associated genes (pelA and rpsL) and quorum-sensing associated (lasR) genes. Our findings show that nanoparticle diffusion coefficients are independent of the particle surface charge only in mature biofilms and that the presence of nanoparticles influences bacterial gene expression. Independent of the particle's charge polystyrene nanoparticles down-regulated pelA in mature biofilms. By contrast, charge-specific responses were identified in lasR and rpsL gene expression. The targeted genes expression analysis and heterogeneous diffusion models demonstrate that particle charge influences nanoparticle mobility and provides significant insight into the intrinsic structural heterogeneity of P. aeruginosa biofilms. These findings suggest that biofilm maturity and particle charge are essential factors to consider when evaluating the transport of nanoparticles within a biofilm matrix.
Collapse
Affiliation(s)
- Joann M. Rodríguez-Suárez
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst MA 01003
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Timothy Umma Onuh
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst MA 01003
| | - Caitlyn S. Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst MA 01003
| |
Collapse
|
12
|
Wang Z, Xu W, Gao Y, Zha M, Zhang D, Peng X, Zhang H, Wang C, Xu C, Zhou T, Liu D, Niu H, Liu Q, Chen Y, Zhu C, Guo T, Ying H. Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:119. [PMID: 37525255 PMCID: PMC10391976 DOI: 10.1186/s13068-023-02356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/11/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Biofilm-immobilized continuous fermentation has the potential to enhance cellular environmental tolerance, maintain cell activity and improve production efficiency. RESULTS In this study, different biofilm-forming genes (FLO5, FLO8 and FLO10) were integrated into the genome of S. cerevisiae for overexpression, while FLO5 and FLO10 gave the best results. The biofilm formation of the engineered strains 1308-FLO5 and 1308-FLO10 was improved by 31.3% and 58.7% compared to that of the WT strain, respectively. The counts of cells adhering onto the biofilm carrier were increased. Compared to free-cell fermentation, the average ethanol production of 1308, 1308-FLO5 and 1308-FLO10 was increased by 17.4%, 20.8% and 19.1% in the biofilm-immobilized continuous fermentation, respectively. Due to good adhering ability, the fermentation broth turbidity of 1308-FLO5 and 1308-FLO10 was decreased by 22.3% and 59.1% in the biofilm-immobilized fermentation, respectively. Subsequently, for biofilm-immobilized fermentation coupled with membrane separation, the engineered strain significantly reduced the pollution of cells onto the membrane and the membrane separation flux was increased by 36.3%. CONCLUSIONS In conclusion, enhanced biofilm-forming capability of S. cerevisiae could offer multiple benefits in ethanol fermentation.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Weikai Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yixuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingwei Zha
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Di Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiwei Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huifang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Cheng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chenchen Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tingqiu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingguo Liu
- Institute of Industrial Biotechnology, Jiangsu Industrial Technology Research Institute (JITRI), Nanjing, 210032, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ting Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
13
|
Himanshu, Mukherjee R, Vidic J, Leal E, da Costa AC, Prudencio CR, Raj VS, Chang CM, Pandey RP. Nanobiotics and the One Health Approach: Boosting the Fight against Antimicrobial Resistance at the Nanoscale. Biomolecules 2023; 13:1182. [PMID: 37627247 PMCID: PMC10452580 DOI: 10.3390/biom13081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge. Nanoparticles have unique properties that make them highly effective in combating bacterial infections by inhibiting the growth and survival of multi-drug-resistant bacteria in three areas of health: human, animal, and environmental. To conduct an economic evaluation of surveillance in this context, it is crucial to obtain an understanding of the connections to be addressed by several nations by implementing national action policies based on the One Health strategy. This review provides an overview of the progress made thus far and presents potential future directions to optimize the impact of nanobiotics on AMR.
Collapse
Affiliation(s)
- Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan; (H.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan; (H.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Jasmina Vidic
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France;
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil
| | | | - Carlos Roberto Prudencio
- Laboratório de Imunobiotecnologia, Centro de Imunologia, Instituto Adolfo Lutz, 351, São Paulo 01246-902, SP, Brazil
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology, SRM University, Sonepat 131 029, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
- Laboratory Animal Center, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology, SRM University, Sonepat 131 029, Haryana, India
| |
Collapse
|
14
|
Cabezas-Mera FS, Atiencia-Carrera MB, Villacrés-Granda I, Proaño AA, Debut A, Vizuete K, Herrero-Bayo L, Gonzalez-Paramás AM, Giampieri F, Abreu-Naranjo R, Tejera E, Álvarez-Suarez JM, Machado A. Evaluation of the polyphenolic profile of native Ecuadorian stingless bee honeys ( Tribe: Meliponini) and their antibiofilm activity on susceptible and multidrug-resistant pathogens: An exploratory analysis. Curr Res Food Sci 2023; 7:100543. [PMID: 37455680 PMCID: PMC10344713 DOI: 10.1016/j.crfs.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.
Collapse
Affiliation(s)
- Fausto Sebastián Cabezas-Mera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - María Belén Atiencia-Carrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - Irina Villacrés-Granda
- Programa de Doctorado Interuniversitario en Ciencias de la Salud, Universidad de Sevilla, Sevilla, Spain
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - Adrian Alexander Proaño
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Vía a Nayón, Quito, 170124, Ecuador
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Lorena Herrero-Bayo
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Ana M. Gonzalez-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C. Isabel Torres, 21, 39011, Santander, Cantabria, Spain
| | - Reinier Abreu-Naranjo
- Departamento de Ciencias de La Vida, Universidad Estatal Amazónica, Puyo, 160150, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - José M. Álvarez-Suarez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| |
Collapse
|
15
|
Aziz K, Zaidi A, Rehman N. Probiotic profiling of bifidobacteria indigenous to the human intestinal mucosa shows alleviation of dysbiosis-associated pathogen biofilms. Arch Microbiol 2023; 205:176. [PMID: 37027059 DOI: 10.1007/s00203-023-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
The present study was undertaken to isolate bifidobacterial probiotics and characterize the biodiversity of mucosal bacteria in the human distal gut through 16S rRNA amplicon sequencing. Bifidobacterial strains obtained by selective culturing were investigated for biofilms and probiotic characteristics. Both culture-dependent and culture-independent approaches revealed substantial microbial diversity. Bifidobacterium strains yielded robust biofilms with predominantly exopolysaccharides and eDNA matrix. Microscopy revealed species-dependent spatial arrangement of microcolonies. Following probiotic profiling and safety assessment, the inter- and intra-specific interactions in in dual strain bifidobacterial biofilms were studied. As a species, only strains of B. bifidum exhibited exclusively inductive type of interactions whereas in other species, the interactions were more varied. On the other hand, in dual species biofilms, a preponderance of inductive interactions was evident between B. adolescentis, B. thermophilum, B. bifidum, and B. longum. The strong biofilm-formers also diminished pathogenic biofilm viability, and some were proficient in cholesterol removal in vitro. None of the strains exhibited harmful enzymatic activities associated with disease pathology. Interaction between biofilm-forming bifidobacterial strains provides an understanding of their functionality and persistence in the human host, and food or medicine. Their anti-pathogenic activity represents a therapeutic strategy against drug-resistant pathogenic biofilms.
