1
|
Cocaine Modulates the Neuronal Endosomal System and Extracellular Vesicles in a Sex-Dependent Manner. Neurochem Res 2022; 47:2263-2277. [PMID: 35501523 PMCID: PMC9352616 DOI: 10.1007/s11064-022-03612-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/08/2023]
Abstract
In multiple neurodevelopmental and neurodegenerative disorders, endosomal changes correlate with changes in exosomes. We examined this linkage in the brain of mice that received cocaine injections for two weeks starting at 2.5 months of age. Cocaine caused a decrease in the number of both neuronal early and late endosomes and exosomes in the brains of male but not female mice. The response to cocaine in ovariectomized females mirrored male, demonstrating that these sex-differences in response to cocaine are driven by hormonal differences. Moreover, cocaine increased the amount of α-synuclein per exosome in the brain of females but did not affect exosomal α-synuclein content in the brain of males, a sex-difference eliminated by ovariectomy. Enhanced packaging of α-synuclein into female brain exosomes with the potential for propagation of pathology throughout the brain suggests a mechanism for the different response of females to chronic cocaine exposure as compared to males.
Collapse
|
2
|
NLRP3 Inflammasome Is Involved in Cocaine-Mediated Potentiation on Behavioral Changes in CX3CR1-Deficient Mice. J Pers Med 2021; 11:jpm11100963. [PMID: 34683104 PMCID: PMC8540128 DOI: 10.3390/jpm11100963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Microglia, the primary immunocompetent cells of the brain, are suggested to play a role in the development of drug addiction. Previous studies have identified the microglia-derived pro-inflammatory factor IL1β can promote the progression of cocaine addiction. Additionally, the activation status of microglia and “two-hit hypothesis” have been proposed in the field of drug addiction to explain how early life stress (ELS) could significantly increase the incidence of drug addiction in later life. However, the mechanisms underlying microglia prime and full activation and their roles in drug addiction remain greatly unexplored. Here, we employed CX3CR1-GFP mice (CX3CR1 functional deficiency, CX3CR1−/−) to explore whether primed microglia could potentiate cocaine-mediated behavioral changes and the possible underlying mechanisms. CX3CR1−/− mice revealed higher hyperlocomotion activity and conditional place preference than wild-type (WT) mice did under cocaine administration. In parallel, CX3CR1−/− mice showed higher activity of NLR family pyrin domain-containing 3 (NLRP3) inflammasome than WT mice. Interestingly, CX3CR1 deficiency itself could prime NLRP3 signaling by increasing the expression of NLPR3 and affect lysosome biogenesis under basal conditions. Taken together, our findings demonstrated that the functional status of microglia could have an impact on cocaine-mediated reward effects, and NLRP3 inflammasome activity was associated with this phenomenon. This study was consistent with the two-hit hypothesis and provided solid evidence to support the involvement of microglia in drug addiction. Targeting the NLRP3 inflammasome may represent a novel therapeutic approach for ameliorating or blocking the development of drug addiction.
Collapse
|
3
|
Philipsen MH, Phan NTN, Fletcher JS, Malmberg P, Ewing AG. Mass Spectrometry Imaging Shows Cocaine and Methylphenidate Have Opposite Effects on Major Lipids in Drosophila Brain. ACS Chem Neurosci 2018; 9:1462-1468. [PMID: 29508991 DOI: 10.1021/acschemneuro.8b00046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the effects of cocaine versus methylphenidate administration on both the localization and abundance of lipids in Drosophila melanogaster brain. A J105 ToF-SIMS with a 40 keV gas cluster primary ion source enabled us to probe molecular ions of biomolecules on the fly with a spatial resolution of ∼3 μm, giving us unique insights into the effect of these drugs on molecular lipids in the nervous system. Significant changes in phospholipid composition were observed in the central brain for both. Principal components image analysis revealed that changes occurred mainly for phosphatidylcholines, phosphatidylethanolamines, and phosphatidylinositols. When the lipid changes caused by cocaine were compared with those induced by methylphenidate, it was shown that these drugs exert opposite effects on the brain lipid structure. We speculate that this might relate to the molecular mechanism of cognition and memory.
