1
|
León G, Otón J, Hidalgo AM, Saavedra MI, Miguel B. Comparative Study of 4-Aminophenol Removal from Aqueous Solutions by Emulsion Liquid Membranes Using Acid and Basic Type 1 Facilitations: Optimisation and Kinetics. MEMBRANES 2022; 12:membranes12121213. [PMID: 36557120 PMCID: PMC9787717 DOI: 10.3390/membranes12121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 05/12/2023]
Abstract
The molecule 4-aminophenol (4AP) is recognised as a serious environmental pollutant that enters the environment during the manufacture and processing of a variety of industrial processes and through the degradation of some pharmaceutical products. This paper describes a comparative study of 4AP removal from aqueous solutions by emulsion liquid membranes using acid and basic type 1-facilitated transports. The results are explained by analysing the stripping process through both the different relative acid/basic strength of the hydroxyl and amine groups of the 4AP molecule and the hydrogen-bonding capacity with water of the ionisation products generated by the reaction of 4AP with HCl or NaOH. To optimize the 4AP removal process, the influence of different experimental conditions (stripping agent concentration in the product phase, surfactant concentration in the membrane phase, stirring rate, feed phase/emulsion phase volume ratio, product phase/membrane phase volume ratio and emulsification rate and time) were studied. The kinetics of the removal process has been analysed by fitting the experimental results to first order, second order and the Behnajady and Avrami models. The Behnajady model presents an excellent fit, allowing to calculate both the initial removal rate and the maximal removal conversion. Optimal conditions of the removal process obtained through these parameters are in full agreement with those obtained from the experimental study.
Collapse
Affiliation(s)
- Gerardo León
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30206 Cartagena, Spain
- Correspondence: ; Tel.: +34-868-071-002
| | - Juliana Otón
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30206 Cartagena, Spain
| | - Asunción María Hidalgo
- Departamento de Ingeniería Química, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
| | - María Isabel Saavedra
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30206 Cartagena, Spain
| | - Beatriz Miguel
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30206 Cartagena, Spain
| |
Collapse
|
2
|
Marzouk HM, Ibrahim EA, Hegazy MA, Saad SS. Sustainable Liquid Chromatographic Determination and Purity Assessment of a Possible Add-on Triple-Action Over-the-counter Pharmaceutical Combination in COVID-19. Microchem J 2022; 178:107400. [PMID: 35341079 PMCID: PMC8933871 DOI: 10.1016/j.microc.2022.107400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022]
Abstract
Nowadays, all researchers are focused on combating the pandemic COVID-19. According to recent statistics, most patients are managed at home. An over-the-counter (OTC) triple action formula containing paracetamol (PAR), aspirin (ASP), and diphenhydramine (DIPH) is widely prescribed for pain, fever and as night-time sleep aid. For COVID-19 patients, this combination is now suggested as part of symptomatic therapy and prophylaxis. In this work, two simple liquid chromatographic approaches were designed for simultaneous determination of PAR, ASP, and DIPH in Excedrin® PM caplets, beside three specified official toxic impurities, namely, p-aminophenol, p-nitrophenol, and salicylic acid. The first method comprised high-performance thin-layer chromatographic separation coupled with densitometric quantification, on silica gel HPTLC 60 F254 aluminium sheets as the stationary phase, ethyl acetate–methanol-aqueous ammonium hydroxide (10.0: 2.0: 0.1, by volume) as the developing system and scanning was performed at 210.0 nm. The second one is a high-performance liquid chromatography coupled with diode array detector. Successful separation of the six components was performed on XTerra C18 column with isocratic elution of mobile phase 0.1% triethylamine acidified water: methanol (70:30, v/v) adjusted with o-phosphoric acid to pH 3.0 and methanol (90:10, v/v) with flow rate programming and detection at 210.0 nm. Validation of the proposed methods was performed according to ICH guidelines. Both methods were successfully used for quality control of the cited drugs in their marketed formulation. Moreover, the in-vitro release study was monitored using the proposed HPLC-DAD method. The greenness profile of the proposed methods was assessed and comparatively evaluated through various assessment tools, specifically; the analytical eco-scale system, national environmental method index (NEMI), green analytical procedure index (GAPI) and analytical greenness (AGREE) metric.