Collapse
Affiliation(s)
- Kanwal Aziz
- National Probiotic Lab-National Institute for Biotechnology and Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Arsalan Zaidi
- National Probiotic Lab-National Institute for Biotechnology and Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan.
| | - Nadeem Rehman
- Kulsum International Hospital (KIH), 2020 Blue Area, Islamabad, Pakistan
| |
Collapse
|
16
|
Bravo P, Lung Ng S, MacGillivray KA, Hammer BK, Yunker PJ. Vertical growth dynamics of biofilms. Proc Natl Acad Sci U S A 2023; 120:e2214211120. [PMID: 36881625 PMCID: PMC10089195 DOI: 10.1073/pnas.2214211120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023] Open
Abstract
During the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics. We propose a heuristic model for vertical growth dynamics based on basic biophysical processes inside a biofilm: diffusion and consumption of nutrients and growth and decay of the colony. This model captures the vertical growth dynamics from short to long time scales (10 min to 14 d) of diverse microorganisms, including bacteria and fungi.
Collapse
Affiliation(s)
- Pablo Bravo
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Kathryn A. MacGillivray
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
17
|
Gotovtsev P. Microbial Cells as a Microrobots: From Drug Delivery to Advanced Biosensors. Biomimetics (Basel) 2023; 8:biomimetics8010109. [PMID: 36975339 PMCID: PMC10046805 DOI: 10.3390/biomimetics8010109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The presented review focused on the microbial cell based system. This approach is based on the application of microorganisms as the main part of a robot that is responsible for the motility, cargo shipping, and in some cases, the production of useful chemicals. Living cells in such microrobots have both advantages and disadvantages. Regarding the advantages, it is necessary to mention the motility of cells, which can be natural chemotaxis or phototaxis, depending on the organism. There are approaches to make cells magnetotactic by adding nanoparticles to their surface. Today, the results of the development of such microrobots have been widely discussed. It has been shown that there is a possibility of combining different types of taxis to enhance the control level of the microrobots based on the microorganisms' cells and the efficiency of the solving task. Another advantage is the possibility of applying the whole potential of synthetic biology to make the behavior of the cells more controllable and complex. Biosynthesis of the cargo, advanced sensing, on/off switches, and other promising approaches are discussed within the context of the application for the microrobots. Thus, a synthetic biology application offers significant perspectives on microbial cell based microrobot development. Disadvantages that follow from the nature of microbial cells such as the number of external factors influence the cells, potential immune reaction, etc. They provide several limitations in the application, but do not decrease the bright perspectives of microrobots based on the cells of the microorganisms.
Collapse
Affiliation(s)
- Pavel Gotovtsev
- National Research Center "Kurchatov Institute", Biotechnology and Bioenergy Department, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy per., 141701 Moscow, Russia
| |
Collapse
|
18
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
19
|
Foamed glass ceramics-an upcycled scaffold for microbial biofilm development. Biotechnol Lett 2023; 45:225-233. [PMID: 36504269 PMCID: PMC9868040 DOI: 10.1007/s10529-022-03332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Glass, a near infinitely recyclable material, can be upcycled to create new products such as foamed glass ceramics, which are essentially a synthetic pumice-like material. This material has been demonstrated to sustain preserved biofilms which have application in various fields based on the deployability of the product and the preserved microbes. Foamed glass ceramics have increased surface area compared to typical soda-lime glass cullet. This material has been explored for variety of applications including the growth, storage and transport of biofilms and microbial colonies which can be preserved and deployed later. Here, we demonstrate the ability for microbial cultures including BioTiger™, Escherichia coli K-12, Bacillus thuringiensis, and two environmental eukaryotic cells to colonize the upcycled glass products, undergo preservation, and regrow after 84 days of storage. The growth of preserved samples is correlated to the time spent incubating prior to preservation. These results demonstrate the applicability of this novel glass-biofilm combination in which various preserved microorganisms are able to be rapidly grown after storage on an upcycled glass product.
Collapse
|
20
|
Tryptone-stabilized silver nanoparticles' potential to mitigate planktonic and biofilm growth forms of Serratia marcescens. J Biol Inorg Chem 2023; 28:139-152. [PMID: 36484825 PMCID: PMC9734995 DOI: 10.1007/s00775-022-01977-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Several microbial pathogens are capable of forming biofilms. These microbial communities pose a serious challenge to the healthcare sector as they are quite difficult to combat. Given the challenges associated with the antibiotic-based management of biofilms, the research focus has now been shifted towards finding alternate treatment strategies that can replace or complement the antibacterial properties of antibiotics. The field of nanotechnology offers several novel and revolutionary approaches to eradicate biofilm-forming microbes. In this study, we evaluated the antibacterial and antibiofilm efficacy of in-house synthesized, tryptone-stabilized silver nanoparticles (Ts-AgNPs) against the superbug Serratia marcescens. The nanoparticles were of spherical morphology with an average hydrodynamic diameter of 170 nm and considerable colloidal stability with a Zeta potential of - 24 ± 6.15 mV. Ts-AgNPs showed strong antibacterial activities with a minimum inhibitory concentration (MIC50) of 2.5 µg/mL and minimum bactericidal concentration (MBC) of 12.5 µg/mL against S. marcescens. The nanoparticles altered the cell surface hydrophobicity and inhibited biofilm formation. The Ts-AgNPs were also effective in distorting pre-existing biofilms by degrading the extracellular DNA (eDNA) component of the extracellular polymeric substance (EPS) layer. Furthermore, reduction in quorum-sensing (QS)-induced virulence factors produced by S. marcescens indicated that Ts-AgNPs attenuated the QS pathway. Together, these findings suggest that Ts-AgNPs are an important anti-planktonic and antibiofilm agent that can be explored for both the prevention and treatment of infections caused by S. marcescens.
