1
|
Schmeißer W, Siegert M, Thiermann H, Rein T, John H. Highly stable peptide adducts from hard keratins as biomarkers to verify local sulfur mustard exposure of hair by high-resolution mass spectrometry. Arch Toxicol 2022; 96:2287-2298. [PMID: 35570235 PMCID: PMC9217830 DOI: 10.1007/s00204-022-03307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 11/03/2022]
Abstract
In the recent past, the blister agent sulfur mustard (SM) deployed by the terroristic group Islamic State has caused a huge number of civilian and military casualties in armed conflicts in the Middle East. The vaporized or aerolized agent might be inhaled and have direct contact to skin and hair. Reaction products of SM with plasma proteins (adducts) represent well-established systemic targets for the bioanalytical verification of exposure. The SM-derived hydroxyethylthioethyl (HETE)-moiety is attached to nucleophilic amino acid side chains and allows unambiguous adduct detection. For shipping of common blood and plasma samples, extensive packaging rules are to be followed as these matrices are considered as potentially infectious material. In contrast, hair is considered as non-infectious thus making its handling and transportation much less complicated. Therefore, we addressed this matrix to develop a procedure for bioanalytical verification. Following optimized lysis of SM-treated human scalp hair and pepsin-catalyzed proteolysis of adducts of keratin type I and II, microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) was used to detect three alkylated keratin-derived biomarker peptides: AE(-HETE)IRSDL, FKTIE(-HETE)EL, and LE(-HETE)TKLQF simultaneously. All bear the HETE-moiety bound to a glutamic acid residue. Protein adducts were stable for at least 14 weeks at ambient temperature and contact to air, and were not affected by washing the hair with shampoo. The biomarker peptides were also obtained from beard, armpit, abdominal, and pubic hair. This is the first report introducing stable local peptide adduct biomarkers from hair, that is easily accessible by a non-invasive sampling process.
Collapse
Affiliation(s)
- Wolfgang Schmeißer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.,Department of Chemistry, Humboldt-Universität Zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany.,Proteros Biostructures GmbH, Bunsenstrasse 7a, 82152, Planegg, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
2
|
Zhang J, Chen Z, Zhang Y, Wang X, Ouyang J, Zhu J, Yan Y, Sun X, Wang F, Li X, Ye H, Sun S, Yu Q, Sun J, Ge J, Li Q, Han Q, Pu Y, Gu Z. Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation. LAB ON A CHIP 2021; 21:3804-3818. [PMID: 34581381 DOI: 10.1039/d1lc00099c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
3D skin equivalents have been increasingly used in the pharmaceutical and cosmetic industries, but the troublesome operation procedure and low throughput restricted their applications as in vitro safety evaluation models. Organ-on-a-chip, an emerging powerful tool in tissue/organ modeling, could be utilized to improve the function of the skin model compared with that of traditional static skin models, as well as innovate an automatic and modular way for construction or detection. In this research, we grew and differentiated human keratinocytes within a microfluidic chip to construct an integrated epidermis-on-a-chip (iEOC) system, which is specially designed to integrate multi-culture units with integrated bubble removal structures as well as trans-epithelial electrical resistance (TEER) electrodes for barrier function detection in situ. After 14 days of culture at the air-liquid interface (ALI), the constructed epidermis-on-a-chip demonstrated histological features similar to those observed in normal human epidermis: a proliferating basal layer and differentiating spinous, granular, and cornified layers, especially the TEER value reached 3 kΩ cm2 and prevented more than 99% of Cascade Blue-607 Da permeation owing to the enhanced barrier function. Further immunofluorescence analysis also indicated typical keratin expression including keratin-14, keratin-10, loricrin, involucrin, and filaggrin. With the TEER monitoring integration in the chip, it could be convenient for scale-up high-quality epidermis-on-chip fabrication and correlated investigation. Additionally, the iEOC can distinguish all the 10 known toxins and non-toxins in irritation measurement by MTT assay, which is consistent with animal testing according to the OECD. Preliminarily detection of irritation responses like inflammatory cytokines also predicted different irritation reactions. This high fidelity epidermis-on-a-chip could be a potential alternative in in vitro skin irritation evaluation. This microchip and automated microfluidic systems also pave the way for scalable testing in multidisciplinary industrial applications.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Yaoyao Zhang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xingchi Wang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jun Ouyang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jianfeng Zhu
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Yuchuan Yan
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiaowei Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Fei Wang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiaoran Li
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Huan Ye
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Shiqi Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Qingdong Yu
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jiawei Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jianjun Ge
