1
|
Neamah AS, Wadan AHS, Lafta FM, Elakwa DES. The potential role of targeting the leptin receptor as a treatment for breast cancer in the context of hyperleptinemia: a literature review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03592-9. [PMID: 39565396 DOI: 10.1007/s00210-024-03592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
Since cancer is becoming a leading cause of death worldwide, efforts should be concentrated on understanding its underlying biological alterations that would be utilized in disease management, especially prevention strategies. Within this context, multiple bodies of evidence have highlighted leptin's practical and promising role, a peptide hormone extracted from adipose and fatty tissues with other adipokines, in promoting the proliferation, migration, and metastatic invasion of breast carcinoma cells. Excessive blood leptin levels and hyperleptinemia increase body fat content and stimulate appetite. Also, high leptin level is believed to be associated with several conditions, including overeating, emotional stress, inflammation, obesity, and gestational diabetes. It has been noted that when leptin has impaired signaling in CNS, causing the lack of its normal function in energy balance, it results in leptin resistance, leading to a rise in its concentration in peripheral tissues. Our research paper will shed highlighting on potentially targeting the leptin receptor and its cellular signaling in suppressing breast cancer progression.
Collapse
Affiliation(s)
- Abbas S Neamah
- Department of Biology, College of Sciences, University of Baghdad, Baghdad, Iraq.
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt
| | - Fadhel M Lafta
- Department of Biology, College of Sciences, University of Baghdad, Baghdad, Iraq
| | - Doha El-Sayed Elakwa
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| |
Collapse
|
2
|
Panahizadeh R, Vatankhah MA, Safari A, Danesh H, Nazmi N, Gholizadeh P, Soozangar N, Jeddi F. The interplay between microRNAs and Nrf2 signaling in human cancers. Cancer Cell Int 2024; 24:234. [PMID: 38970040 PMCID: PMC11225148 DOI: 10.1186/s12935-024-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
MicroRNAs (miRNAs), as a class of nonprotein-coding RNAs, post-transcriptionally regulate the expression of target genes by base pairing to 3'-untranslated regions (3'-UTRs). Nuclear factor E2-related factor 2 (Nrf2) has been identified as a critical component of the antioxidant defense mechanism. Dysregulation is associated with chemoresistance and radioresistance in cancerous cells. MiRNA-mediated regulation of the Nrf2 signaling pathway has been shown to have important implications for the development of various cancers. In this article, we review the roles of miRNAs as regulators of the Nrf2 pathway in different human cancers. Ras-associated binding (Rab) proteins have an essential role regulation of vesicle transport, as well as oncogenic functions in preventing chemotherapy efficacy and cancer development. More importantly, increased evidence indicated that the interaction between miRNAs and Rabs has been determined to play critical roles in cancer therapy. However, the significant limitations in using miRNAs for therapeutic applications include cross-targeting and instability of miRNAs. The detailed aspect of the interaction of miRNAs and Rabs is not clearly understood. In the current review, we highlighted the involvement of these molecules as regulators of the Nrf2 pathway in cancer pathogenesis. Potential methods and several obstacles in developing miRNAs as an anticancer therapy are also mentioned.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hesam Danesh
- Department of Orthopedics, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Nazmi
- School of Medicine, Islamic Azad University, Ardabil, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
5
|
Abdel-Hamid HA, Marey H, Ibrahim MFG. Hemin protects against cell stress induced by estrogen and progesterone in rat mammary glands via modulation of Nrf2/HO-1 and NF-κB pathways. Cell Stress Chaperones 2023; 28:289-301. [PMID: 36930344 PMCID: PMC10167073 DOI: 10.1007/s12192-023-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Mammary gland hyperplasia is one of the risk factors for breast cancer. Till date, there is no study that has addressed the effect of hemin in this condition. Thus, this study was designed to evaluate the effect of the heme oxygenase 1 (HO-1) inducer (hemin) and its inhibitor (zinc protoporphyrin-IX) (ZnPP-IX) on mammary gland hyperplasia (MGH) induced by estrogen and progesterone in adult albino rats. Forty adult female albino rats were divided into the control group, MGH group, MGH + Hemin group, and MGH + Hemin + ZnPP-IX group. Serum levels of estradiol and progesterone were measured. Breast tissues were taken for estimation of oxidative, inflammatory, and apoptotic markers. Mammary gland histology was performed, and expression of Ki-67, Beclin, and P53 in breast tissue was also measured. Estrogen and progesterone administration induced hyperplasia of cells lining the ducts of the breast tissues associated with increased diameter and height of the nipples as well as increased oxidative stress markers, inflammatory markers, antiapoptotic markers, and cell autophagy. Hemin administration during induction of MGH can reverse all the affected parameters. Then, these effects were abolished by ZnPP-IX administration. We concluded that hemin administration can antagonize the cell stress induced by estrogen and progesterone and protect against the development of mammary gland hyperplasia via modulation of Nrf2/HO-1 and NF-κB pathways.