Collapse
|
21
|
Huang L, Lu W, Ning Y, Liu J. Reverse effects of Streptococcus mutans physiological states on neutrophil extracellular traps formation as a strategy to escape neutrophil killing. Front Cell Infect Microbiol 2022; 12:1023457. [PMID: 36439223 PMCID: PMC9687095 DOI: 10.3389/fcimb.2022.1023457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 03/07/2024] Open
Abstract
Bacteria in nature are present in different lifestyles with distinct characteristics. Streptococcus mutans is the etiologic pathogen of dental caries and could easily gain access into the bloodstream after oral surgery and adopt a biofilm lifestyle, resulting in infective endocarditis. A growing amount of evidence have revealed that the large web-like structure composed of extracellular DNA and antimicrobial proteins released by neutrophils, named Neutrophil Extracellular Traps (NETs), play an active role in the defense against bacterial invasion. The present study demonstrated that NETs formation was discriminatively affected by S. mutans biofilm and its planktonic counterpart. The free-floating planktonic S. mutans exhibited an active NETs response, whereas the biofilm community exhibited a reverse negative NETs response. Besides, impaired biofilm killing correlated with the decrease in NETs production. Unlike planktonic cells, biofilm avoided the burst of reactive oxygen species (ROS) when co-culture with neutrophils, and the NADPH-oxidase pathway was partially involved. A mice infection model also supported the distinguishing response of neutrophils challenged by different lifestyles of S. mutans. In conclusion, different bacterial physiological states can affect the distinct response of the host-microbe interaction, thus contributing to the anti-pathogen immune response activation and immune surveillance survival.
Collapse
Affiliation(s)
- Lijia Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong, Guangzhou, China
| | - Yang Ning
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| |
Collapse
|
22
|
Krasowski G, Migdał P, Woroszyło M, Fijałkowski K, Chodaczek G, Czajkowska J, Dudek B, Nowicka J, Oleksy-Wawrzyniak M, Kwiek B, Paleczny J, Brożyna M, Junka A. The Assessment of Activity of Antiseptic Agents against Biofilm of Staphylococcus aureus Measured with the Use of Processed Microscopic Images. Int J Mol Sci 2022; 23:ijms232113524. [PMID: 36362310 PMCID: PMC9658380 DOI: 10.3390/ijms232113524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Staphylococcal biofilms are major causative factors of non-healing wound infections. Their treatment algorithms recommend the use of locally applied antiseptic agents to counteract the spread of infection. The efficacy of antiseptics against biofilm is assessed in vitro by a set of standard quantitative and semi-quantitative methods. The development of software for image processing additionally allowed for the obtainment of quantitative data from microscopic images of biofilm dyed with propidium iodine and SYTO-9 reagents, differentiating dead cells from live ones. In this work, the method of assessment of the impact of antiseptic agents on staphylococcal biofilm in vitro, based on biofilms’ processed images, was proposed and scrutinized with regard to clinically relevant antiseptics, polyhexanide, povidone–iodine and hypochlorite. The standard quantitative culturing method was applied to validate the obtained data from processed images. The results indicated significantly higher activity of polyhexanide and povidone–iodine than hypochlorite against staphylococcal biofilm. Taking into account the fact that in vitro results of the efficacy of antiseptic agents against staphylococcal biofilm are frequently applied to back up their use in hospitals and ambulatory units, our work should be considered an important tool; providing reliable, quantitative data in this regard.
Collapse
Affiliation(s)
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland
| | - Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
| | - Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Stanisława Przybyszewskiego 63, 51-148 Wrocław, Poland
| | - Joanna Nowicka
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
| | - Bartłomiej Kwiek
- Faculty of Medicine, Lazarski University, 02-662 Warszawa, Poland
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
- Correspondence:
| |
Collapse
|
23
|
Qais FA, Ahmad I. Anti-quorum sensing and biofilm inhibitory effect of some medicinal plants against gram-negative bacterial pathogens: in vitro and in silico investigations. Heliyon 2022; 8:e11113. [PMID: 36311355 PMCID: PMC9614860 DOI: 10.1016/j.heliyon.2022.e11113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/16/2021] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) in pathogenic bacteria have become a major clinical issue. Quorum sensing regulated bacterial virulence is a promising key drug target for MDR infections. Therefore, the aim of the present work was to assess the anti-quorum sensing properties of selected medicinal plants against bacterial pathogens as well in silico interaction of selected bioactive phytocompounds with QS and biofilm-associated proteins. Based on the ethnopharmacological usage, 18 plants were selected using methanolic extract against Chromobacterium violaceum 12472. The most active extract (Acacia nilotica) was fractionated in increasing polarity solvents (n-hexane, chloroform and ethyl acetate) and tested for anti-QS activity. The most active fraction i.e. ethyl acetate fraction was evaluated for their activity at sub-MICs against QS-associated virulence factors of Pseudomonas aeruginosa PAO1 and Serretia marcescens MTCC 97. Microtiter plate assay and light microscopy was used to determine inhibition of biofilm. Phytochemicals of the ethyl acetate fraction were analysed by GC/MS and LC/MS. Phytocompounds were docked with QS (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT) using Auto dock vina. The MIC of ethyl acetate fraction determined was 250, 500, and 1000 μg/ml against C. violaceum 12472, P. aeruginosa PAO1, and S. marcescens MTCC97 respectively. At sub-MICs QS regulated virulence factors production and inhibited biofilms broadly (more than 50 percent). GC/MS detected the major bioactive compound benzoic acid, 3,4,5-trihydroxy-, methyl ester (61.24 %) and LC-MS detected Retronecine for the first time in A. nilotica pods. In silico, dehydroabietic acid occupied the same cavity as its antagonist in the CviR ligand binding domain. Also, betulin and epicatechin gallate interact with biofilm proteins PilY1 and PilT, preventing biofilm formation. The findings suggest that the phytochemicals of A. nilotica pod could be exploited as an anti-QS agent against Gram-negative pathogens. To discover therapeutic efficacy of standardised bioactive extract/phytochemicals must be tested under in vivo condition.