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| |
Collapse
|
3
|
Schmeißer W, Lüling R, Steinritz D, Thiermann H, Rein T, John H. Transthyretin as a target of alkylation and a potential biomarker for sulfur mustard poisoning: Electrophoretic and mass spectrometric identification and characterization. Drug Test Anal 2021; 14:80-91. [PMID: 34397154 DOI: 10.1002/dta.3146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022]
Abstract
For the verification of exposure to the banned blister agent sulfur mustard (SM) and the better understanding of its pathophysiology, protein adducts formed with endogenous proteins represent an important field of toxicological research. SM and its analogue 2-chloroethyl ethyl sulfide (CEES) are well known to alkylate nucleophilic amino acid side chains, for example, free-thiol groups of cysteine residues. The specific two-dimensional thiol difference gel electrophoresis (2D-thiol-DIGE) technique making use of maleimide dyes allows the staining of free cysteine residues in proteins. As a consequence of alkylation by, for example, SM or CEES, this staining intensity is reduced. 2D-thiol-DIGE analysis of human plasma incubated with CEES and subsequent matrix-assisted laser desorption/ionization time-of-flight (tandem) mass-spectrometry, MALDI-TOF MS(/MS), revealed transthyretin (TTR) as a target of alkylating agents. TTR was extracted from SM-treated plasma by immunomagnetic separation (IMS) and analyzed after tryptic cleavage by microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS). It was found that the Cys10 -residue of TTR present in the hexapeptide C(-HETE)PLMVK was alkylated by the hydroxyethylthioethyl (HETE)-moiety, which is characteristic for SM exposure. It was shown that alkylated TTR is stable in plasma in vitro at 37°C for at least 14 days. In addition, C(-HETE)PLMVK can be selectively detected, is stable in the autosampler over 24 h, and shows linearity in a broad concentration range from 15.63 μM to 2 mM SM in plasma in vitro. Accordingly, TTR might represent a complementary protein marker molecule for the verification of SM exposure.
Collapse
Affiliation(s)
| | - Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Bundeswehr Medical Service Academy, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
4
|
Cheng X, Liu C, Yang Y, Liang L, Chen B, Yu H, Xia J, Liu S, Li Y. Advances in sulfur mustard-induced DNA adducts: Characterization and detection. Toxicol Lett 2021; 344:46-57. [PMID: 33705862 DOI: 10.1016/j.toxlet.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion. Various methods have been used to analyze DNA damage caused by SM. Among these methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology stands out and makes it possible to observe damage in view of biomarkers induced by SM. Sample preparation is critical for detection by LC-MS/MS and mainly includes DNA isolation, adduct hydrolysis, and adduct purification. Moreover, optimization of chromatographic conditions, selection of MS transitions, and quantitative strategies are also essential. SM-DNA adducts are generally considered to be N7-HETEG, O6-HETEG, N7-BisG, and N3-HETEA. This article proposes some other possibilities of SM-DNA adducts for the identification of SM genotoxicity.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Longhui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Yihe Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China.
| |
Collapse
|
5
|
Lüling R, Schmeißer W, Siegert M, Mückter H, Dietrich A, Thiermann H, Gudermann T, John H, Steinritz D. Identification of creatine kinase and alpha-1 antitrypsin as protein targets of alkylation by sulfur mustard. Drug Test Anal 2020; 13:268-282. [PMID: 32852113 DOI: 10.1002/dta.2916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Sulfur mustard (SM) is a toxic chemical warfare agent deployed in several conflicts within the last 100 years and still represents a threat in terroristic attacks and warfare. SM research focuses on understanding the pathophysiology of SM and identifying novel biomarkers of exposure. SM is known to alkylate nucleophilic moieties of endogenous proteins, for example, free thiol groups of cysteine residues. The two-dimensional-thiol-differences in gel electrophoresis (2D-thiol-DIGE) technique is an initial proteomics approach to detect proteins with free cysteine residues. These amino acids are selectively labeled with infrared-maleimide dyes visualized after GE. Cysteine residues derivatized by alkylating agents are no longer accessible for the maleimide-thiol coupling resulting in the loss of the fluorescent signal of the corresponding protein. To prove the applicability of 2D-thiol-DIGE, this technology was exemplarily applied to neat human serum albumin treated with SM, to lysates from human cell culture exposed to SM as well as to human plasma exposed to CEES (chloroethyl ethyl sulfide, an SM analogue). Exemplarily, the most prominent proteins modified by SM were identified by matrix-assisted laser desorption/ionization time-of-flight (tandem) mass spectrometry, MALDI-TOF MS(/MS), as creatine kinase (CK) from human cells and as alpha-1 antitrypsin (A1AT) from plasma samples. Peptides containing the residue Cys282 of CK and Cys232 of A1AT were unambiguously identified by micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS) as being alkylated by SM bearing the specific hydroxyethylthioethyl-(HETE)-moiety. Both peptides might represent potential biomarkers of SM exposure. This is the first report introducing these endogenous proteins as targets of SM alkylation.