Collapse
Affiliation(s)
- Heba A. Abdel-Hamid
- Department of Medical Physiology, Faculty of Medicine, Minia University, Minia, 61111 Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
| | - Heba Marey
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61111 Egypt
| | | |
Collapse
|
6
|
Potential Role of Oxidative Stress in the Production of Volatile Organic Compounds in Obesity. Antioxidants (Basel) 2023; 12:antiox12010129. [PMID: 36670991 PMCID: PMC9854577 DOI: 10.3390/antiox12010129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is associated with numerous health issues such as sleep disorders, asthma, hepatic dysfunction, cancer, renal dysfunction, diabetes, cardiovascular complications, and infertility. Previous research has shown that the distribution of excess body fat, rather than excess body weight, determines obesity-related risk factors. It is widely accepted that abdominal fat is a serious risk factor for illnesses associated with obesity and the accumulation of visceral fat promotes the release of pro-oxidants, pro-inflammatory, and reactive oxygen species (ROS). The metabolic process in the human body produces several volatile organic compounds (VOCs) via urine, saliva, breath, blood, skin secretions, milk, and feces. Several studies have shown that VOCs are released by the interaction of ROS with underlying cellular components leading to increased protein oxidation, lipid peroxidation, or DNA damage. These VOCs released via oxidative stress in obese individuals may serves as a biomarker for obesity-related metabolic alterations and disease. In this review, we focus on the relationship between oxidative stress and VOCs in obesity.
Collapse
|
7
|
In Vitro and In Vivo Antiproliferative Actions of Solanum gilo Raddi (Solanaceae) Fruit Extract on Breast Tissues. Adv Pharmacol Pharm Sci 2022; 2022:6834626. [PMID: 36199376 PMCID: PMC9529474 DOI: 10.1155/2022/6834626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Menopause is a normal event characterized by a drop in estrogen's production, leading to numerous symptoms. To face these later, women rely on hormone replacement therapy (HRT), which alleviates numerous menopausal symptoms. Unfortunately, long-term exposure to estrogens is associated with an increase in endometrial and breast cancers. This study dealt with the evaluation of in vitro and in vivo antiproliferative effects of Solanum gilo Raddi, a plant used in folk medicine to treat tumors in Cameroon. Materials and Methods The in vitro antiproliferative effect of S. gilo fruit extract was investigated through the well-characterized MTT assay in one normal and three cancerous breast cells. For the in vivo study, one normal group (NOR) of rats received distilled water (vehicle), and five other groups (n = 6) were treated either with tamoxifen (3.3 mg/kg BW) as standard or with the vehicle (negative control) or S. gilo fruit hydroethanolic extract (125, 250, and 500 mg/kg BW). The treatments were administered concomitantly with the E2V to induce breast hyperplasia for 16 weeks, and the endpoints were the histopathology of the mammary glands and some biochemical parameters. Results The S. gilo extract significantly inhibited human (MCF-7 and MDA-MB-231) and rodent (4T1) breast carcinoma cell growth. Rats exposed only to E2V presented atypical mammary hyperplasia compared to the normal parenchyma observed in normal rats. While rats treated with S. gilo extract at the dose of 125 mg/kg BW showed a microarchitecture of mammary glands with moderate hyperplasia, the higher doses (250 and 500 mg/kg) inhibited mammary gland hyperplasia compared to the E2V group. Conclusion S. gilo fruit extract has antiproliferative constituents that could help to fight against estrogen-dependent breast cancer, thanks to their ability to scavenge free radicals, as exhibited in this study.