Collapse
|
24
|
de Lorenzo V. Environmental Galenics: large-scale fortification of extant microbiomes with engineered bioremediation agents. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210395. [PMID: 35757882 PMCID: PMC9234819 DOI: 10.1098/rstb.2021.0395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Contemporary synthetic biology-based biotechnologies are generating tools and strategies for reprogramming genomes for specific purposes, including improvement and/or creation of microbial processes for tackling climate change. While such activities typically work well at a laboratory or bioreactor scale, the challenge of their extensive delivery to multiple spatio-temporal dimensions has hardly been tackled thus far. This state of affairs creates a research niche for what could be called Environmental Galenics (EG), i.e. the science and technology of releasing designed biological agents into deteriorated ecosystems for the sake of their safe and effective recovery. Such endeavour asks not just for an optimal performance of the biological activity at stake, but also the material form and formulation of the agents, their propagation and their interplay with the physico-chemical scenario where they are expected to perform. EG also encompasses adopting available physical carriers of microorganisms and channels of horizontal gene transfer as potential paths for spreading beneficial activities through environmental microbiomes. While some of these propositions may sound unsettling to anti-genetically modified organisms sensitivities, they may also fall under the tag of TINA (there is no alternative) technologies in the cases where a mere reduction of emissions will not help the revitalization of irreversibly lost ecosystems. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
25
|
Jakovljević VD, Radojević ID, Grujić SM, Ostojić AM. Response of selected microbial strains and their consortia to the presence of automobile paints: Biofilm growth, matrix protein content and hydrolytic enzyme activity. Saudi J Biol Sci 2022; 29:103347. [PMID: 35800142 PMCID: PMC9253408 DOI: 10.1016/j.sjbs.2022.103347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
The goal of the current study was to examine the effects of pollutants (White color – CP; Metallic red color – FM; Thinner – CN; Thinner for rinsing paint – MF; Basic color (primer) – FH) originating from the automotive industry on the biofilm growth, matrix protein content, and activity of the hydrolytic enzymes of selected microbial strains in laboratory conditions that mimic the bioreactor conditions. The chosen microorganisms (bacteria, yeasts, and fungi) were isolated from automotive industry wastewater. Pure microbe cultures and their consortia were injected into AMB Media carriers and developed into biofilms. The use of AMB media carriers has been linked to an increase in the active surface area colonized by microorganisms. Afterwards, the carriers were transferred to Erlenmeyer flasks with nutrient media and pollutants at a concentration of 200 μL/mL. The current study found that, depending on the microbial strain, development phase, and chemical structure, the assessed pollutants had an inhibitory or stimulatory influence on the growth of single cultures and their consortia. Statistical analysis found positive correlations between the protein content in the matrix and the biofilm biomass of Rhodotorula mucilaginosa and consortia in CP and FH media, respectively. The proteolytic activity of Candida utilis was very pronounced in media with MF and CN. The best alkaline phosphatase activity (ALP) was achieved in the CN medium of R. mucilaginosa. Acid invertase activity was the highest in the FM and CP media of Escherichia coli and consortia, respectively, whereas the highest alkaline invertase activity was measured in the MF medium of E. coli. A positive correlation was confirmed between ALP and the biofilm biomass of R. mucilaginosa in CP and CN media, as well as between ALP and the biofilm biomass of Penicillium expansum in FM medium. The findings provide novel insights into the extracellular hydrolytic activity of the investigated microbial strains in the presence of auto paints, as well as a good platform for subsequent research into comprehensive biofilm profiling using modern methodologies.
Collapse
Affiliation(s)
- Violeta D. Jakovljević
- Department for Science and Mathematics, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
- Corresponding author at: Department of Science and Mathematics, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia.
| | - Ivana D. Radojević
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Sandra M. Grujić
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Aleksandar M. Ostojić
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
26
|
Vidiella B, Solé R. Ecological firewalls for synthetic biology. iScience 2022; 25:104658. [PMID: 35832885 PMCID: PMC9272386 DOI: 10.1016/j.isci.2022.104658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
It has been recently suggested that engineered microbial strains could be used to protect ecosystems from undesirable tipping points and biodiversity loss. A major concern in this context is the potential unintended consequences, which are usually addressed in terms of designed genetic constructs aimed at controlling overproliferation. Here we present and discuss an alternative view grounded in the nonlinear attractor dynamics of some ecological network motifs. These ecological firewalls are designed to perform novel functionalities (such as plastic removal) while containment is achieved within the resident community. That could help provide a self-regulating biocontainment. In this way, engineered organisms have a limited spread while-when required-preventing their extinction. The basic synthetic designs and their dynamical behavior are presented, each one inspired in a given ecological class of interaction. Their possible applications are discussed and the broader connection with invasion ecology outlined.
Collapse
Affiliation(s)
- Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Cerdanyola del Valles, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
27
|
Huang YL, Hsu YL, Yu YC, Huang HY, Tsai RH, Cheng YT, Chou YL, Sun SY, Wang LA, Lin JY, Chen CC, Hung JH, Ng IS. A systematic approach to reduce intraocular pressure (IOP) for the treatment of glaucoma. Biotechnol Prog 2022; 38:e3285. [PMID: 35801317 DOI: 10.1002/btpr.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness due to increased intraocular pressure (IOP) in the eye. We have developed a novel treatment option for glaucoma based on a real-time IOP-dependent nitric oxide synthase (NOS) and packed in a therapeutic contact lens to reduce the IOP. First, 1.6 nmole nitric oxide was produced from the genetic chassis, which was optimized for isopropyl β-d-1-thiogalactopyranoside (IPTG) induction in a T7 expression system. For biosafety concerns to human being, the csgAD genes responsible for curli biofilm formation in E. coli were co-expressed with NOS in the designated NOSAD strain to strengthen the adherence of cells to the contact lens, thereby preventing the contamination into the eyes. Moreover, NOSAD is a diaminopimelic acid (DAP) auxotrophic strain, which cannot survive without supplementation of DAP and reached the critical consideration of biosafety to the environment. We also demonstrated that the nitric oxide diffusion was 3.6-times enhanced from penetration into the aqueous humor of porcine eyes. The deformation ratio of the contact lens was correlated to the change of IOP by using a digital image correlation (DIC) system in a porcine eye model. The novel systematic approach provides an alternative treatment for glaucoma patients in the future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi-Lun Huang
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Hsu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chu Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Yan Huang
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ren-Hao Tsai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Tien Cheng
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Chou
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yan Sun
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-An Wang
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chung Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Horung Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
29
|
Palomba E, Chiaiese P, Termolino P, Paparo R, Filippone E, Mazzoleni S, Chiusano ML. Effects of Extracellular Self- and Nonself-DNA on the Freshwater Microalga Chlamydomonas reinhardtii and on the Marine Microalga Nannochloropsis gaditana. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111436. [PMID: 35684209 PMCID: PMC9183124 DOI: 10.3390/plants11111436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 05/11/2023]
Abstract
The role of extracellular DNA (exDNA) in soil and aquatic environments was mainly discussed in terms of source of mineral nutrients and of genetic material for horizontal gene transfer. Recently, the self-exDNA (conspecific) has been shown to have an inhibitory effect on the growth of that organism, while the same was not evident for nonself-exDNA (non conspecific). The inhibitory effect of self-exDNA was proposed as a universal phenomenon, although evidence is mainly reported for terrestrial species. The current study showed the inhibitory effect of self-exDNA also on photosynthetic aquatic microorganisms. We showed that self-exDNA inhibits the growth of the microalgae Chlamydomonas reinhardtii and Nannochloropsis gaditana, a freshwater and a marine species, respectively. In addition, the study also revealed the phenotypic effects post self-exDNA treatments. Indeed, Chlamydomonas showed the formation of peculiar heteromorphic aggregates of palmelloid cells embedded in an extracellular matrix, favored by the presence of DNA in the environment, that is not revealed after exposure to nonself-exDNA. The differential effect of self and nonself-exDNA on both microalgae, accompanied by the inhibitory growth effect of self-exDNA are the first pieces of evidence provided for species from aquatic environments.