Collapse
Affiliation(s)
- Hoda M Marzouk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, 11562, Cairo, Egypt
| | - Engy A Ibrahim
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6 of October City, Giza, Egypt
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, 11562, Cairo, Egypt
| | - Samah S Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6 of October City, Giza, Egypt
| |
Collapse
|
3
|
Ogawa S, Ohsaki Y, Shimizu M, Nako K, Okamura M, Kabayama S, Tabata K, Tanaka Y, Ito S. Electrolyzed hydrogen-rich water for oxidative stress suppression and improvement of insulin resistance: a multicenter prospective double-blind randomized control trial. Diabetol Int 2022; 13:209-219. [PMID: 35059257 PMCID: PMC8733095 DOI: 10.1007/s13340-021-00524-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Electrolyzed hydrogen-rich water (EHW) is known to have suppressive effects on oxidative stress (OS). However, its benefit in type 2 diabetes mellitus (T2DM) remains unclear. This study aimed to investigate the effect of EHW on T2DM. METHODS This was a multicenter, prospective, double-blind, randomized controlled trial of 50 patients with T2DM who were assigned to the EHW or filtered water (FW) groups. The primary endpoint was changes in insulin resistance (IR) evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR). OS markers such as urinary 8-hydroxy-2'-deoxyguanosine excretion (8-OHdG), plasma diacron-reactive oxygen metabolites (d-ROM), and plasma biological antioxidant potential (BAP) and other clinical data, including serum lactate concentration (lactate), were evaluated. RESULTS There were no significant differences in the changes in HOMA-IR between the EHW and FW groups. However, lactate levels decreased significantly in the EHW group, and this decrease was significantly correlated with a reduction in HOMA-IR, fasting plasma glucose, and fasting plasma insulin level. Serum lactate level also significantly correlated to decreased insulin bolus secretion after 90 min with glucose loading in the EHW subjects with HOMA-IR > 1.73. No EHW treatment-related adverse effects were observed. CONCLUSION There were no significant effect of EHW in the change in HOMA-IR in this study; larger-scale and longer-term study are needed to verify the effects of EHW in T2DM patients. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13340-021-00524-3.
Collapse
Affiliation(s)
- Susumu Ogawa
- Division of Research in Student Support, Section of Clinical Medicine, Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Nihon Trim Co., Ltd, Osaka, Japan
| | - Manami Shimizu
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kazuhiro Nako
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Three-dimensional electrochemical degradation of p-aminophenol with efficient honeycomb block AC@Ti-Cu-Ni-Zn-Sb-Mn particle electrodes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118662] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Weng M, Yu X. Electrochemical Oxidation of Para-Aminophenol With Rare Earth Doped Lead Dioxide Electrodes: Kinetics Modeling and Mechanism. Front Chem 2019; 7:382. [PMID: 31245351 PMCID: PMC6579860 DOI: 10.3389/fchem.2019.00382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, La and Ce doped PbO2 electrodes were prepared and the characteristic of the electrodes were discussed with the help of structure analysis. The catalytic effects of the doped electrodes were explored through the degradation of para-aminophenol wastewater. The results showed that the para-aminophenol removal was 96.96%, 89.34%, and 77.55% after 180 min treatment with Ce-PbO2, La-PbO2, and PbO2, respectively. The para-aminophenol enhanced degradation mechanism was discussed with rare earth element doping electrodes and a kinetic model was established based on radical reactions mechanism with genetic algorithm (GA) calculation. The reaction constants of these electrodes were calculated and the results showed that the reaction constant of Ce-PbO2 electrode was the highest, which indicated that Ce-PbO2 electrode could have a better treatment effect. The EE/O was used as the index of energy consumption efficiency and the results were calculated and compared. This paper could provide basic data and technique reference of the prediction the oxidation reaction process of different electrodes for the electrochemical oxidation application in wastewater treatment.
Collapse
Affiliation(s)
- Mili Weng
- School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, China
| | - Xihe Yu
- School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
6
|
Adegoke OA, Thomas OE, Amao SA, Agboola SO, Omotosho AE. A new method for the microdetermination of Para-aminophenol in generic brands of paracetamol tablets. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1585513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Olajire A. Adegoke
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olusegun E. Thomas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Solomon A. Amao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Samuel O. Agboola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Abayomi E. Omotosho
- Department of Pharmaceutical and Medicinal Chemistry, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
7
|
Karabacak M, Kanbur M, Eraslan G, Siliğ Y, Soyer Sarıca Z, Tekeli MY, Taş A. The effects of colostrum on some biochemical parameters in the experimental intoxication of rats with paracetamol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23897-23908. [PMID: 29881964 DOI: 10.1007/s11356-018-2382-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
In the current study, the possible prophylactic and therapeutic effects of colostrum (COL) on acute organ injury caused by paracetamol (PAR) in rats were evaluated. Within the scope of this study, a 2-month-old male (150-200 g) 70 Wistar Albino rat was used and a total of seven groups were designed. The first group (CNT) was maintained for control purposes. The second group (COL-1) was given COL for 1 day, at a dose of 500 mg/kg at 6-h intervals, and blood and tissue sampling was performed at 24 h. The third group (COL-7) received COL for 7 days, at a dose of 500 mg/kg at 6-h intervals on day 1 and at a daily dose of 500 mg/kg on the following days, and blood and tissue samples were taken at the end of seventh day. The fourth group (PAR-1) was administered with PAR at a dose of 1.0 g/kg bw and was blood and tissue sampled at 24 h. The fifth group (PAR-7) received PAR at a dose of 1.0 g/kg bw on day 1 and was blood and tissue was removed at the end of day 7. The sixth group (PAR+COL-1) was administered with a combination of PAR (1 g/kg bw) and COL (500 mg/kg at 6-h intervals), and blood and tissue samples were collected at 24 h. The seventh group (PAR+COL-7) received 1.0 g/kg bw of PAR on day 1 and was given COL throughout the 7-day study period (at a dose of 500 mg/kg at 6-h intervals on day 1 and at a daily dose of 500 mg/kg on the following days). In the seventh group, blood and tissue samples were taken at the end of seventh day. Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), glucose, creatinine, triglyceride, total bilirubin, total protein and albumin levels/activities were analysed in the serum samples. The malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) levels/activities, known as oxidative stress parameters, were assayed for tissue homogenates and blood (erythrocytes/plasma); in addition, enzyme activities of GSH S-transferase (GST), cytochrome P4502E1 (CYP2E1), NADH-cytochrome b5 reductase (CYTB5), glucose-6-phosphate dehydrogenase (G6PD), NADPH-cytochrome P450 C reductase (CYTC) and glutathione (GSH) levels/activities defined as drug metabolising parameters were measured in liver homogenates. In result, it was determined that PAR caused significant alterations in some biochemical and lipid peroxidation parameters and the activities/levels of drug metabolising parameters in the liver and that COL normalised some of these parameters and reduced PAR-induced tissue damage.