Collapse
|
8
|
Clinical implications of lipid peroxides levels in plasma and tumor tissue in breast cancer patients. Prostaglandins Other Lipid Mediat 2022; 161:106639. [PMID: 35550168 DOI: 10.1016/j.prostaglandins.2022.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
Abstract
Oxidative stress can promote the oxidation of lipoproteins and polyunsaturated fatty acids present in cell membranes; an event known as lipid peroxidation (LPO). LPO has been associated with carcinogenesis and cancer progression, however, its meaning concerning the clinicopathological aspects of human breast cancer is not clear. This study investigated LPO profiles in tumor and plasma samples from breast cancer patients (n = 140) considering their clinicopathological features (age at diagnosis, menopausal status, body mass index, tumor histological grade, tumor size, ki-67 proliferation index, presence of metastasis, chemotherapy response, the molecular subtype of cancer and overall survival status). LPO levels were estimated by tert-butyl hydroperoxide-initiated chemiluminescence. High LPO levels were found regarding poor prognosis parameters as young age at diagnosis (p = 0.006 in tissue), premenopausal patients (p = 0.012 in tissue), high-grade tumors (p = 0.010 in tissue and p = 0.002 in plasma), metastatic disease (p = 0.046 in tissue), chemoresistant tumors (p = 0.041 in tissue), disease relapse (p = 0.018 in tissue and p = 0.009 in plasma) and overall survival status (p = 0.001 in plasma). Our findings point out the clinical meaning of LPO and highlight it as an oxidative stress event linked to poor prognosis and disease aggressiveness in breast cancer patients.
Collapse
|
9
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
10
|
Barros MPD, Bachi ALL, Santos JDMBD, Lambertucci RH, Ishihara R, Polotow TG, Caldo-Silva A, Valente PA, Hogervorst E, Furtado GE. The poorly conducted orchestra of steroid hormones, oxidative stress and inflammation in frailty needs a maestro: Regular physical exercise. Exp Gerontol 2021; 155:111562. [PMID: 34560197 DOI: 10.1016/j.exger.2021.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
This review outlines the various factors associated with unhealthy aging which includes becoming frail and dependent. With many people not engaging in recommended exercise, facilitators and barriers to engage with exercise must be investigated to promote exercise uptake and adherence over the lifespan for different demographics, including the old, less affluent, women, and those with different cultural-ethnic backgrounds. Governmental and locally funded public health messages and environmental facilitation (gyms, parks etc.) can play an important role. Studies have shown that exercise can act as a conductor to balance oxidative stress, immune and endocrine functions together to promote healthy aging and reduce the risk for age-related morbidities, such as cardiovascular disease and atherosclerosis, and promote cognition and mood over the lifespan. Like a classic symphony orchestra, consisting of four groups of related musical instruments - the woodwinds, brass, percussion, and strings - the aging process should also perform in harmony, with compassion, avoiding the aggrandizement of any of its individual parts during the presentation. This review discusses the wide variety of molecular, cellular and endocrine mechanisms (focusing on the steroid balance) underlying this process and their interrelationships.
Collapse
Affiliation(s)
- Marcelo Paes de Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil.
| | - André Luís Lacerda Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | | | - Rafael Ishihara
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Tatiana Geraldo Polotow
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil
| | - Adriana Caldo-Silva
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Pedro Afonso Valente
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Eef Hogervorst
- Applied Cognitive Research National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Guilherme Eustáquio Furtado
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal; Institute Polytechnic of Maia, Porto, Portugal; University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal.
| |
Collapse
|
11
|
Alshehri MM, Sharifi-Rad J, Herrera-Bravo J, Jara EL, Salazar LA, Kregiel D, Uprety Y, Akram M, Iqbal M, Martorell M, Torrens-Mas M, Pons DG, Daştan SD, Cruz-Martins N, Ozdemir FA, Kumar M, Cho WC. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6331630. [PMID: 34539970 PMCID: PMC8448605 DOI: 10.1155/2021/6331630] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Daidzein is a phytoestrogen isoflavone found in soybeans and other legumes. The chemical composition of daidzein is analogous to mammalian estrogens, and it could be useful with a dual-directional purpose by substituting/hindering with estrogen and estrogen receptor (ER) complex. Hence, daidzein puts forth shielding effects against a great number of diseases, especially those associated with the control of estrogen, such as breast cancer, diabetes, osteoporosis, and cardiovascular disease. However, daidzein also has other ER-independent biological activities, such as oxidative damage reduction acting as an antioxidant, immune regulator as an anti-inflammatory agent, and apoptosis regulation, directly linked to its potential anticancer effects. In this sense, the present review is aimed at providing a deepen analysis of daidzein pharmacodynamics and its implications in human health, from its best-known effects alleviating postmenopausal symptoms to its potential anticancer and antiaging properties.