Collapse
Affiliation(s)
- Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, 80121 Naples, Italy;
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, 80055 Portici, Italy; (P.C.); (E.F.); (S.M.)
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources, National Research Council, 80055 Portici, Italy; (P.T.); (R.P.)
| | - Rosa Paparo
- Institute of Biosciences and Bioresources, National Research Council, 80055 Portici, Italy; (P.T.); (R.P.)
| | - Edgardo Filippone
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, 80055 Portici, Italy; (P.C.); (E.F.); (S.M.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, 80055 Portici, Italy; (P.C.); (E.F.); (S.M.)
| | - Maria Luisa Chiusano
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, 80121 Naples, Italy;
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, 80055 Portici, Italy; (P.C.); (E.F.); (S.M.)
- Correspondence: ; Tel.: +39-81-2539492
| |
Collapse
|
30
|
Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications. World J Microbiol Biotechnol 2022; 38:83. [DOI: 10.1007/s11274-022-03255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
|
31
|
Hemeg HA. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z NATURFORSCH C 2022; 77:365-378. [PMID: 35234019 DOI: 10.1515/znc-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
Some bacteria can withstand the existence of an antibiotic without undergoing any genetic changes. They are neither cysts nor spores and are one of the causes of disease recurrence, accounting for about 1% of the biofilm. There are numerous approaches to eradication and combating biofilm-forming organisms. Nanotechnology is one of them, and it has shown promising results against persister cells. In the review, we go over the persister cell and biofilm in extensive detail. This includes the biofilm formation cycle, antibiotic resistance, and treatment with various nanoparticles. Furthermore, the gene-level mechanism of persister cell formation and its therapeutic interventions with nanoparticles were discussed.
Collapse
Affiliation(s)
- Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| |
Collapse
|
32
|
Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:778. [PMID: 35269266 PMCID: PMC8911807 DOI: 10.3390/nano12050778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.
Collapse
Affiliation(s)
- Suhasini Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida 201310, India;
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, India;
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore 756001, India;
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore 756001, India
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| |
Collapse
|
33
|
Pathak R, Vergis J, Chouhan G, Kumar M, Malik SS, Barbuddhe SB, Rawool DB. Comparative efficiency of carbohydrates on the biofilm‐forming ability of enteroaggregative
Escherichia coli. J Food Saf 2022. [DOI: 10.1111/jfs.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Richa Pathak
- Division of Veterinary Public Health ICAR‐Indian Veterinary Research Institute Bareilly Uttar Pradesh India
- Department of Biotechnology, School of Engineering and Technology Sharda University Greater Noida Uttar Pradesh India
| | - Jess Vergis
- Division of Veterinary Public Health ICAR‐Indian Veterinary Research Institute Bareilly Uttar Pradesh India
| | - Garima Chouhan
- Department of Biotechnology, School of Engineering and Technology Sharda University Greater Noida Uttar Pradesh India
| | - Manesh Kumar
- Division of Veterinary Public Health ICAR‐Indian Veterinary Research Institute Bareilly Uttar Pradesh India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health ICAR‐Indian Veterinary Research Institute Bareilly Uttar Pradesh India
| | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health ICAR‐Indian Veterinary Research Institute Bareilly Uttar Pradesh India
- ICAR‐National Research Centre on Meat Chengicherla Telangana India
| |
Collapse
|
34
|
Vasilchenko NG, Prazdnova EV, Lewitin E. Epigenetic Mechanisms of Gene Expression Regulation in Bacteria of the Genus Bacillus. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Maurya A, Kumar PS, Raj A. Characterization of biofilm formation and reduction of hexavalent chromium by bacteria isolated from tannery sludge. CHEMOSPHERE 2022; 286:131795. [PMID: 34371360 DOI: 10.1016/j.chemosphere.2021.131795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Biofilm formation ability of bacteria makes them potential in the field of tannery effluent treatment. However, the hazardous nature of effluent and environmental conditions may disturb the biofilm formation ability of bacteria which ultimately affects their effluent treatment efficiency. Accordingly, we isolated and characterized biofilm-forming bacteria Bacillus vallismortis (MT027009), Bacillus haynesii (MT027008), and Alcaligenes aquatilis (MT027005) from tannery sludge and examined them for biofilm formation under variable environmental conditions. Biofilm formation in tryptic soy broth (TSB) at different incubation times (24-120 h) revealed that the biofilm formation activity of the strain B. haynesii was not affected by incubation time, whereas the increase in biofilm formation was observed in the case of B. vallismortis (28 %) and A. aquatilis (52 %) after 48 h. The medium pH (pH 5.0-9.0) had a limited effect on biofilm formation except in the case of A. aquatilis at pH 5.0 (94 %) and pH 9.0 (80 %). Furthermore, compared to the controls (only TSB), the strains B. vallismortis, B. haynesii, and A. aquatilis showed enhanced biofilm formation in undiluted tannery effluent (28, 33, and 21 %) and 25 mg L-1 Cr(VI) (23 %, 48 % 32 %). The biofilm structure was influenced by Cr(VI) as revealed by scanning electron microscopy (SEM) analysis. The results of Cr(VI) bioreduction studies suggest that bacterial biofilm (60-99 %) has a greater potential to remove Cr(VI) than planktonic cells (43-94 %). The results of the study provide important data on biofilm formation by indigenous bacteria in effluent environment conditions, making them potential isolates for tannery effluent treatment.