Collapse
Affiliation(s)
- Mürsel Karabacak
- Safiye Çıkrıkçıoğlu Vocational College, Laboratory and Veterinary Health Department, Erciyes University, Kayseri, Turkey
| | - Murat Kanbur
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey.
| | - Yavuz Siliğ
- Faculty of Medicine, Department of Biochemistry, Cumhuriyet University, Sivas, Turkey
| | - Zeynep Soyer Sarıca
- Experimental Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Muhammet Yasin Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Ayça Taş
- Faculty of Health Sciences, Department of Nutrition and Diet, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Abstract
Cancer is one of the top three causes of death in the United States. The treatment regimen for controlling cancer includes a number of approaches depending on the classification of the tumor. Treatment may include radiation, surgery, and cancer chemotherapy agents as well as other interventions. Natural products have been identified for centuries to contain active pharmacologic activity and have been a starting point for numerous drugs which are currently on the market. Resveratrol (RES) is a natural product generated in plants in response to environmental stress and growing conditions. RES has been recognized since 1997 to possess anticancer activity. This review discusses the dietary sources of RES and the relative amounts present in the various food sources. A few limited clinical studies have explored RES effects in patients with prostate and colorectal cancer and have suggested some beneficial results. Future studies need to expand the sample size for clinical examination of RES in order to provide a better profile for the potential benefit of RES in cancer patients. This review also describes the potential mechanisms of RES as an antioxidant and in alteration of cell signaling. Another aspect for the role of RES in cancer may be in the interaction with cancer chemotherapy agents. Cisplatin is a cancer chemotherapy agent used for the treatment of bladder, testicular, ovarian, and many other cancers. Cisplatin usage is associated with a high risk of nephrotoxicity. Experimental studies suggest that RES may reduce cisplatin renal toxicity. The proposed mechanisms of protection are reviewed.
Collapse
|
9
|
Rankin GO, Tyree C, Pope D, Tate J, Racine C, Anestis DK, Brown KC, Dial M, Valentovic MA. Role of Free Radicals and Biotransformation in Trichloronitrobenzene-Induced Nephrotoxicity In Vitro. Int J Mol Sci 2017; 18:ijms18061165. [PMID: 28561793 PMCID: PMC5485989 DOI: 10.3390/ijms18061165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022] Open
Abstract
This study determined the comparative nephrotoxic potential of four trichloronitrobenzenes (TCNBs) (2,3,4-; 2,4,5-; 2,4,6-; and 3,4,5-TCNB) and explored the effects of antioxidants and biotransformation inhibitors on TCNB-induced cytotoxicity in isolated renal cortical cells (IRCC) from male Fischer 344 rats. IRCC were incubated with a TCNB up to 1.0 mM for 15–120 min. Pretreatment with an antioxidant or cytochrome P450 (CYP), flavin monooxygenase (FMO), or peroxidase inhibitor was used in some experiments. Among the four TCNBs, the order of decreasing nephrotoxic potential was approximately 3,4,5- > 2,4,6- > 2,3,4- > 2,4,5-TCNB. The four TCNBs exhibited a similar profile of attenuation of cytotoxicity in response to antioxidant pretreatments. 2,3,4- and 3,4,5-TCNB cytotoxicity was attenuated by most of the biotransformation inhibitors tested, 2,4,5-TCNB cytotoxicity was only inhibited by isoniazid (CYP 2E1 inhibitor), and 2,4,6-TCNB-induced cytotoxicity was inhibited by one CYP inhibitor, one FMO inhibitor, and one peroxidase inhibitor. All of the CYP specific inhibitors tested offered some attenuation of 3,4,5-TCNB cytotoxicity. These results indicate that 3,4,5-TCNB is the most potent nephrotoxicant, free radicals play a role in the TCNB cytotoxicity, and the role of biotransformation in TCNB nephrotoxicity in vitro is variable and dependent on the position of the chloro groups.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Connor Tyree
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Deborah Pope
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Jordan Tate
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Christopher Racine
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Dianne K Anestis
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Mason Dial
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
10
|