Collapse
Affiliation(s)
- Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Evelyn L. Jara
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Yadav Uprety
- Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Margalida Torrens-Mas
- Translational Research In Aging and Longevity (TRIAL Group), Health Research Institute of the Balearic Islands (IdISBA), 07122 Palma, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma, Spain
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Fethi Ahmet Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, Bingol 1200, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
12
|
Liu C, Wu P, Zhang A, Mao X. Advances in Rodent Models for Breast Cancer Formation, Progression, and Therapeutic Testing. Front Oncol 2021; 11:593337. [PMID: 33842308 PMCID: PMC8032937 DOI: 10.3389/fonc.2021.593337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is a highly complicated disease. Advancement in the treatment and prevention of breast cancer lies in elucidation of the mechanism of carcinogenesis and progression. Rodent models of breast cancer have developed into premier tools for investigating the mechanisms and genetic pathways in breast cancer progression and metastasis and for developing and evaluating clinical therapeutics. Every rodent model has advantages and disadvantages, and the selection of appropriate rodent models with which to investigate breast cancer is a key decision in research. Design of a suitable rodent model for a specific research purpose is based on the integration of the advantages and disadvantages of different models. Our purpose in writing this review is to elaborate on various rodent models for breast cancer formation, progression, and therapeutic testing.
Collapse
Affiliation(s)
- Chong Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pei Wu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ailin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Abstract
In aerobes, oxygen is essential for maintenance of life. However, incomplete reduction of oxygen leads to generation of reactive oxygen species. These oxidants oxidise biological macromolecules present in their vicinity and thereby impair cellular functions causing oxidative stress (OS). Aerobes have evolved both enzymatic and nonenzymatic antioxidant defences to protect themselves from OS. Although hormones as means of biological coordination involve in regulation of physiological activities of tissues by regulating metabolism, any change in their normal titre leads to pathophysiological states. While, hormones such as melatonin, insulin, oestrogen, progesterone display antioxidant features, thyroid hormone, corticosteroids and catecholamines elicit free radical generation and OS, and the role of testosterone in inducing OS is debateable. This review is an attempt to understand the impact of free radical generation and cross talk between the hormones modulating antioxidant defence system under various pathophysiological conditions.
Collapse
Affiliation(s)
- Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, India
| | | |
Collapse
|
14
|
Liu Y, Li W, Duan Y. Effect of H
2
O
2
induced oxidative stress (OS) on volatile organic compounds (VOCs) and intracellular metabolism in MCF-7 breast cancer cells. J Breath Res 2019; 13:036005. [DOI: 10.1088/1752-7163/ab14a5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Lightbourn AV, Thomas RD. Crude Edible Fig ( Ficus carica) Leaf Extract Prevents Diethylstilbestrol (DES)-Induced DNA Strand Breaks in Single-Cell Gel Electrophoresis (SCGE)/Comet Assay: Literature Review and Pilot Study. JOURNAL OF BIOEQUIVALENCE & BIOAVAILABILITY 2019; 11:19-28. [PMID: 31814674 PMCID: PMC6897490 DOI: 10.35248/0975-0851.19.11.389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fig (Ficus carica) trees are among the oldest plants on earth. The chemopreventive properties of constituent polyphenols and fiber that implicate figs in having a functional role in averting cancer have not been fully elucidated. We therefore hypothesized that fig leaf extract would inhibit (or attenuate) DES-induced DNA single-strand breakage in MCF10A human breast epithelial cells. To test this hypothesis, MCF10A cells were treated with DES (1, 10, 100 μM), crude fig leaf extract (5, 10, 15 μL), or concomitant doses of DES (100 μM)/fig leaf extract (5, 10, 15 μL). The cells were analyzed for DNA strand breakage using the SCGE/COMET assay with mean olive tail moment as a marker of DNA damage. DES induced DNA strand breaks at all treatment levels compared to DMSO and non-treatment controls. DES at concentrations of 1, 10, and 100 μM produced mean olive tail moments of 1.2082 (177.6%), 1.2702 (186.7%), and 1.1275 (165.7%), respectively, which were statistically significantly (p<0.05) higher than the DMSO control value (0.6803). Exposure to fig leaf extract produced no DNA damage. Rather, a desirable dose-dependent reduction in DES-induced DNA strand breaks was observed. Composite treatment of MCF10A cells with DES and fig leaf extract attenuated DES-induced DNA strand breaks. Taken together, these results suggest a potential mechanism for cancer chemoprevention. Additional studies are necessary to identify relevant active ingredients, confirm the mechanism of action, and further elucidate the therapeutic potential of fig leaf extract for early-stage breast cancer chemoprevention.