Collapse
Affiliation(s)
- Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | | | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Bundeswehr Medical Service Academy, Munich, Germany
| |
Collapse
|
6
|
Rose D, Schmidt A, Brandenburger M, Sturmheit T, Zille M, Boltze J. Sulfur mustard skin lesions: A systematic review on pathomechanisms, treatment options and future research directions. Toxicol Lett 2017; 293:82-90. [PMID: 29203275 DOI: 10.1016/j.toxlet.2017.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare, which has been used for one hundred years. However, its exact pathomechanisms are still incompletely understood and there is no specific therapy available so far. In this systematic review, studies published between January 2000 and July 2017 involving pathomechanisms and experimental treatments of SM-induced skin lesions were analyzed to summarize current knowledge on SM pathology, to provide an overview on novel treatment options, and to identify promising targets for future research to more effectively counter SM effects. We suggest that future studies should focus on (I) systemic effects of SM intoxication due to its distribution throughout the body, (II) removal of SM depots that continuously release active compound contributing to chronic skin damage, and (III) therapeutic options that counteract the pleiotropic effects of SM.
Collapse
Affiliation(s)
- Dorothee Rose
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Universität der Bundeswehr, Fakultät für Humanwissenschaften, Department für Sportwissenschaft, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.
| | - Matthias Brandenburger
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Tabea Sturmheit
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Marietta Zille
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany; Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| |
Collapse
|
7
|
Jugg BJA, Hoard-Fruchey H, Rothwell C, Dillman JF, David J, Jenner J, Sciuto AM. Acute Gene Expression Profile of Lung Tissue Following Sulfur Mustard Inhalation Exposure in Large Anesthetized Swine. Chem Res Toxicol 2016; 29:1602-1610. [DOI: 10.1021/acs.chemrestox.6b00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Heidi Hoard-Fruchey
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| | - Cristin Rothwell
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| | - James F. Dillman
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| | - Jonathan David
- CBR Division, Dstl Porton Down, Salisbury, Wiltshire SP4
0JQ, U.K
| | - John Jenner
- CBR Division, Dstl Porton Down, Salisbury, Wiltshire SP4
0JQ, U.K
| | - Alfred M. Sciuto
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| |
Collapse
|
8
|
Identification and validation of vesicant therapeutic targets using a high-throughput siRNA screening approach. Arch Toxicol 2014; 90:375-83. [PMID: 25537185 DOI: 10.1007/s00204-014-1427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Sulfur mustard [SM, bis-(2-chloroethyl) sulfide] is a highly reactive bifunctional alkylating agent that has been used as a vesicating agent in warfare scenarios to induce severe lung, skin, and eye injury. SM cutaneous lesions are characterized by both vesication and severe inflammation, but the molecular mechanisms that lead to these signs and symptoms are not well understood. There is a pressing need for effective therapeutics to treat this injury. An understanding of the molecular mechanisms of injury and identification of potential therapeutic targets is necessary for rational therapeutic development. We have applied a high-throughput small interfering RNA (siRNA) screening approach to the problem of SM cutaneous injury in an effort to meet these needs. Our siRNA screening efforts have initially focused on SM-induced inflammation in cutaneous injury since chronic inflammation after exposure appears to play a role in progressive clinical pathology, and intervention may improve clinical outcome. Also, targets that mitigate cellular injury should reduce the inflammatory response. Historical microarray data on this injury were mined for targets and pathways implicated in inflammation, and a siRNA library of 2,017 targets was assembled for screening. Primary screening and library deconvolution were performed using human HaCaT keratinocytes and focused on cell death and inflammatory markers as end points. Using this in vitro approach, we have identified and validated novel targets for the potential treatment of SM-induced cutaneous injury.
Collapse
|
9
|
Chang YC, Wang JD, Hahn RA, Gordon MK, Joseph LB, Heck DE, Heindel ND, Young SC, Sinko PJ, Casillas RP, Laskin JD, Laskin DL, Gerecke DR. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard. Toxicol Appl Pharmacol 2014; 280:236-44. [PMID: 25127551 DOI: 10.1016/j.taap.2014.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 01/04/2023]
Abstract
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure.