Racine CR, Ferguson T, Preston D, Ward D, Ball J, Anestis D, Valentovic M, Rankin GO. The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats. Toxicology 2016; 341-343:47-55. [PMID: 26808022 DOI: 10.1016/j.tox.2016.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Among the mono- and dichloroanilines, 3,5-dichloroaniline (3,5-DCA) is the most potent nephrotoxicant in vivo and in vitro. However, the role of renal biotransformation in 3,5-DCA induced nephrotoxicity is unknown. The current study was designed to determine the in vitro nephrotoxic potential of 3,5-DCA in isolated renal cortical cells (IRCC) obtained from male Fischer 344 rats, and the role of renal bioactivation and oxidative stress in 3,5-DCA nephrotoxicity. IRCC (∼ 4 million cells/ml) from male rats were exposed to 3,5-DCA (0-1.0mM) for up to 120 min. In IRCC, 3,5-DCA was cytotoxic at 1.0mM by 60 min as evidenced by the increased release of lactate dehydrogenase (LDH), but 120 min was required for 3,5-DCA 0.5mM to increase LDH release. In subsequent studies, IRCC were exposed to a pretreatment (antioxidant or enzyme inhibitor) prior to exposure to 3,5-DCA (1.0mM) for 90 min. Cytotoxicity induced by 3,5-DCA was attenuated by pretreatment with inhibitors of flavin-containing monooxygenase (FMO; methimazole, N-octylamine), cytochrome P450 (CYP; piperonyl butoxide, metyrapone), or peroxidase (indomethacin, mercaptosuccinate) enzymes. Use of more selective CYP inhibitors suggested that the CYP 2C family contributed to 3,5-DCA bioactivation. Antioxidants (glutathione, N-acetyl-l-cysteine, α-tocopherol, ascorbate, pyruvate) also attenuated 3,5-DCA nephrotoxicity, but oxidized glutathione levels and the oxidized/reduced glutathione ratios were not increased. These results indicate that 3,5-DCA may be activated via several renal enzyme systems to toxic metabolites, and that free radicals, but not oxidative stress, contribute to 3,5-DCA induced nephrotoxicity in vitro.
Collapse
Affiliation(s)
- Christopher R Racine
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Travis Ferguson
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Debbie Preston
- Department of Pediatrics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Dakota Ward
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - John Ball
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Dianne Anestis
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Monica Valentovic
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Gary O Rankin
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
11
|
Li P, Chen GR, Wang F, Xu P, Liu LY, Yin YL, Wang SX. Inhibition of NA(+)/H(+) Exchanger 1 Attenuates Renal Dysfunction Induced by Advanced Glycation End Products in Rats. J Diabetes Res 2016; 2016:1802036. [PMID: 26697498 PMCID: PMC4677205 DOI: 10.1155/2016/1802036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022] Open
Abstract
It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-β1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-β1.
Collapse
Affiliation(s)
- Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
| | - Geng-Rong Chen
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
| | - Fu Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, School of Medicine, Shandong University, Jinan 250012, China
| | - Ping Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Li-Ying Liu
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
- Medical College of San-Quan, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya-Ling Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Xi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, School of Medicine, Shandong University, Jinan 250012, China
- *Shuang-Xi Wang:
| |
Collapse
|
12
|
Miyakawa K, Albee R, Letzig LG, Lehner AF, Scott MA, Buchweitz JP, James LP, Ganey PE, Roth RA. A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes. J Pharmacol Exp Ther 2015; 354:230-7. [PMID: 26065700 DOI: 10.1124/jpet.115.223537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/29/2015] [Indexed: 12/14/2022] Open
Abstract
Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0-14 mM), but eliminated cytotoxicity only at small concentrations (≦5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ≦ 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies.
Collapse
Affiliation(s)
- Kazuhisa Miyakawa
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| | - Ryan Albee
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| | - Lynda G Letzig
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| | - Andreas F Lehner
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| | - Michael A Scott
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| | - John P Buchweitz
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| | - Laura P James
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| | - Patricia E Ganey
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| | - Robert A Roth
- Department of Pathobiology and Diagnostic Investigation (K.M., M.A.S., J.P.B.), Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (R.A., P.E.G., R.A.R.), and Diagnostic Center for Population and Animal Health, Section of Toxicology (A.F.L.), Michigan State University, East Lansing, Michigan; and Department of Pediatrics, University of Arkansas for Medical Sciences and Clinical Pharmacology and Toxicology Section, Arkansas Children's Hospital, Little Rock, Arkansas (L.G.L., L.P.J.)