Collapse
Affiliation(s)
- Alrena V Lightbourn
- Basic & Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Ronald D Thomas
- Basic & Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
16
|
Thangarasu R, Pachaiappan P, Subbaiyan T. Anti-Estrogenic and Anti-Cell Proliferative Effect of Allyl Isothiocyanate in Chemoprevention of Chemically Induced Mammary Carcinogenesis in Rats. Pathol Oncol Res 2019; 26:913-925. [PMID: 30895454 DOI: 10.1007/s12253-019-00638-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
The anti-estrogenic and anti-cell proliferative effect of allyl isothiocyanate (AITC) was carried out by analyzing the status of sex hormones and its receptors and cell proliferative markers in chemically induced mammary carcinogenesis in rats. Mammary tumor was induced by a single dose of DMBA (25 mg/rat) and MNU (50 mg/kg bw) injected subcutaneously near mammary gland. RT-PCR, western blotting and immunohistochemical analysis of mammary tissues show an upregulation of ER-α, PR, aromatase, PCNA, cyclin D1 and AgNORs staining and down regulation of p53 expression as well as plasma estradiol, prolactin and testosterone levels increased in DMBA and MNU-induced tumor bearing rats. Oral administration of AITC at a dose of 20 mg/kg bw restored the levels of sex hormones and its receptors, aromatase, cell proliferative markers and AgNORs staining near to normal levels. Molecular docking studies also supported these findings. The results suggest that anti-estrogenic and anti-proliferative effect of AITC prevent the development of DMBA and MNU-induced mammary carcinogenesis in rat.
Collapse
Affiliation(s)
- Rajakumar Thangarasu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, 608 002, India
| | - Pugalendhi Pachaiappan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, 608 002, India.
| | - Thilagavathi Subbaiyan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, 608 002, India
| |
Collapse
|
17
|
Oxidant stress induction and signalling in xenografted (human breast cancer-tissues) plus estradiol treated or N-ethyl-N-nitrosourea treated female rats via altered estrogen sulfotransferase (rSULT1E1) expressions and SOD1/catalase regulations. Mol Biol Rep 2018; 45:2571-2584. [PMID: 30315444 DOI: 10.1007/s11033-018-4425-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/05/2018] [Indexed: 12/16/2022]
Abstract
N-ethyl-N-nitrosourea (ENU) is highly used in rodent models of tumerogenesis/carcinogenesis. Xenografting human-cancer tissues/cells with estradiol (E2) treatment is also used to generate rodent-models of gynaecological cancers. The altered metabolic-redox environment leading to establishment of pre-tumorigenesis condition and their mechanism are less studied. Here, female Wister rats were treated with these drugs at their pre-tumerogenic dosage (one group ENU single intra-peritoneal dose of 90 mg/kg b.w. and another group were implanted with human breast tumor (stage-IIIB) and fed with 2.5 mg of 17β-estradiol once in a week for 4 months). After 4 months, animals were sacrificed; their serum and liver tissues were tested. A brief comparison was made with a rat model (regarded as positive control) of toxicity induced by mutagenic environmental pollutant arsenic (0.6 ppm daily/4 weeks). The increase in serum alkaline phosphatase and glutamate-pyruvate transaminase suggests the possible organ toxicity is favoured by the increase in hepatic/systemic free radicals and oxidative stress in all drug application models. But the increase in the serum E2 level as noted in the ELISA data with impairment in the hepatic estrogen sulfotransferase (SULT1E1) protein expression (immuno-blot data) were noticed with interfered hepatic free-thiols only in ENU and xenograft-E2 group compared to arsenic group. It is also evident in the in vitro result from E2/GSH/NAC added hepatic slices with altered antioxidant regulations. Moreover, impairment in hepatic SOD1, catalase and glutathiole peroxidase activities (PAGEzymographic data), especially in the ENU-treated group makes them more vulnerable to the oxidative threat in creating pre-tumerogenic microenvironment. This is evident in the result of their higher DNA-damage and histological abnormalities. The Bioinformatics study revealed an important role of rSULT1E1 in the regulations of E2 metabolism. This study is important for the exploration of the pre-tumerogenic condition by ENU and E2 by impairing SULT1E1 expression and E2 regulations via oxidant-stress signalling. The finding may help to find new therapeutic-targets to treat gynaecological-cancers more effectively.