Collapse
Affiliation(s)
- Yoke-Chen Chang
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - James D Wang
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Rita A Hahn
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Marion K Gordon
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Laurie B Joseph
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Diane E Heck
- Department of Environmental Science, New York Medical College, Valhalla, NY, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, Allentown, PA, United States
| | - Patrick J Sinko
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | | | - Jeffrey D Laskin
- Environmental & Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Donald R Gerecke
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
10
|
Ghasemi H, Owlia P, Jalali-Nadoushan MR, Pourfarzam S, Azimi G, Yarmohammadi ME, Shams J, Fallahi F, Moaiedmohseni S, Moin A, Yaraee R, Vaez-Mahdavi MR, Faghihzadeh S, Mohammad Hassan Z, Soroush MR, Naghizadeh MM, Ardestani SK, Ghazanfari T. A clinicopathological approach to sulfur mustard-induced organ complications: a major review. Cutan Ocul Toxicol 2013; 32:304-24. [PMID: 23590683 DOI: 10.3109/15569527.2013.781615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Sulfur mustard (SM), with an old manufacturing history still remains as potential threat due to easy production and extensive effects. OBJECTIVES Increasing studies on SM indicates the interest of researchers to this subject. Almost all human body organs are at risk for complications of SM. This study offers organ-by-organ information on the effects of SM in animals and humans. METHODS The data sources were literature reviews since 1919 as well as our studies during the Iraq-Iran war. The search items were SM and its all other nomenclatures in relation to, in vivo, in vitro, humans, animals, eye, ocular, ophthalmic, lungs, pulmonary, skin, cutaneous, organs and systemic. Amongst more than 1890 SM-related articles, 257 more relevant clinicopathologic papers were selected for this review. RESULTS SM induces a vast range of damages in nearly all organs. Acute SM intoxication warrants immediate approach. Among chronic lesions, delayed keratitis and blindness, bronchiolitis obliterans and respiratory distress, skin pruritus, dryness and cancers are the most commonly observed clinical sequelae. CONCLUSION Ocular involvements in a number of patients progress toward a severe, rapid onset form of keratitis. Progressive deterioration of respiratory tract leads to "mustard lung". Skin problems continue as chronic frustrating pruritus on old scars with susceptibility to skin cancers. Due to the multiple acute and chronic morbidities created by SM exposure, uses of multiple drugs by several routes of administrations are warranted.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruff AL, Jarecke AJ, Hilber DJ, Rothwell CC, Beach SL, Dillman JF. Development of a mouse model for sulfur mustard-induced ocular injury and long-term clinical analysis of injury progression. Cutan Ocul Toxicol 2012; 32:140-9. [PMID: 23106216 DOI: 10.3109/15569527.2012.731666] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CONTEXT Sulfur mustard (SM) is a highly reactive vesicating agent that can induce severe ocular injury. The clinical features of this injury have been well documented, but the molecular basis for this pathology is not well understood. Identification and validation of specific targets is necessary in the effort to develop effective therapeutics for this injury. Currently used rabbit models are not well suited for many molecular studies because the necessary reagents are not widely available. However, these reagents are widely available for the mouse model. OBJECTIVE Our objective is to develop a mouse model of SM-induced ocular injury suitable for the study of the molecular mechanisms of injury and the evaluation of therapeutics. MATERIALS AND METHODS Ocular exposure to sulfur mustard vapor was accomplished by using a vapor cup method. Dose response studies were conducted in female BALB/c mice. An exposure dose which produced moderate injury was selected for further study as moderate injury was determined to be amenable to studying the beneficial effects of potential therapeutics. Histopathology and inflammatory markers were evaluated for up to 28 days after exposure, while clinical injury progression was evaluated for 1 year post-exposure. RESULTS A biphasic ocular injury was observed in mice exposed to SM. Acute phase SM ocular injury in mice was characterized by significant corneal epithelium loss, corneal edema, limbal engorgement, and ocular inflammation. This was followed by a brief recovery phase. A delayed injury phase then ensued in the following weeks to months and was characterized by keratitis, stromal edema, infiltrates, neovascularization, and eventual corneal scarring. DISCUSSION AND CONCLUSIONS SM-induced ocular injury in mice is consistent with observations of SM-induced ocular injury in humans and rabbit models. However, in the mouse model, the SM ocular injury, a more rapid onset of the delayed injury phase was observed. We have developed an animal model of SM injury that is suitable for studies to elucidate molecular mechanisms of injury and identify potential therapeutic targets.