| |
Collapse
|
13
|
Rankin GO, Sweeney A, Racine C, Ferguson T, Preston D, Anestis DK. 4-Amino-2-chlorophenol: Comparative in vitro nephrotoxicity and mechanisms of bioactivation. Chem Biol Interact 2014; 222:126-32. [PMID: 25446496 DOI: 10.1016/j.cbi.2014.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 08/29/2014] [Accepted: 10/06/2014] [Indexed: 11/27/2022]
Abstract
Chlorinated anilines are nephrotoxicants both in vivo and in vitro. The mechanism of chloroaniline nephrotoxicity may occur via more than one mechanism, but aminochlorophenol metabolites appear to contribute to the adverse in vivo effects. The purpose of this study was to compare the nephrotoxic potential of 4-aminophenol (4-AP), 4-amino-2-chlorophenol (4-A2CP), 4-amino-3-chlorophenol (4-A3CP) and 4-amino-2,6-dichlorophenol (4-A2,6DCP) using isolated renal cortical cells (IRCC) from male Fischer 344 rats as the model and to explore renal bioactivation mechanisms for 4-A2CP. For these studies, IRCC (∼4×10(6)cells/ml) were incubated with an aminophenol (0.5 or 1.0mM) or vehicle for 60min at 37°C with shaking. In some experiments, cells were pretreated with an antioxidant or cytochrome P450 (CYP), flavin-containing monooxygenase (FMO), peroxidase or cyclooxygenase inhibitor prior to 4-A2CP (1.0mM). Lactate dehydrogenase (LDH) release served as a measure of cytotoxicity. The order of decreasing nephrotoxic potential in IRCC was 4-A2,6-DCP>4-A2CP>4-AP>4-A3CP. The cytotoxicity induced by 4-A2CP was reduced by pretreatment with the peroxidase inhibitor mercaptosuccinic acid, and some antioxidants (ascorbate, glutathione, N-acetyl-l-cysteine) but not by others (α-tocopherol, DPPD). In addition, pretreatment with the iron chelator deferoxamine, several CYP inhibitors (except for the general CYP inhibitor piperonyl butoxide), FMO inhibitors or indomethacin (a cyclooxygenase inhibitor) failed to attenuate 4-A2CP cytotoxicity. These results demonstrate that the number and ring position of chloro groups can influence the nephrotoxic potential of 4-aminochlorophenols. In addition, 4-A2CP may be bioactivated by cyclooxygenase and peroxidases, and free radicals appear to play a role in 4-A2CP cytotoxicity.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| | - Adam Sweeney
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Christopher Racine
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Travis Ferguson
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Deborah Preston
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Dianne K Anestis
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| |
Collapse
|
14
|
Mohammed E, Safwat G. Assessment of the ameliorative role of selenium nanoparticles on the oxidative stress of acetaminophen in some tissues of male albino rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2013. [DOI: 10.1016/j.bjbas.2013.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Transsulfuration Is a Significant Source of Sulfur for Glutathione Production in Human Mammary Epithelial Cells. ISRN BIOCHEMISTRY 2013; 2013:637897. [PMID: 24634789 PMCID: PMC3949734 DOI: 10.1155/2013/637897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transsulfuration pathway, through which homocysteine from the methionine cycle provides sulfur for cystathionine formation, which may subsequently be used for glutathione synthesis, has not heretofore been identified as active in mammary cells. Primary human mammary epithelial cells (HMEC's) were labeled with S35-methionine for 24 hours following pretreatment with a vehicle control, the cysteine biosynthesis inhibitor propargylglycine or the gamma-glutamylcysteine synthesis inhibitor buthionine sulfoximine. Cell lysates were prepared and reacted with glutathione-S-transferase and the fluorescent labeling compound monochlorobimane to form a fluorescent glutathione-bimane conjugate. Comparison of fluorographic and autoradiographic images indicated that glutathione had incorporated S35-methionine demonstrating that functional transsulfuration occurs in mammary cells. Pathway inhibitors reduced incorporation by roughly 80%. Measurement of glutathione production in HMEC's treated with and without hydrogen peroxide and/or pathway inhibitors indicates that the transsulfuration pathway plays a significant role in providing cysteine for glutathione production both normally and under conditions of oxidant stress.
Collapse
|
16
|
Nazıroğlu M, Yoldaş N, Uzgur EN, Kayan M. Role of contrast media on oxidative stress, Ca(2+) signaling and apoptosis in kidney. J Membr Biol 2012; 246:91-100. [PMID: 23132012 DOI: 10.1007/s00232-012-9512-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/15/2012] [Indexed: 12/21/2022]
Abstract
Contrast media (CM)-induced nephropathy is a common cause of iatrogenic acute renal failure. The aim of the present review was to discuss the mechanisms and risk factors of CM, to summarize the controlled studies evaluating measures for prevention and to conclude with evidence-based strategies for prevention. A review of the relevant literature and results from recent clinical studies as well as critical analyses of published systematic reviews used MEDLINE and the Science Citation Index. The cytotoxicity induced by CM leads to apoptosis and death of endothelial and tubular cells and may be initiated by cell membrane damage together with reactive oxygen species (ROS) and inflammation. Cell damage may be aggravated by factors such as tissue hypoxia, properties of individual CM such as ionic strength, high osmolarity and/or viscosity. Clinical studies indeed support this possibility, suggesting a protective effect of ROS scavenging with the administration of N-acetylcysteine, ascorbic acid erdosteine, glutathione and bicarbonate infusion. The interaction between extracellular Ca(2+), which plays a central role in intercellular contacts and production of ROS, and the in vitro toxicity of CM was also reviewed. The current review addresses the role of oxidative stress in the pathogenesis of CM in the kidney as well as current and potential novel treatment modalities for the prevention of neutrophil activation and CM-induced kidney degeneration in patients. ROS production through CM-induced renal hypoxia may exert direct tubular and vascular endothelial injury. Preventive strategies via antioxidant supplementation include inhibition of ROS generation or scavenging.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Süleyman Demirel University, Dekanlık Binası, 32260 Isparta, Turkey.