Collapse
|
18
|
Sang X, Han H, Poirier D, Lin SX. Steroid sulfatase inhibition success and limitation in breast cancer clinical assays: An underlying mechanism. J Steroid Biochem Mol Biol 2018; 183:80-93. [PMID: 29803725 DOI: 10.1016/j.jsbmb.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022]
Abstract
Steroid sulfatase is detectable in most hormone-dependent breast cancers. STX64, an STS inhibitor, induced tumor reduction in animal assay. Despite success in phase І clinical trial, the results of phase II trial were not that significant. Breast Cancer epithelial cells (MCF-7 and T47D) were treated with two STS inhibitors (STX64 and EM1913). Cell proliferation, cell cycle, and the concentrations of estradiol and 5α-dihydrotestosterone were measured to determine the endocrinological mechanism of sulfatase inhibition. Comparisons were made with inhibitions of reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs). Proliferation studies showed that DNA synthesis in cancer cells was modestly decreased (approximately 20%), accompanied by an up to 6.5% in cells in the G0/G1 phase and cyclin D1 expression reduction. The concentrations of estradiol and 5α-dihydrotestosterone were decreased by 26% and 3% respectively. However, supplementation of 5α-dihydrotestosterone produced a significant increase (approximately 35.6%) in the anti-proliferative effect of sulfatase inhibition. This study has clarified sex-hormone control by sulfatase in BC, suggesting that the different roles of estradiol and 5α-dihydrotestosterone can lead to a reduction in the effect of sulfatase inhibition when compared with 17β-HSD7 inhibition. This suggests that combined treatment of sulfatase inhibitors with 17β-HSD inhibitors such as the type7 inhibitor could hold promise for hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Donald Poirier
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada.
| |
Collapse
|
19
|
Oestrogen receptor-regulated glutathione S-transferase mu 3 expression attenuates hydrogen peroxide-induced cytotoxicity, which confers tamoxifen resistance on breast cancer cells. Breast Cancer Res Treat 2018; 172:45-59. [PMID: 30054830 DOI: 10.1007/s10549-018-4897-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Glutathione S-transferase mu 3 (GSTM3) is an enzyme involving in the detoxification of electrophilic compounds by conjugation with glutathione. Higher GSTM3 mRNA levels were reported in patients with ERα-positive breast cancer who received only tamoxifen therapy after surgery. Thus, this study aimed to clarify the oncogenic characteristics of GSTM3 in breast cancer and the mechanism of tamoxifen resistance. METHODS GSTM3 expression in human breast tumour tissues (n = 227) was analysed by RT-PCR and quantitative PCR. Western blot, promoter activity assays, and chromatin immunoprecipitation (ChIP) assays were used to investigate the mechanism of GSTM3 gene regulation. Hydrogen peroxide (H2O2)-induced cytotoxicity in breast cancer cells was detected by MTT assays and flow cytometry. The oncogenic characteristics of GSTM3 in MCF-7 cells were examined by siRNA knockdown in soft agar assays and a xenograft animal model. RESULTS GSTM3 mRNA was highly expressed in ER- and HER2-positive breast cancers. Moreover, patients who received adjuvant Herceptin had increased GSTM3 mRNA levels in tumour tissue. Oestrogen-activated GSTM3 gene expression through ERα-mediated recruitment of SP1, EP300, and AP-1 complexes. GSTM3-silenced MCF-7 cells were more sensitive to H2O2, with significantly inhibited proliferation and colony formation abilities. Tamoxifen-resistant (Tam-R) cells lacking GSTM3 showed enhanced sensitivity to H2O2, but this result was contrary to that obtained after short-term tamoxifen exposure. The animal model suggested that GSTM3 silencing might suppress the tumourigenic ability of MCF-7 cells and increase tumour cell apoptosis. CONCLUSIONS ROS production is one mechanism by which cancer drugs kill tumour cells, and according to our evidence, GSTM3 may play an important role in preventing breast cancer treatment-induced cellular cytotoxicity.