Collapse
|
12
|
Platteborze PL. The transcriptional effects of the vesicants lewisite and sulfur mustard on human epidermal keratinocytes. Toxicol Mech Methods 2012; 15:185-92. [PMID: 20021082 DOI: 10.1080/15376520590945603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sulfur mustard (SM) injury is a complex process that begins with extensive alkylation of critical cellular components and culminates in cell death and skin vesication. The mechanism of toxicity is not well understood since SM broadly alkylates cellular nucleophiles. However, two events appear integral-the formation of DNA cross-links and the release of proteases into the extracellular matrix. To identify genes directly involved in vesication, the transcriptional profile of SM was compared to the vesicant lewisite (L). Similarly, to identify genes directly involved in DNA damage, the transcriptional profile of SM was compared to the genotoxic agent cisplatin (c-Pt). Microarrays containing 7,075 sequence-verified human cDNAs were screened with mRNA from human epidermal keratinocytes treated with 200 mu M agent for 2 h. A large number of differentially expressed genes were identified, with many similarities observed between agents. Many genes not previously associated with SM and L injury were also identified, including a large percentage of unknown function. A comparison of the differential expression profiles revealed that L had the broadest and most robustly altered expression. Apoptotic transcripts were clearly evident in L but not in SM, suggesting a late stage in L injury.
Collapse
|
13
|
Anand T, Vijayaraghavan R, Rao PVL, Bansal I, Bhattacharya BK. Attenuation of sulfur mustard toxicity by S-2(2-aminoethylamino)ethyl phenyl sulfide (DRDE-07) in mouse liver. Toxicol Mech Methods 2011; 21:596-605. [PMID: 21554084 DOI: 10.3109/15376516.2011.576713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sulfur mustard (SM) (bis-(2-chloroethyl) sulfide) is a chemical warfare agent. Evaluation of toxicity and protective effect of DRDE-07 (S-2(2-aminoethylamino)ethyl phenyl sulfide) was studied in mouse liver after SM challenging. Female mice were given orally 0.2 LD(50) of DRDE-07 (249 mg/kg body weight) and exposed percutaneously with 1.0 LD(50) of SM (8.1 mg/kg body weight). Gene expression profiles were determined using global genome microarray analysis at 3 days post-exposure. DRDE-07 alone treated animal showed significant upregulation to metabolism of xenobiotics by cytochrome P450 pathways. Genes related to cell adhesion molecules (CAMs), were downregulated. DRDE-07 pretreated SM exposed animals showed upregulation of xenobiotic cytochrome P450 pathway genes. Antigen presenting, cell adhesion molecules, cytokine, cytokine receptor metabolism, fatty acid metabolism, glutathione metabolism, cell cycle signaling pathway genes showed downregulation. The present study showed that SM-induced toxicity in mouse liver was attenuated by the pretreatment with DRDE-07.
Collapse
Affiliation(s)
- T Anand
- Defence R & D Establishment, Gwalior, India.
| | | | | | | | | |
Collapse
|
14
|
Black AT, Hayden PJ, Casillas RP, Heck DE, Gerecke DR, Sinko PJ, Laskin DL, Laskin JD. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2011; 253:112-20. [PMID: 21457723 DOI: 10.1016/j.taap.2011.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/16/2011] [Accepted: 03/22/2011] [Indexed: 01/14/2023]
Abstract
Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.
Collapse
Affiliation(s)
- Adrienne T Black
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol 2011; 41:384-403. [PMID: 21329486 DOI: 10.3109/10408444.2010.541224] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) and similar bifunctional agents have been used as chemical weapons for almost 100 years. Victims of high-dose exposure, both combatants and civilians, may die within hours or weeks, but low-dose exposure causes both acute injury to the eyes, skin, respiratory tract and other parts of the body, and chronic sequelae in these organs are often debilitating and have a serious impact on quality of life. Ever since they were first used in warfare in 1917, SM and other mustard agents have been the subjects of intensive research, and their chemistry, pharmacokinetics and mechanisms of toxic action are now fairly well understood. In the present article we review this knowledge and relate the molecular-biological basis of SM toxicity, as far as it has been elucidated, to the pathological effects on exposure victims.
Collapse
Affiliation(s)
- Kamyar Ghabili
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
16
|
Simonsson C, Andersson SI, Stenfeldt AL, Bergström J, Bauer B, Jonsson CA, Ericson MB, Broo KS. Caged fluorescent haptens reveal the generation of cryptic epitopes in allergic contact dermatitis. J Invest Dermatol 2011; 131:1486-93. [PMID: 21228815 DOI: 10.1038/jid.2010.422] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Allergic contact dermatitis (ACD) is the most prevalent form of human immunotoxicity. It is caused by skin exposure to haptens, i.e., protein-reactive, low-molecular-weight chemical compounds, which form hapten-protein complexes (HPCs) in the skin, triggering the immune system. These immunogenic HPCs are elusive. In this study a series of thiol-reactive caged fluorescent haptens, i.e., bromobimanes, were deployed in combination with two-photon fluorescence microscopy, immunohistochemistry, and proteomics to identify possible hapten targets in proteins in human skin. Key targets found were the basal keratinocytes and the keratins K5 and K14. Particularly, cysteine 54 of K5 was found to be haptenated by the bromobimanes. In addition, elevated levels of anti-keratin antibodies were found in the sera of mice exposed to bromobimanes in vivo. The results indicate a general mechanism in which thiol-reactive haptens generate cryptic epitopes normally concealed from the immune system. In addition, keratinocytes and keratin seem to have an important role in the mechanism behind ACD, which is a subject for further investigations.