| | | | | | | |
Collapse
|
17
|
John-Baptiste A, Vitsky A, Sace F, Zong Q, Ko M, Yafawi R, Liu L. Comparison of 3 Kidney Injury Multiplex Panels in Rats. Int J Toxicol 2012; 31:529-36. [DOI: 10.1177/1091581812463348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kidney injury biomarkers have been utilized by pharmaceutical companies as a means to assess the potential of candidate drugs to induce nephrotoxicity. Multiple platforms and assay methods exist, but the comparison of these methods has not been described. Millipore’s Kidney Toxicity panel, EMD/Novagen’s Widescreen Kidney Toxicity panel, and Meso Scales Kidney Injury panel were selected based on published information. Kidney injury molecule 1, cystatin C, clusterin, and osteopontin were the 4 biomarkers common among all kits tested and the focus of this study. Rats were treated with a low and high dose of para-aminophenol, a known nephrotoxicant, and urine samples were collected and analyzed on the Bio-Plex 200 or MSD’s Sector Imager 6000, according to manufacturers specifications. Comparatively, of the 3 kits, Millipore was the most consistent in detecting elevations of 3 out of the 4 biomarkers at both dose levels and indicated time points.
Collapse
Affiliation(s)
- Annette John-Baptiste
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, CA, USA
| | - Allison Vitsky
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, CA, USA
| | - Frederick Sace
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, CA, USA
| | - Qing Zong
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, CA, USA
| | - Mira Ko
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, CA, USA
| | - Rolla Yafawi
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, CA, USA
| | - Ling Liu
- Pfizer Global Research and Development, Drug Safety Research and Development, San Diego, CA, USA
| |
Collapse
|
18
|
Yousef MI, Omar SAM, El-Guendi MI, Abdelmegid LA. Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat. Food Chem Toxicol 2010; 48:3246-61. [PMID: 20804811 DOI: 10.1016/j.fct.2010.08.034] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 12/27/2022]
Abstract
The present study was carried out to evaluate the potential protective role of quercetin and curcumin against paracetamol-induced oxidative injury, liver damage and impairment of kidney function, as well as haematotoxicity in rats. Also, N-acetylcysteine was used to evaluate the potency of quercetin and curcumin. Paracetamol caused an elevation in thiobarbituric acid-reactive substances (TBARS) paralleled with significant decline in glutathione peroxidase, glutathione S-transferase, superoxide dismutase and catalase activities (in plasma, brain, lung, heart, liver, kidney and testes) and glutathione content (in lung, liver and kidney). The apparent oxidative injury was associated with evident hepatic necrosis confirmed in histological examination, elevated plasma transmainases, alkaline phosphatase and lactate dehydrogenase. Paracetamol reduced plasma total protein, albumin and globulin, while increased bilirubin, urea and creatinine, and induced haematotoxicity. The presence of quercetin or curcumin with paracetamol successfully mitigated the rise in TBARS and restored the activities of antioxidant enzymes compared to the group treated with both paracetamol and N-acetylcysteine. They also protected liver histology, normalized liver and kidney functions, which was more pronounced with curcumin. Therefore, it can be concluded that concomitant administration of quercetin or curcumin with paracetamol may be useful in reversing the toxicity of the drug compared to N-acetylcysteine.
Collapse
Affiliation(s)
- Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | | | | | | |
Collapse
|
19
|
Harmon RC, Duffy SP, Terneus MV, Ball JG, Valentovic MA. Characterization of a novel model for investigation of radiocontrast nephrotoxicity. Nephrol Dial Transplant 2008; 24:763-8. [PMID: 18840895 DOI: 10.1093/ndt/gfn540] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Radiocontrast agents are one of the most common causes of acute renal failure in the world. These agents are required for both diagnostic and therapeutic modalities of medical intervention, including computed tomography (CT), angiography and cardiac catheterization. Publications over the past 40 years support three potential mechanisms of toxicity: oxidative stress, haemodynamics and hyperosmolar effects. An in vitro model provides a rapid evaluation of cellular toxicity without the complications of haemodynamics. This study evaluated the renal toxicity of radiocontrast agents at clinically relevant concentrations. METHODS This study investigated the toxicity of two radiocontrast agents, diatrizoic acid (DA) and iothalamic acid (IA), using an in vitro model. Renal cortical slices isolated from F344 rats were incubated with 0-111 mg I/ml DA or IA. RESULTS Renal slices exposed to DA and IA showed toxicity as measured by increased lactate dehydrogenase (LDH) leakage at concentrations lower than previously published using isolated cell models. These data indicate that DA and IA are toxic to renal cortical slices, and this is a more sensitive model than previously used cell culture systems. DA and IA treatment failed to cause a significant decrease in total cellular glutathione or increase in percent glutathione disulphide (GSSG), implying that oxidative stress may not be an initial mechanism of toxicity. Finally, the addition of exogenous glutathione did provide complete protection from DA- and IA-induced LDH leakage. CONCLUSION These data validate the renal cortical slice in vitro model for investigation of radiocontrast nephrotoxicity. These studies further showed that glutathione was cytoprotective. Future research using this model is aimed at further characterization of radiocontrast nephrotoxicity, which may allow for improved prevention and treatment of radiocontrast-induced acute renal failure.