Collapse
Affiliation(s)
- Annapurna Maurya
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
36
|
Mukherjee A, Zaveri P, Patel R, Shah MT, Munshi NS. Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113546. [PMID: 34435573 DOI: 10.1016/j.jenvman.2021.113546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Microbial Fuel Cell (MFC) is an innovative bio-electrochemical approach which converts biochemical energy inherent in wastewater into electrical energy, thus contributing to circular economy. Five electrogenic bacteria, Kocuria rosea (GTPAS76), two strains of Bacillus circulans (GTPO28 and GTPAS54), and two strains of Corynebacterium vitaeruminis (GTPO38 and GTPO42) were isolated from a common effluent treatment plant (CETP) and were used individually as well as in consortium form to run double chambered "H" type microbial fuel cell. Individually they could produce voltage in the range of 0.4-0.7 V in the MFC systems. Consortium developed using GTPO28, GTPO38, GTPAS54 and GTPAS76 were capable of producing voltage output of 0.8 V with 81.81 % and 64 % COD and BOD reduction, respectively. The EPS production capacity and electricity generation by the isolated bacteria correlated significantly (r = 0.72). Various parameters like, effect of preformed biofilm, length of salt bridge and its reuse, aeration, substrate concentration and external resistance were studied in detail. The study emphasizes on improving the commercialization aspect of MFC with repeated use of salt bridge and improving wastewater treatment potential after optimization of MFC system. Polarization curve and power density trends were studied in optimized MFC. A maximum power density and current density achieved were 18.15 mW/m2 and 370.37 mA/m2, respectively using 5 mM sodium benzoate. This study reports the use of sodium benzoate as a substrate along with reusing of the salt bridge in MFC study with promising results for BOD and COD reduction, proving it to be futuristic technology for bio-based circular ecosystem development.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Purvi Zaveri
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India; Biocare Research India Pvt. Ltd., Ahmedabad, 380006, Gujarat, India
| | - Rushika Patel
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India; School of Sciences, Rai University, Ahmedabad, 382260, Gujarat, India
| | - Manisha T Shah
- Department of Electrical Engineering, Institute of Technology, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Nasreen S Munshi
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
37
|
Buzzo JR, Devaraj A, Gloag ES, Jurcisek JA, Robledo-Avila F, Kesler T, Wilbanks K, Mashburn-Warren L, Balu S, Wickham J, Novotny LA, Stoodley P, Bakaletz LO, Goodman SD. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 2021; 184:5740-5758.e17. [PMID: 34735796 DOI: 10.1016/j.cell.2021.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
Biofilms are community architectures adopted by bacteria inclusive of a self-formed extracellular matrix that protects resident bacteria from diverse environmental stresses and, in many species, incorporates extracellular DNA (eDNA) and DNABII proteins for structural integrity throughout biofilm development. Here, we present evidence that this eDNA-based architecture relies on the rare Z-form. Z-form DNA accumulates as biofilms mature and, through stabilization by the DNABII proteins, confers structural integrity to the biofilm matrix. Indeed, substances known to drive B-DNA into Z-DNA promoted biofilm formation whereas those that drive Z-DNA into B-DNA disrupted extant biofilms. Importantly, we demonstrated that the universal bacterial DNABII family of proteins stabilizes both bacterial- and host-eDNA in the Z-form in situ. A model is proposed that incorporates the role of Z-DNA in biofilm pathogenesis, innate immune response, and immune evasion.
Collapse
Affiliation(s)
- John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Aishwarya Devaraj
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Erin S Gloag
- Department of Orthopedics, Ohio State University, Columbus, OH 43210, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Theresa Kesler
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathryn Wilbanks
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lauren Mashburn-Warren
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sabarathnam Balu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Paul Stoodley
- Department of Orthopedics, Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA; National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton S017 1BJ, UK
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Cong S, Xu Y, Lu Y. Growth Coordination Between Butyrate-Oxidizing Syntrophs and Hydrogenotrophic Methanogens. Front Microbiol 2021; 12:742531. [PMID: 34603271 PMCID: PMC8481629 DOI: 10.3389/fmicb.2021.742531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Syntrophy is a thermodynamically required mutualistic cooperation between fatty acid-oxidizing bacteria and methanogens that plays the important role in organic decomposition and methanogenesis in anoxic environments. In this study, three experiments were conducted to evaluate the cell-to-cell interaction in a thermophilic coculture consisting of Syntrophothermus lipocalidus and Methanocella conradii and a mesophilic coculture consisting of Syntrophomonas wolfei and Methanococcus maripaludis. First, syntrophs and methanogens were inoculated at different initial cell ratios to evaluate the growth synchronization. The quantitative PCR analysis revealed that the organism with a lower relative abundance at the beginning always grew faster, and the cell ratio converged over time to relative constant values in both the thermophilic and mesophilic cocultures. Next, intermittent ultrasound and constant shaking treatments were used to evaluate the influence of physical disturbance on microbial aggregation in the mesophilic coculture. The fluorescence in situ hybridization and scanning electron microscopy revealed that the tendency of syntrophic aggregation was not affected by the physical disturbances, although the activity was slightly depressed. Syntrophomonas dominated in the initial microbial aggregates, which, however, did not grow until Methanococcus was attached and increased to a significant extent, indicating the local growth synchronization during the formation and maturation of syntrophic aggregates. Last, microfluidic experiments revealed that whether or not Syntrophomonas or Methanococcus was loaded first, the second organism preferred moving to the place where the first organism was located, suggesting the cell-to-cell attraction between Syntrophomonas and Methanococcus. Collectively, our study demonstrated the growth synchronization and cell-to-cell attraction between the butyrate-oxidizing bacteria and methanogens for optimizing the syntrophic cooperation.
Collapse
Affiliation(s)
- Shuqi Cong
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yiqin Xu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
39
|
Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS One 2021; 16:e0256748. [PMID: 34473763 PMCID: PMC8412375 DOI: 10.1371/journal.pone.0256748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/14/2021] [Indexed: 12/04/2022] Open
Abstract
Rising incidents of urinary tract infections (UTIs) among catheterized patients is a noteworthy problem in clinic due to their colonization of uropathogens on abiotic surfaces. Herein, we have examined the surface modification of urinary catheter by embedding with eco-friendly synthesized phytomolecules-capped silver nanoparticles (AgNPs) to prevent the invasion and colonization of uropathogens. The preliminary confirmation of AgNPs production in the reaction mixture was witnessed by the colour change and surface resonance plasmon (SRP) band at 410nm by UV–visible spectroscopy. The morphology, size, crystalline nature, and elemental composition of attained AgNPs were further confirmed by the transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) technique, Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The functional groups of AgNPs with stabilization/capped phytochemicals were detected by Fourier-transform infrared spectroscopy (FTIR). Further, antibiofilm activity of synthesized AgNPs against biofilm producers such as Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were determined by viability assays and micrographically. AgNPs coated and coating-free catheters performed to treat with bacterial pathogen to analyze the mat formation and disruption of biofilm formation. Synergistic effect of AgNPs with antibiotic reveals that it can enhance the activity of antibiotics, AgNPs coated catheter revealed that, it has potential antimicrobial activity and antibiofilm activity. In summary, C. carandas leaf extract mediated synthesized AgNPs will open a new avenue and a promising template to embed on urinary catheter to control clinical pathogens.