Collapse
Affiliation(s)
- Carl Simonsson
- Department of Chemistry, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhou X, Bi H, Wong J, Shimoji M, Wang Y, Yuan J, Xiao X, Wang GX, Zou WQ. Alkylating antitumor drug mechlorethamine conceals a structured PrP domain and inhibits in vitro prion amplification. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1493-1503. [PMID: 22043910 DOI: 10.1080/15287394.2011.618978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Prion diseases are a group of incurable transmissible neurodegenerative disorders. The key molecular event in the pathogenesis of prion diseases is the conversion of the cellular prion protein (PrP(C)) into its pathological isoform (PrP(Sc)), accompanied by a conformational transition of α-helix into β-sheet structure involving the structured α-helix 1 domain from residues 144-154 of the protein (PrP144-154). Blocking the accessibility of PrP144-152 with anti-PrP antibody 6H4 was found to prevent PrP conversion and even to cure prion infection in cell models ( Enari et al. 2001 ). Previously, Yuan et al. (2005 ) demonstrated that the reduction and alkylation of PrP induced concealment of the 6H4 epitope. This study examined the ability of mechlorethamine (MCT), an alkylating antitumor drug, to conceal the 6H4 epitope and block PrP conversion in the presence of a reducing reagent. Mechlorethamine treatment significantly decreased in vitro amplification of PrP(Sc) in the highly efficient protein misfolding cyclic amplification system. Our findings suggest that MCT may serve as a potential therapeutic agent for prion diseases.
Collapse
Affiliation(s)
- Xiaochen Zhou
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Black AT, Hayden PJ, Casillas RP, Heck DE, Gerecke DR, Sinko PJ, Laskin DL, Laskin JD. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2010; 249:178-87. [PMID: 20840853 DOI: 10.1016/j.taap.2010.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 12/20/2022]
Abstract
Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT™, a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE₂ synthases, leukotriene (LT) A₄ hydrolase and LTC₄ synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.
Collapse
Affiliation(s)
- Adrienne T Black
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Everley PA, Dillman JF. Genomics and proteomics in chemical warfare agent research: recent studies and future applications. Toxicol Lett 2010; 198:297-303. [PMID: 20708669 DOI: 10.1016/j.toxlet.2010.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 11/17/2022]
Abstract
Medical research on the effects of chemical warfare agents (CWAs) has been ongoing for nearly 100 years, yet these agents continue to pose a serious threat to deployed military forces and civilian populations. CWAs are extremely toxic, relatively inexpensive, and easy to produce, making them a legitimate weapon of choice for terrorist organizations. While the mechanisms of action for many CWAs have been known for years, questions about their molecular effects following acute and chronic exposure remain largely unanswered. Global approaches that can pinpoint which cellular pathways are altered in response to CWAs and characterize long-term toxicity have not been widely used. Fortunately, innovations in genomics and proteomics technologies now allow for thousands of genes and proteins to be identified and subsequently quantified in a single experiment. Advanced bioinformatics software can also help decipher large-scale changes observed, leading to mapping of signaling pathways, functional characterization, and identification of potential therapeutic targets. Here we present an overview of how genomics and proteomics technologies have been applied to CWA research and also provide a series of questions focused on how these techniques could further our understanding of CWA toxicity.