Collapse
Affiliation(s)
- Mai H. Philipsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Go:IMS, Chalmers University of Technology and University of Gothenburg, Gothenburg 412 96, Sweden
| | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
- Go:IMS, Chalmers University of Technology and University of Gothenburg, Gothenburg 412 96, Sweden
- Institute of Neuro- and Sensory Physiology, Goettingen University Medical Center, Goettingen 37073, Germany
| | - John S. Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
- Go:IMS, Chalmers University of Technology and University of Gothenburg, Gothenburg 412 96, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Go:IMS, Chalmers University of Technology and University of Gothenburg, Gothenburg 412 96, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
- Go:IMS, Chalmers University of Technology and University of Gothenburg, Gothenburg 412 96, Sweden
| |
Collapse
|
4
|
The role of sphingolipids in psychoactive drug use and addiction. J Neural Transm (Vienna) 2018; 125:651-672. [DOI: 10.1007/s00702-018-1840-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
|
5
|
Adada M, Luberto C, Canals D. Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases. Chem Phys Lipids 2016. [DOI: 10.1016/j.chemphyslip.2015.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity. Toxicol Appl Pharmacol 2015; 286:178-87. [PMID: 25933444 DOI: 10.1016/j.taap.2015.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.
Collapse
|
7
|
In vitro effects of cocaine on tunneling nanotube formation and extracellular vesicle release in glioblastoma cell cultures. J Mol Neurosci 2014; 55:42-50. [PMID: 24996625 DOI: 10.1007/s12031-014-0365-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
The effects of cocaine (150 nM, 300 nM, and 150 μM) on human glioblastoma cell cultures were studied on tunneling nanotube formation (1-h cocaine treatment) and extracellular vesicle release (1-, 3-, and 8-h cocaine treatment). Cocaine significantly increased the number of tunneling nanotubes only at the lowest concentration used. The release of extracellular vesicles (mainly exosomes) into the medium was stimulated by cocaine at each concentration used with a maximum effect at the highest concentration tested (150 μM). Moreover, cocaine (150 nM) significantly increased the number of vesicles with 61-80 nm diameter while at concentrations of 300 nM and 150 μM, and the smaller vesicles (30-40 nm diameter) were significantly increased with a reduction of the larger vesicles (41-60 nm diameter). A time dependence in the release of extracellular vesicles was observed. In view of the proposed role of these novel intercellular communication modes in the glial-neuronal plasticity, it seems possible that they can participate in the processes leading to cocaine addiction. The molecular target/s involved in these cocaine effects could be specific molecular components of plasma membrane lipid rafts and/or cocaine-induced modifications in cytoplasmic lipid composition.
Collapse
|
8
|
Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 2011; 163:694-712. [PMID: 21615386 DOI: 10.1111/j.1476-5381.2011.01279.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingolipids represent a class of diverse bioactive lipid molecules that are increasingly appreciated as key modulators of diverse physiologic and pathophysiologic processes that include cell growth, cell death, autophagy, angiogenesis, and stress and inflammatory responses. Sphingomyelinases and ceramidases are key enzymes of sphingolipid metabolism that regulate the formation and degradation of ceramide, one of the most intensely studied classes of sphingolipids. Improved understanding of these enzymes that control not only the levels of ceramide but also the complex interconversion of sphingolipid metabolites has provided the foundation for the functional analysis of the roles of sphingolipids. Our current understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from loss-of-function/gain-of-function studies utilizing genetic deletion/downregulation/overexpression of enzymes of sphingolipid metabolism (e.g. knockout animals, RNA interference) and from the use of pharmacologic inhibitors of these same enzymes. While genetic approaches to evaluate the functional roles of sphingolipid