Collapse
Affiliation(s)
- Robert C Harmon
- Department of Pharmacology, Marshall University School of Medicine, WV 25755-9388, USA
| | | | | | | | | |
Collapse
|
20
|
Foreman BD, Tarloff JB. Contribution of reactive oxygen species to para-aminophenol toxicity in LLC-PK1 cells. Toxicol Appl Pharmacol 2008; 230:144-9. [PMID: 18396305 DOI: 10.1016/j.taap.2008.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 02/14/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
para-aminophenol (PAP) causes nephrotoxicity by biochemical mechanisms that have not been fully elucidated. PAP can undergo enzymatic or non-enzymatic oxidation to form reactive intermediates. Using modulators of reactive oxygen species (ROS), the role of ROS in PAP toxicity in LLC-PK(1) cells was investigated. ROS formation was determined using a fluorescein derivative and viability using alamarBlue. Following treatment of cells with PAP, ROS formation occurred prior to loss of cell viability. Several modulators of ROS were used to identify the pathways involved in PAP toxicity. Viability was improved with catalase treatment, while viability was decreased when cells were treated with superoxide dismutase (SOD). Both catalase and SOD exert their effects outside of cells in the incubation medium, since there was no evidence of uptake of these enzymes in LLC-PK(1) cells. In cell-free incubations, hydrogen peroxide (H(2)O(2)) was produced when 0.5 mM PAP was included in the incubation medium. Further, SOD greatly increased and catalase greatly decreased H(2)O(2) production in these cell-free incubations. These data suggest that H(2)O(2) formed in the incubation medium contributes to loss of viability following PAP treatment. When cells were coincubated with 0.5 mM PAP and tiron, pyruvate, bathocuproine, 1, 10-phenanthroline, or dimethylthiourea (DMTU), ROS formation was decreased. However, there was minimal improvement in cell viability. Paradoxically, DMTU exacerbated PAP-induced loss of viability. These data suggest that ROS are generated in cells exposed to PAP but these species are not the predominant cause of cellular injury.
Collapse
Affiliation(s)
- Brooke D Foreman
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
21
|
Sakuratani Y, Sato S, Nishikawa S, Yamada J, Maekawa A, Hayashi M. Category analysis of the substituted anilines studied in a 28-day repeat-dose toxicity test conducted on rats: correlation between toxicity and chemical structure. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2008; 19:681-696. [PMID: 19061084 DOI: 10.1080/10629360802550689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In order to establish methods for estimating the repeat-dose toxicity of chemicals on the basis of their chemical structure, an analysis of a category formed for 14 substituted anilines was conducted. This analysis was based on the results of a 28-day repeat-dose toxicity test conducted on rats in which these 14 chemicals were studied. The intensities of the toxicological effects of the 14 substituted anilines on each target organ at specific dosages were described using the values and histopathological findings of the test. The results clarified the characteristics of the chemical structure that induced specific toxicological effects on specific targets at a particular dosage. Hemolysis was the most frequently observed finding in the test reports in the case of the 14 substituted anilines. Strong linear correlations between the dosage and proportion of decrease in the erythrocyte count were found in the case of chemicals that induced strong hemolytic effects. In particular, for dimethylanilines, strong linear correlations were found between the calculated hemoglobin-binding index and the proportion of decrease in the erythrocyte count at a particular dosage. Thus, the results of our analysis demonstrate that it is possible to correlate the values obtained for substituted anilines from 28-day repeat-dose toxicity tests with their quantitatively determined molecular properties. The intensity of hemolysis and the effects on the liver tended to be low in the case of chemicals with a high water solubility, such as aminophenols and benzene sulfonic acids. However, a similar trend was not observed in the case of the effects of these chemicals on the kidney.