Collapse
Affiliation(s)
- Patrick A Everley
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | | |
Collapse
|
20
|
Malaviya R, Sunil VR, Cervelli J, Anderson DR, Holmes WW, Conti ML, Gordon RE, Laskin JD, Laskin DL. Inflammatory effects of inhaled sulfur mustard in rat lung. Toxicol Appl Pharmacol 2010; 248:89-99. [PMID: 20659490 DOI: 10.1016/j.taap.2010.07.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 12/19/2022]
Abstract
Inhalation of sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating its cytotoxic effects are unknown and were investigated in the present studies. Male rats Crl:CD(SD) were anesthetized, and then intratracheally intubated and exposed to 0.7-1.4mg/kg SM by vapor inhalation. Animals were euthanized 6, 24, 48h or 7days post-exposure and bronchoalveolar lavage fluid (BAL) and lung tissue collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including focal ulceration and detachment of the trachea and bronchial epithelia from underlying mucosa, thickening of alveolar septal walls and increased numbers of inflammatory cells in the tissue. There was also evidence of autophagy and apoptosis in the tissue. This was correlated with increased BAL protein content, a marker of injury to the alveolar epithelial lining. SM exposure also resulted in increased expression of markers of inflammation including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNFα), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9), each of which has been implicated in pulmonary toxicity. Whereas COX-2, TNFα and iNOS were mainly localized in alveolar regions, MMP-9 was prominent in bronchial epithelium. In contrast, expression of the anti-oxidant hemeoxygenase, and the anti-inflammatory collectin, surfactant protein-D, decreased in the lung after SM exposure. These data demonstrate that SM-induced oxidative stress and injury are associated with the generation of cytotoxic inflammatory proteins which may contribute to the pathogenic response to this vesicant.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Naderi M, Jadidi K, Falahati F, Alavi SA. The effect of sulfur mustard and nitrogen mustard on corneal collagen degradation induced by the enzyme collagenase. Cutan Ocul Toxicol 2010; 29:234-40. [DOI: 10.3109/15569527.2010.491102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Sayer N, Whiting R, Green A, Anderson K, Jenner J, Lindsay C. Direct binding of sulfur mustard and chloroethyl ethyl sulphide to human cell membrane-associated proteins; implications for sulfur mustard pathology. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1426-32. [DOI: 10.1016/j.jchromb.2009.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/10/2009] [Accepted: 11/16/2009] [Indexed: 12/26/2022]
|
23
|
Trost A, Costa I, Jakab M, Ritter M, Haim M, Hintner H, Bauer JW, Önder K. K16 is a further new candidate for homotypic intermediate filament protein interactions. Exp Dermatol 2009; 19:e241-50. [DOI: 10.1111/j.1600-0625.2010.01071.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Shakarjian MP, Heck DE, Gray JP, Sinko PJ, Gordon MK, Casillas RP, Heindel ND, Gerecke DR, Laskin DL, Laskin JD. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol Sci 2009; 114:5-19. [PMID: 19833738 DOI: 10.1093/toxsci/kfp253] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Proteomic assessment of sulfur mustard-induced protein adducts and other protein modifications in human epidermal keratinocytes. Toxicol Appl Pharmacol 2008; 230:97-108. [DOI: 10.1016/j.taap.2008.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/28/2008] [Accepted: 02/05/2008] [Indexed: 11/22/2022]
|
26
|
Abstract
Objective: To increase awareness of the widespread environmental prevalence of the chemical warfare agent mustard gas, examine the acute and chronic toxic effects to exposed humans, and discuss medical treatment guidelines for mustard gas exposures. Data Sources: Literature retrieval of medical case reports and clinical studies was accomplished using PubMed and the Cochrane Database (1919–March 2007). Search terms included mustard, mustard gas, sulfur mustard, chemical warfare, blister agents, vesicants, and war gas. Historical information and current events were accessed through military field manuals and Internet searches. Study Selection and Data Extraction: All articles in English identified from the data sources were evaluated. Adult and pediatric populations were included in the review. Data Synthesis: Mustard gas and other chemical weapons are feared for their use as weapons of terror; however, the major threat of mustard gas lies elsewhere. Tons of this chemical agent were produced for war, then subsequently buried in landfills, disposed of at sea, or teft to decay in storage lacrlities. There are documented and anecdotal reports of chemical weapon buriat sites and ocean dumps across the globe spanning from the Arctic Circle to Australia. Numerous accidental exposures have occurred over the past decade. Mustard gas is corrosive to the skin, eyes, and respiratory tract. Extensive exposures can also affect other organ systems. Its ability to cause harm to multiple organ systems at extremely low doses in virtually any environmental condition makes it an extremely dangerous agent. Immediate decontamination of people exposed to mustard gas liquids and vapors is paramount. Supportive care and long-term followup is necessary for exposed persons. Research is under way to find antidotes or treatment methods for mustard gas exposure, but currently there are no definitive treatment guidelines. Conclusions: Mustard gas is a weapon, but also a prevalent environmental threat. Recognizing the immense environmental presence of mustard gas disposal sites and the signs and symptoms of exposure will help speed treatment to those accidentally or purposefully exposed.
Collapse
Affiliation(s)
- Matthew J Geraci
- Emergency Medicine, Department of Pharmacy, Baptist Medical Center Downtown, 800 Prudential Dr., Jacksonville, FL 32207
| |
Collapse
|
27
|
Bikker FJ, Mars-Groenendijk RH, Noort D, Fidder A, van der Schans GP. Detection of sulfur mustard adducts in human callus by phage antibodies. Chem Biol Drug Des 2007; 69:314-20. [PMID: 17539823 DOI: 10.1111/j.1747-0285.2007.00504.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As part of a research program to develop novel methods for diagnosis of sulfur mustard exposure in the human skin the suitability of phage display was explored. Phage display is a relative new method that enables researchers to quickly evaluate a huge range of potentially useful antibodies, thereby bypassing the more costly and time-consuming hybridoma technique. The Tomlinson I and J phage libraries were used to select phage antibodies exhibiting affinity for sulfur mustard adducts on keratins, isolated from human callus. Two kinds of phage antibodies were obtained: antibodies recognizing keratin and antibodies recognizing keratin which was exposed to sulfur mustard. These phage antibodies retained activity after repeated culturing and culturing in larger volumes. For the first time antibody phage display was successfully applied for immunodiagnostics of a chemical warfare agent.