Collapse
|
20
|
Tamoxifen synergizes with 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1,2-diol} and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, novel azaresveratrol analogs, in inhibiting the proliferation of breast cancer cells. Oncotarget 2018; 7:51747-51762. [PMID: 27351134 PMCID: PMC5239512 DOI: 10.18632/oncotarget.10106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/22/2016] [Indexed: 12/18/2022] Open
Abstract
We have recently shown that 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1,2-diol} (HPIMBD) and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), novel analogs of resveratrol (Res), selectively inhibited the proliferation of breast cancer cells. In the current study, we tested HPIMBD and TIMBD individually in combination with tamoxifen (Tam) for inhibition of growth of breast cancer cells. Tamoxifen was first tested on non-neoplastic breast epithelial cell lines and its dose that does not inhibit their growth was determined. A combination of this low dose of Tam with either of the Res analogs HPIMBD or TIMBD, resulted in synergistic inhibition of proliferation of breast cancer cells. Both estrogen receptor (ER)-positive and negative breast cancer cell lines responded to the combination. The combination resulted in a substantial decrease in IC50 values of Res analogs in all breast cancer cell lines tested. Mechanistic studies showed a synergistic increase in apoptosis and autophagy genes (beclin-1 and LC3BII/I) with the combination in ER-negative MDA-MB-231 cells. In ER-positive MCF-7 and T47D cells, the mechanism of synergy was found to be inhibition of expression of ERα and oncogene c-Myc. The combination treatment had a synergistic effect in inhibiting the colony forming and spheroid forming ability of cancer cells. Taken together, our findings indicate that a combination of Tam and Res analogs HPIMBD or TIMBD represents a novel approach to enhancing the use of Tam in therapy for breast cancers. Considering the urgent need for novel therapeutic strategies to treat ER-negative breast cancers and overcoming resistance in ER-positive cancers, this combinatorial approach is worthy of continued investigation.
Collapse
|
21
|
Modulatory Effect of Fermented Papaya Extracts on Mammary Gland Hyperplasia Induced by Estrogen and Progestin in Female Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8235069. [PMID: 29359010 PMCID: PMC5735651 DOI: 10.1155/2017/8235069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/24/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023]
Abstract
Fermented papaya extracts (FPEs) are obtained by fermentation of papaya by Aspergillus oryzae and yeasts. In this study, we investigated the protective effects of FPEs on mammary gland hyperplasia induced by estrogen and progestogen. Rats were randomly divided into 6 groups, including a control group, an FPE-alone group, a model group, and three FPE treatment groups (each receiving 30, 15, or 5 ml/kg FPEs). Severe mammary gland hyperplasia was induced upon estradiol benzoate and progestin administration. FPEs could improve the pathological features of the animal model and reduce estrogen levels in the serum. Analysis of oxidant indices revealed that FPEs could increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, decrease malondialdehyde (MDA) level in the mammary glands and serum of the animal models, and decrease the proportion of cells positive for the oxidative DNA damage marker 8-oxo-dG in the mammary glands. Additionally, estradiol benzoate and progestin altered the levels of serum biochemical compounds such as aspartate transaminase (AST), total bilirubin (TBIL), and alanine transaminase (ALT), as well as hepatic oxidant indices such as SOD, GSH-Px, MDA, and 8-oxo-2′-deoxyguanosine (8-oxo-dG). These indices reverted to normal levels upon oral administration of a high dose of FPEs. Taken together, our results indicate that FPEs can protect the mammary glands and other visceral organs from oxidative damage.