Collapse
Affiliation(s)
- Y Sakuratani
- Chemical Management Center, National Institute of Technology and Evaluation, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Rankin GO, Hong SK, Anestis DK, Ball JG, Valentovic MA. Mechanistic aspects of 4-amino-2,6-dichlorophenol-induced in vitro nephrotoxicity. Toxicology 2007; 245:123-9. [PMID: 18243470 DOI: 10.1016/j.tox.2007.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/13/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
4-Amino-2,6-dichlorophenol (ADCP) is a potent acute nephrotoxicant in vivo inducing prominent renal corticomedullary necrosis. In vitro, ADCP exposure increases lactate dehydrogenase (LDH) release from rat renal cortical slices at 0.05 mM or greater. The purpose of this study was to examine the ability of antioxidants, cytochrome P450 (CYP) and flavin adenine dinucleotide monooxygenase (FMO) activity modulators, indomethacin, glutathione and inhibitors of glutathione conjugate metabolism to attenuate ADCP cytotoxicity in vitro. Renal cortical slices prepared from untreated male Fischer 344 rats (N=4/group) were preincubated at 37 degrees C under a 100% oxygen atmosphere with an inhibitor or vehicle for 5-30 min. ADCP (0.05-0.5mM) or vehicle was added and incubations continued for 120 min. At the end of the incubation period, LDH release was measured as an index of nephrotoxicity. ADCP cytotoxicity was partially attenuated by ascorbate (1.0 or 2.0mM), but not by N,N'-diphenyl-p-phenylenediamine (DPPD), alpha-tocopherol or deferoxamine. Inhibitors of CYP (metyrapone, piperonyl butoxide and isoniazid) and FMO activity modulators (methimazole, N-octylamine) had no effect on ADCP cytotoxicity. Indomethacin or glutathione 1.0mM completely and partially blocked ADCP 0.1 and 0.5mM cytotoxicity, respectively. N-acetylcysteine, AOAA (an inhibitor of cysteine conjugate beta-lyase) and probenecid (an organic anion transport inhibitor), but not AT-125 (an inhibitor of gamma-glutamyl transferase), partially attenuated ADCP 0.1mM cytotoxicity. Overall, these results suggest that reactive metabolites may be produced from ADCP primarily via a co-oxidation-mediated mechanism. The difference in the ability of ascorbate and glutathione to attenuate ADCP-induced cytotoxicity in vitro in kidney cells could indicate that alkylation via the reactive benzoquinoneimine metabolite might be responsible for cytotoxicity rather than a free radical-mediated mechanism.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | | | | | | | | |
Collapse
|
23
|
Yang A, Trajkovic D, Illanes O, Ramiro-Ibáñez F. Clinicopathological and tissue indicators of para-aminophenol nephrotoxicity in sprague-dawley rats. Toxicol Pathol 2007; 35:521-32. [PMID: 17562485 DOI: 10.1080/01926230701338933] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A model of para-aminophenol (PAP) nephrotoxicity in Sprague-Dawley rats was utilized to characterize potential indicators of toxicity in the kidney and in biofluids, and to chronicle the progression of acute renal injury. Rats were administered PAP at a low or high dose and examined terminally at 6, 24 and 48 hours (4 animals/group with matching controls). Acute tubular necrosis was observed in the medullary rays (low and high doses) and the outer stripe of outer medulla (high dose only) as early as 6 hours postdosing. Starting at 24 hours, regeneration of the tubular epithelium was evident in both low and high dose studies. Associated with the tubular lesions, we observed elevation of urinary alpha -glutathione S-transferase levels, an indicator of proximal tubular injury. By immunohistochemistry of the kidney, decreased gamma -glutamylcysteine synthetase expression correlated with tubular injury, especially at high dose, whereas elevation of vimentin, osteopontin, and Ki-67 expression was concurrent with tubular regeneration. Clusterin and kidney injury molecule-1 displayed expression patterns characteristic of both renal injury and regeneration. Taken together, this study provided insight into the progression of nephrotoxicity, and allowed the evaluation of potential urinary and tissue protein biomarkers that could complement the early detection of acute tubular injury.
Collapse
Affiliation(s)
- Amy Yang
- Department of Molecular and Investigative Toxicology, Iconix Biosciences, Inc., Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
24
|
Harmon RC, Kiningham KK, Valentovic MA. Pyruvate reduces 4-aminophenol in vitro toxicity. Toxicol Appl Pharmacol 2005; 213:179-86. [PMID: 16343575 DOI: 10.1016/j.taap.2005.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 11/19/2022]
Abstract
Pyruvate has been observed to reduce the nephrotoxicity of some agents by maintaining glutathione status and preventing lipid peroxidation. This study examined the mechanism for pyruvate protection of p-aminophenol (PAP) nephrotoxicity. Renal cortical slices from male Fischer 344 rats were incubated for 30-120 min with 0, 0.1, 0.25 or 0.5 mM PAP in oxygenated Krebs buffer containing 0 or 10 mM pyruvate or glucose (1.28 or 5.5 mM). LDH leakage was increased above control by 0.25 and 0.5 mM PAP beginning at 60 min and by 0.1 mM PAP at 120 min. Pyruvate prevented an increase in LDH leakage at 60- and 120-min exposure to 0.1 and 0.25 mM PAP. Pyruvate also prevented a decline in ATP levels. Glucose (1.28 and 5.5 mM) provided less protection than pyruvate from PAP toxicity. Total glutathione levels were diminished by 0.1 and 0.25 mM PAP within 60 and 30 min, respectively. Pyruvate prevented the decline in glutathione by 0.1 mM PAP at both time periods and at 30 min for 0.25 mM PAP. Pyruvate reduced the magnitude of glutathione depletion by 0.25 mM PAP following a 60-min incubation. Glutathione disulfide (GSSG) levels in renal slices were increased at 60 min by exposure to 0.25 mM PAP, while pyruvate prevented increased GSSG levels by PAP. Pyruvate also reduced the extent of 4-hydroxynonenal (4-HNE)-adducted proteins present after a 90-min incubation with PAP. These results indicate that pyruvate provided protection for PAP toxicity by providing an energy substrate and reducing oxidative stress.
Collapse
Affiliation(s)
- R Christopher Harmon
- Department of Pharmacology, Marshall University Joan C. Edwards School of Medicine, 1542 Spring Valley Drive, Huntington, WV 25704-9388, USA
| | | | | |
Collapse
|