enzymes have been instrumental in advancing the field, the use of pharmacologic inhibitors has been equally important in identifying new roles for sphingolipids in important cellular processes.The latter also promises the development of novel therapeutic targets with implications for cancer therapy, inflammation, diabetes, and neurodegeneration. In this review, we focus on the status and use of pharmacologic compounds that inhibit sphingomyelinases and ceramidases, and we will review the history, current uses and future directions for various small molecule inhibitors, and will highlight studies in which inhibitors of sphingolipid metabolizing enzymes have been used to effectively treat models of human disease.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
9
|
Gilenya (FTY720) inhibits acid sphingomyelinase by a mechanism similar to tricyclic antidepressants. Biochem Biophys Res Commun 2010; 404:321-3. [PMID: 21130737 DOI: 10.1016/j.bbrc.2010.11.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/24/2010] [Indexed: 11/23/2022]
Abstract
The immunomodulator drug Gilenya (FTY720), marketed as the first oral sphingosine-1-phosphate receptor (S1P-R) modulator for treatment of Multiple Sclerosis (MS) also inhibits lysosomal acid sphingomyelinase (ASMase). Treatment of cultured cells for 24 h with FTY720 (up to 10 μM) inhibited ASMase by >80% and this could be reversed by pre-treatment with the cathepsin protease inhibitor leupeptin (5 μM). In contrast, neutral sphingomyelinase activity was unaffected and sphingosine-1-phosphate treatment had no effect on ASMase. RT-PCR revealed no inhibition of ASMase mRNA and there was no direct (in vitro) inhibition of ASMase by either FTY720 or FTY720-phosphate. This suggests that its mechanism of inhibition is similar to that of tricyclic anti-depressants such as desipramine, which are also amphiphilic cationic drugs. Both Desipramine and FTY720 treatment reduced ASMase without significant inhibition of other lysosomal hydrolases but most hydrolases showed increased secretion (up to a 50% increase) providing more evidence of lysosomal disruption by these drugs.
Collapse
|
10
|
Fedder C, Beck-Schimmer B, Aguirre J, Hasler M, Roth-Z'graggen B, Urner M, Kalberer S, Schlicker A, Votta-Velis G, Bonvini JM, Graetz K, Borgeat A. In vitro exposure of human fibroblasts to local anaesthetics impairs cell growth. Clin Exp Immunol 2010; 162:280-8. [PMID: 20819090 PMCID: PMC2996595 DOI: 10.1111/j.1365-2249.2010.04252.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 12/27/2022] Open
Abstract
Lidocaine, bupivacaine or ropivacaine are used routinely to manage perioperative pain. Sparse data exist evaluating the effects of local anaesthetics (LA) on fibroblasts, which are involved actively in wound healing. Therefore, we investigated the effects of the three LA to assess the survival, viability and proliferation rate of fibroblasts. Human fibroblasts were exposed to 0·3 mg/ml and 0·6 mg/ml of each LA for 2 days, followed by incubation with normal medium for another 1, 4 or 7 days (group 1). Alternatively, cells were incubated permanently with LA for 3, 6 or 9 days (group 2). Live cell count was assessed using trypan blue staining. Viability was measured by the tetrazolium bromide assay. Proliferation tests were performed with the help of the colorimetric bromodeoxyuridine assay. Production of reactive oxygen species (ROS) was determined, measuring the oxidation of non-fluorescent-2,7'-dichlorofluorescin. Treatment of cells with the three LA showed a concentration-dependent decrease of live cells, mitochondrial activity and proliferation rate. Group arrangement played a significant role for cell count and proliferation, while exposure time influenced viability. Among the analysed LA, bupivacaine showed the most severe cytotoxic effects. Increased production of ROS correlated with decreased viability of fibroblasts in lidocaine- and bupivacaine-exposed cells, but not upon stimulation with ropivacaine. This study shows a concentration-dependent cytotoxic effect of lidocaine, bupivacaine and ropivacaine on fibroblasts in vitro, with more pronounced effects after continuous incubation. A possible mechanism of cell impairment could be triggered by production of ROS upon stimulation with lidocaine and bupivacaine.