Collapse
Affiliation(s)
| | - Ranjithkumar Dhandapani
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Velmurugan Palanivel
- Centre for for Material Engineering and Regenerative Medicine Bharath Institute of Higher Education, Chennai, India
- * E-mail: (SM); (VP)
| | | | - Ragul Paramasivam
- Chimertech Innovations LLP, Tamilnadu Veterinary and Animal Science University, Chennai, India
| | - Saravanan Muthupandian
- Division of Biomedical sciences, College of Health Sciences, School of Medicine, Mekelle, Ethiopia
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- * E-mail: (SM); (VP)
| |
Collapse
|
40
|
Schmid F, Novion Ducassou J, Couté Y, Gescher J. Developing Rhodobacter sphaeroides for cathodic biopolymer production. BIORESOURCE TECHNOLOGY 2021; 336:125340. [PMID: 34090098 DOI: 10.1016/j.biortech.2021.125340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
In this work, Rhodobacter sphaeroides was identified as a potential cathodic production strain for photoautotrophic production processes. First, a stable cultivation in a bioelectrochemical system (BES) was established under conditions in which hydrogen produced by a poised cathode served as an electron donor. It was shown that both the introduction of a plasmid vector and exposure to the corresponding antibiotic selection pressure caused a strong improvement in both cathodic biofilm formation and electrochemical properties. A quantitative proteomic analysis identified key players in the molecular adaptation to biofilm growth on the cathodic surface. Furthermore, biofilm formation kinetics were quantified by optical coherence tomography measurements, which showed a strong tendency for biofilm formation together with a robust biofilm architecture. A media switch to N2-limited conditions resulted in increased cathodic poly(3-hydroxybutyrate) (PHB) accumulation, suggesting R. sphaeroides as a potential strain for photoautotrophic PHB production in future industrial applications.
Collapse
Affiliation(s)
- Ferdinand Schmid
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe Germany
| | - Julia Novion Ducassou
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble France
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe Germany.
| |
Collapse
|
41
|
Barabadi H, Mojab F, Vahidi H, Marashi B, Talank N, Hosseini O, Saravanan M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108647] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
A regulatory network involving Rpo, Gac and Rsm for nitrogen-fixing biofilm formation by Pseudomonas stutzeri. NPJ Biofilms Microbiomes 2021; 7:54. [PMID: 34210981 PMCID: PMC8249394 DOI: 10.1038/s41522-021-00230-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Biofilm and nitrogen fixation are two competitive strategies used by many plant-associated bacteria; however, the mechanisms underlying the formation of nitrogen-fixing biofilms remain largely unknown. Here, we examined the roles of multiple signalling systems in the regulation of biofilm formation by root-associated diazotrophic P. stutzeri A1501. Physiological analysis, construction of mutant strains and microscale thermophoresis experiments showed that RpoN is a regulatory hub coupling nitrogen fixation and biofilm formation by directly activating the transcription of pslA, a major gene involved in the synthesis of the Psl exopolysaccharide component of the biofilm matrix and nifA, the transcriptional activator of nif gene expression. Genetic complementation studies and determination of the copy number of transcripts by droplet digital PCR confirmed that the regulatory ncRNA RsmZ serves as a signal amplifier to trigger biofilm formation by sequestering the translational repressor protein RsmA away from pslA and sadC mRNAs, the latter of which encodes a diguanylate cyclase that synthesises c-di-GMP. Moreover, RpoS exerts a braking effect on biofilm formation by transcriptionally downregulating RsmZ expression, while RpoS expression is repressed posttranscriptionally by RsmA. These findings provide mechanistic insights into how the Rpo/Gac/Rsm regulatory networks fine-tune nitrogen-fixing biofilm formation in response to the availability of nutrients.
Collapse
|
43
|
Barabadi H, Mohammadzadeh A, Vahidi H, Rashedi M, Saravanan M, Talank N, Alizadeh A. Penicillium chrysogenum-Derived Silver Nanoparticles: Exploration of Their Antibacterial and Biofilm Inhibitory Activity Against the Standard and Pathogenic Acinetobacter baumannii Compared to Tetracycline. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02121-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci Rep 2021; 11:12619. [PMID: 34135368 PMCID: PMC8209203 DOI: 10.1038/s41598-021-92006-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
With multidrug-resistant bacterial pathogens on the rise, there is a strong research focus on alternative antibacterial treatments that could replace or complement classical antibiotics. Metallic nanoparticles, and in particular silver nanoparticles (AgNPs), have been shown to kill bacterial biofilms effectively, but their chemical synthesis often involves environmentally unfriendly by-products. Recent studies have shown that microbial and plant extracts can be used for the environmentally friendly synthesis of AgNPs. Herein we report a procedure for producing AgNPs using a putative Cedecea sp. strain isolated from soil. The isolated bacterial strain showed a remarkable potential for producing spherical, crystalline and stable AgNPs characterized by UV–visible spectroscopy, transmission electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. The concentration of produced nanoparticles was 1.31 µg/µl with a negative surface charge of − 15.3 mV and nanoparticles size ranging from 10–40 nm. The AgNPs was tested against four pathogenic microorganisms S. epidermidis, S. aureus, E. coli and P. aeruginosa. The nanoparticles exhibited strong minimum inhibitory concentration (MIC) values of 12.5 and 6.25 µg/µl and minimum bactericidal concentration (MBC) values of 12.5 and 12.5 µg/mL against E. coli and P. aeruginosa, respectively. One distinguishing feature of AgNPs produced by Cedecea sp. extracts is their extreme stability. Inductively coupled plasma mass spectrometry and thermogravimetric analysis demonstrated that the produced AgNPs are stable for periods exceeding one year. This means that their strong antibacterial effects, demonstrated against E. coli and P. aeruginosa biofilms, can be expected to persist during extended periods.