Collapse
Affiliation(s)
- Floris J Bikker
- TNO Defence, Security and Safety, PO Box 45, 2280 AA Rijswijk, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Hess JF, FitzGerald PG. Treatment of keratin intermediate filaments with sulfur mustard analogs. Biochem Biophys Res Commun 2007; 359:616-21. [PMID: 17548056 PMCID: PMC2578849 DOI: 10.1016/j.bbrc.2007.05.141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 05/22/2007] [Indexed: 01/24/2023]
Abstract
Sulfur mustard (SM) is an alkylating agent with a history of use as a chemical weapon. The chemical reactivity of sulfur mustard toward both proteins and nucleic acids coupled with the hours long delay between exposure and appearance of blisters has prevented the determination of the mechanism of blister formation. We have treated assembled keratin intermediate filaments with analogs of sulfur mustard to simulate exposure to SM. We find that treatment of intact filaments with chloroethyl ethyl sulfide (CEES) or mechlorethamine (MEC) produces aggregates of keratin filaments with little native appearing structure. Treatment of a mix of epidermal keratins 1/10 (keratin pair 1 and 10) and keratins 5/14 with a sulfhydryl-specific modification reagent also results in filament abnormalities. Our results are consistent with the hypothesis that modification of keratins by SM would result in keratin filament destruction, leading to lysis of epidermal basal cells and skin blistering.
Collapse
Affiliation(s)
- John F Hess
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, 1 Shields Ave., Davis, CA 95616-8643, USA.
| | | |
Collapse
|
29
|
Bikker FJ, Mars-Groenendijk RH, Noort D, Fidder A, van der Schans GP. Detection of Sulfur Mustard Adducts in Human Callus by Phage Antibodies. Chem Biol Drug Des 2007. [DOI: 10.1111/j.1747-0825.2007.00504.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Skládal P, Přibyl J, Šafář B. Antibodies Against Sulfur Mustard and Direct Piezoelectric Immunosensing in an Organic Solvent. ANAL LETT 2007. [DOI: 10.1080/00032710701326700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Dillman JF, Hege AI, Phillips CS, Orzolek LD, Sylvester AJ, Bossone C, Henemyre-Harris C, Kiser RC, Choi YW, Schlager JJ, Sabourin CL. Microarray Analysis of Mouse Ear Tissue Exposed to Bis-(2-chloroethyl) Sulfide: Gene Expression Profiles Correlate with Treatment Efficacy and An Established Clinical Endpoint. J Pharmacol Exp Ther 2005; 317:76-87. [PMID: 16377760 DOI: 10.1124/jpet.105.097014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bis-(2-chloroethyl) sulfide (sulfur mustard; SM) is a potent alkylating agent. Three treatment compounds have been shown to limit SM damage in the mouse ear vesicant model: dimercaprol, octyl homovanillamide, and indomethacin. Microarrays were used to determine gene expression profiles of biopsies taken from mouse ears after exposure to SM in the presence or absence of treatment compounds. Mouse ears were topically exposed to SM alone or were pretreated for 15 min with a treatment compound and then exposed to SM. Ear tissue was harvested 24 h after exposure for ear weight determination, the endpoint used to evaluate treatment compound efficacy. RNA extracted from the tissues was used to generate microarray probes for gene expression profiling of therapeutic responses. Principal component analysis of the gene expression data revealed partitioning of the samples based on treatment compound and SM exposure. Patterns of gene responses to the treatment compounds were indicative of exposure condition and were phenotypically anchored to ear weight. Pretreatment with indomethacin, the least effective treatment compound, produced ear weights close to those treated with SM alone. Ear weights from animals pretreated with dimercaprol or octyl homovanillamide were more closely associated with exposure to vehicle alone. Correlation coefficients between gene expression level and ear weight revealed genes involved in mediating responses to both SM exposure and treatment compounds. These data provide a basis for elucidating the mechanisms of response to SM and drug treatment and also provide a basis for developing strategies to accelerate development of effective SM medical countermeasures.
Collapse
Affiliation(s)
- James F Dillman
- Cell and Molecular Biology Branch, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|