Collapse
Affiliation(s)
- C Fedder
- Department of Cranio-Maxillofacial Surgery, University Hospital of Zurich Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Domènech X, Peral J, Muñoz I. Predicted environmental concentrations of cocaine and benzoylecgonine in a model environmental system. WATER RESEARCH 2009; 43:5236-5242. [PMID: 19781730 DOI: 10.1016/j.watres.2009.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/30/2009] [Accepted: 08/24/2009] [Indexed: 05/28/2023]
Abstract
A Mackay-type level II fugacity model has been used to predict the behaviour and final concentrations of cocaine (COC) and its main metabolite benzoylecgonine (BE) in a regional environmental system defined according to the European guidelines on Risk Assessment. The model takes into account the initial COC intake, partial degradation of the parent compound to BE, treatment of wastewater and environmental fate of these substances. Predicted environmental concentrations (PECs) lie in the ngL(-1) level, with the exception of the air compartment, where the concentrations are negligible. PECs in the water phase are in accordance with measured experimental concentrations in different European rivers. This case study shows that a simple level II fugacity model is suitable enough for modelling the environmental fate of high water soluble and low volatile organic compounds such as pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Xavier Domènech
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | | | | |
Collapse
|
12
|
Abstract
Acid sphingomyelinase occupies a prominent position in sphingolipid catabolism, catalyzing the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Enzymatic dysfunction of acid sphingomyelinase results in Niemann-Pick disease, a lysosomal storage disorder characterized at the cellular level by accumulation of sphingomyelin within the endo-lysosomal compartment. Over the past decade interest in the role of acid sphingomyelinase has moved beyond its "housekeeping" function in constitutive turnover of sphingomyelin in the lysosome to include study of regulated ceramide generation. Ceramide functions as a bioactive sphingolipid with pleiotropic signaling properties, and has been implicated in diverse cellular processes of physiologic and pathophysiologic importance. Though many cellular enzymes have the capacity to generate ceramide,there is growing appreciation that "all ceramides are not created equal." Ceramides likely exert distinct effects in different cellular/subcellular compartments by virtue of access to other sphingolipid enzymes (e.g.ceramidases), effector molecules (e.g. ceramide-activated protein phosphatases), and neighboring lipids and proteins (e.g. cholesterol, ion channels). One of the unique features of acid sphingomyelinase is that it has been implicated in the hydrolysis of sphingomyelin in three different settings--the endo-lysosomal compartment,the outer leaflet of the plasma membrane, and lipoproteins. How a single gene product has the capacity to function in these diverse settings, and the subsequent impact on downstream ceramide-mediated biology is the subject of this review.
Collapse
Affiliation(s)
- Russell W Jenkins
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
13
|
Kruhlak NL, Choi SS, Contrera JF, Weaver JL, Willard JM, Hastings KL, Sancilio LF. Development of a Phospholipidosis Database and Predictive Quantitative Structure-Activity Relationship (QSAR) Models. Toxicol Mech Methods 2008; 18:217-27. [DOI: 10.1080/15376510701857262] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E. Identification of New Functional Inhibitors of Acid Sphingomyelinase Using a Structure−Property−Activity Relation Model. J Med Chem 2007; 51:219-37. [DOI: 10.1021/jm070524a] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Philipp Tripal
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Lothar Terfloth
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Stefan Bleich
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| | - Erich Gulbins
- Department of Psychiatry and Psychotherapy, University of Erlangen, Germany, Molecular Networks, Erlangen, Germany, and Department of Molecular Biology, University of Duisburg—Essen, Germany
| |
Collapse
|
15
|
Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 2007; 96:729-46. [PMID: 17117426 DOI: 10.1002/jps.20792] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amine-containing drugs represent a very important class of therapeutic agents, with the majority of all drugs containing at least one basic nitrogen. For many decades, it has been known that weakly basic compounds can be sequestered into acidic organelles such as lysosomes. Some amines can achieve very high concentrations and induce a dramatic expansion (vacuolization) of the compartment. In the early 70s, Nobel laureate and discoverer of lysosomes, Christian de Duve et al. wrote an elegant commentary describing the theoretical basis for lysosomal sequestration of amines, referring to the process as pH-partitioning and the substrates as lysosomotropics. Recently, a resurgence of interest in the intracellular distribution of drugs has occurred considering its therapeutic importance. Specifically, lysosomal sequestration of amines has received considerable attention for reasons including its involvement in drug resistance, inducement of phospholipidosis, and its influence on whole body distribution/pharmacokinetics. Moreover, the sequestration phenomenon has been recently exploited in the development of a novel drug targeting strategy. This review will focus on these occurrences/developments and conclude with a commentary on the expected impact that knowledge regarding the intracellular distribution of drugs will likely have on future drug development processes.
Collapse
Affiliation(s)
- Allyn M Kaufmann
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | |
Collapse
|