Collapse
|
45
|
|
46
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
47
|
Molina-Santiago C, de Vicente A, Romero D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Comput Struct Biotechnol J 2021; 19:2796-2805. [PMID: 34093994 PMCID: PMC8138678 DOI: 10.1016/j.csbj.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate megastructure made by bacterial cells to form architecturally complex biostructures called biofilms. Protection of cells, modulation of cell-to-cell signalling, cell differentiation and environmental sensing are functions of the ECM that reflect its diverse chemical composition. Proteins, polysaccharides and eDNA have specific functionalities while cooperatively interacting to sustain the architecture and biological relevance of the ECM. The accumulated evidence on the chemical heterogeneity and specific functionalities of ECM components has attracted attention because of their potential biotechnological applications, from agriculture to the water and food industries. This review compiles information on the most relevant bacterial ECM components, the biophysical and chemical features responsible for their biological roles, and their potential to be further translated into biotechnological applications.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| |
Collapse
|
48
|
Properties of the Extracellular Polymeric Substance Layer from Minimally Grown Planktonic Cells of Listeria monocytogenes. Biomolecules 2021; 11:biom11020331. [PMID: 33671666 PMCID: PMC7926710 DOI: 10.3390/biom11020331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterium Listeria monocytogenes is a serious concern to food processing facilities because of its persistence. When liquid cultures of L. monocytogenes were prepared in defined media, it was noted that planktonic cells rapidly dropped out of suspension. Zeta potential and hydrophobicity assays found that the cells were more negatively charged (−22, −18, −10 mV in defined media D10, MCDB 202 and brain heart infusion [BHI] media, respectively) and were also more hydrophobic. A SEM analysis detected a capsular-like structure on the surface of cells grown in D10 media. A crude extract of the extracellular polymeric substance (EPS) was found to contain cell-associated proteins. The proteins were removed with pronase treatment. The remaining non-proteinaceous component was not stained by Coomassie blue dye and a further chemical analysis of the EPS did not detect significant amounts of sugars, DNA, polyglutamic acid or any other specific amino acid. When the purified EPS was subjected to attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, the spectra obtained did not match the profile of any of the 12 reference compounds used. An x-ray diffraction (XRD) analysis showed that the EPS was amorphous and a nuclear magnetic resonance (NMR) analysis detected the presence of glycerol. An elemental energy dispersive x-ray (EDX) analysis showed traces of phosphorous as a major component. In conclusion, it is proposed that the non-proteinaceous component may be phospholipid in nature, possibly derived from the cell wall lipoteichoic acid.
Collapse
|
49
|
Dubbin K, Dong Z, Park DM, Alvarado J, Su J, Wasson E, Robertson C, Jackson J, Bose A, Moya ML, Jiao Y, Hynes WF. Projection Microstereolithographic Microbial Bioprinting for Engineered Biofilms. NANO LETTERS 2021; 21:1352-1359. [PMID: 33508203 DOI: 10.1021/acs.nanolett.0c04100] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes are critical drivers of all ecosystems and many biogeochemical processes, yet little is known about how the three-dimensional (3D) organization of these dynamic organisms contributes to their overall function. To probe how biofilm structure affects microbial activity, we developed a technique for patterning microbes in 3D geometries using projection stereolithography to bioprint microbes within hydrogel architectures. Bacteria were printed and monitored for biomass accumulation, demonstrating postprint viability of cells using this technique. We verified our ability to integrate biological and geometric complexity by fabricating a printed biofilm with two E. coli strains expressing different fluorescence. Finally, we examined the target application of microbial absorption of metal ions to investigate geometric effects on both the metal sequestration efficiency and the uranium sensing capability of patterned engineered Caulobacter crescentus strains. This work represents the first demonstration of the stereolithographic printing of microbials and presents opportunities for future work of engineered biofilms and other complex 3D structured cultures.
Collapse
Affiliation(s)
- Karen Dubbin
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ziye Dong
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Dan M Park
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Javier Alvarado
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jimmy Su
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Elisa Wasson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Claire Robertson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Julie Jackson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Arpita Bose
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Monica L Moya
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Yongqin Jiao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - William F Hynes
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
50
|
Maggio F, Rossi C, Chaves-López C, Serio A, Valbonetti L, Pomilio F, Chiavaroli AP, Paparella A. Interactions between L. monocytogenes and P. fluorescens in Dual-Species Biofilms under Simulated Dairy Processing Conditions. Foods 2021; 10:foods10010176. [PMID: 33467189 PMCID: PMC7829993 DOI: 10.3390/foods10010176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
In dairy processing environments, many bacterial species adhere and form biofilms on surfaces and equipment, leading to foodborne illness and food spoilage. Among them, Listeria monocytogenes and Pseudomonas spp. could be present in mixed-species biofilms. This study aimed to evaluate the interactions between L. monocytogenes and P. fluorescens in biofilms simulating dairy processing conditions, as well as the capability of P. fluorescens in co-culture to produce the blue pigment in a Ricotta-based model system. The biofilm-forming capability of single- and mixed-cultures was evaluated on polystyrene (PS) and stainless steel (SS) surfaces at 12 °C for 168 h. The biofilm biomass was measured, the planktonic and sessile cells and the carbohydrates in biofilms were quantified. The biofilms were also observed through Confocal Laser Scanning Microscopy analysis. Results showed that only P. fluorescens was able to form biofilms on PS. Moreover, in dual-species biofilms at the end of the incubation time (168 h at 12 °C), a lower biomass compared to P. fluorescens mono-species was observed on PS. On SS, the biofilm cell population of L. monocytogenes was higher in the dual-species than in mono-species, particularly after 48 h. Carbohydrates quantity in the dual-species system was higher than in mono-species and was revealed also at 168 h. The production of blue pigment by P. fluorescens was revealed both in single- and co-culture after 72 h of incubation (12 °C). This work highlights the interactions between the two species, under the experimental conditions studied in the present research, which can influence biofilm formation (biomass and sessile cells) but not the capability of P. fluorescens to produce blue pigment.
Collapse
Affiliation(s)
- Francesca Maggio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.M.); (C.R.); (C.C.-L.); (A.S.); (L.V.); (A.P.C.)
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.M.); (C.R.); (C.C.-L.); (A.S.); (L.V.); (A.P.C.)
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.M.); (C.R.); (C.C.-L.); (A.S.); (L.V.); (A.P.C.)
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.M.); (C.R.); (C.C.-L.); (A.S.); (L.V.); (A.P.C.)
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.M.); (C.R.); (C.C.-L.); (A.S.); (L.V.); (A.P.C.)
| | - Francesco Pomilio
- Food Hygiene Unit, NRL for L. monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy;
| | - Alessio Pio Chiavaroli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.M.); (C.R.); (C.C.-L.); (A.S.); (L.V.); (A.P.C.)
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.M.); (C.R.); (C.C.-L.); (A.S.); (L.V.); (A.P.C.)
- Correspondence: ; Tel.: +39-0861-266944
| |
Collapse
|