Collapse
|
22
|
Chatterjee A, Ronghe A, Padhye SB, Spade DA, Bhat NK, Bhat HK. Antioxidant activities of novel resveratrol analogs in breast cancer. J Biochem Mol Toxicol 2017; 32. [PMID: 28960787 DOI: 10.1002/jbt.21925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 01/02/2023]
Abstract
The objective of the present study was to characterize the role of novel resveratrol (Res) analogs: 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1, 2-diol} (HPIMBD) and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD) as potent antioxidants against breast cancer. Non-neoplastic breast epithelial cell lines MCF-10A and MCF-10F were treated with 17β-estradiol (E2), Res, HPIMBD, and TIMBD for up to 72 h. mRNA and protein levels of antioxidant genes, superoxide dismutase 3 (SOD3) and N-quinoneoxidoreductase-1 (NQO1) and transcription factors, nuclear factor erythroid 2-related factor (Nrf) 1, 2 and 3 were quantified after the above treatments. Generation of reactive oxygen species (ROS) was measured by CM-H2-DCFDA and oxidative-DNA damage was determined by measuring 8-hydroxy-2-deoxyguanosine (8-OHdG). HPIMBD and TIMBD scavenged cellular ROS production, attenuated oxidative DNA damage, increased mRNA and protein expression levels of SOD3 and NQO1 and activated Nrf signaling pathway. Our studies demonstrate that HPIMBD and TIMBD have the potential as novel antioxidants to prevent development of breast cancer.
Collapse
Affiliation(s)
- Anwesha Chatterjee
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Amruta Ronghe
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Subhash B Padhye
- Department of Chemistry, Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, University of Pune, India
| | - David A Spade
- Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Nimee K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Hari K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| |
Collapse
|
23
|
EBRAHIMI E, SABOKBAR T, ESKANDARIEH S, PEYGHAMBARI V, SHIRKOOHI R. CYP17 MspA1 Gene Polymorphism and Breast Cancer Patients According to Age of Onset in Cancer Institute of Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:537-544. [PMID: 28540271 PMCID: PMC5439044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Exposure to endogenous hormones such as estrogen is known as a lifetime Breast Cancer (BC) risk factor. Polymorphisms in genes that are involved in the steroidogenic process, such as Cytochrome P450c17alpha (CYP17), affect individuals' susceptibility to BC. In Iran, the highest incident of BC is among young women. This study aimed to find prevalence of Single Nucleotide Polymorphisms (SNPs) in genes such as CYP17 and significant correlation with age-oriented group of breast cancer. METHODS In 2016, a case series study was conducted on a total population of 205 patients suffering from breast cancer referred to Cancer Institute, Imam Khomeini Hospital Complex, Tehran, Iran. This population consisted of 104 cases less than 40 yr old and 101 cases over 40. The genotype variants of CYP17 MspA1 were determined using PCR, followed by RFLP. The association of CYP17 MspA1 polymorphisms with the risk of BC in two different age groups was evaluated by calculating odds ratio and 95% confidence intervals using unconditional logistic regression. RESULTS Carriers of at least one A2 allele may have higher risk of developing breast cancer at younger age compared to patients with A1/A1 genotype (Odds Ratio: 1.99, 95% Confidence Interval: 1.11-3.57, P=0.02). CONCLUSION CYP17gene polymorphisms may have influence on the early onset of breast cancer.
Collapse
Affiliation(s)
- Elmira EBRAHIMI
- Group of Genetics, Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh SABOKBAR
- Group of Genetics, Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran, Neurology & Neurosciences Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Sharareh ESKANDARIEH
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran, MS Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh PEYGHAMBARI
- Group of Genetics, Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza SHIRKOOHI
- Group of Genetics, Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| |
Collapse
|
24
|
Aka JA, Calvo EL, Lin SX. Estradiol-independent modulation of breast cancer transcript profile by 17beta-hydroxysteroid dehydrogenase type 1. Mol Cell Endocrinol 2017; 439:175-186. [PMID: 27544780 DOI: 10.1016/j.mce.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a steroidal enzyme which, in breast cancer cells, mainly synthesizes 17-beta-estradiol (E2), an estrogenic hormone that stimulates breast cancer cell growth. We previously showed that the enzyme increased breast cancer cell proliferation via a dual effect on E2 and 5α-dihydrotestosterone (DHT) levels and impacted gene expression and protein profile of breast cancer cells cultured in E2-contained medium. Here, we used RNA interference technique combined with microarray analyses to investigate the effect of 17β-HSD1 expression on breast cancer cell transcript profile in steroid-deprived condition. Our data revealed that knockdown of 17β-HSD1 gene, HSD17B1, modulates the transcript profile of the hormone-dependent breast cancer cell line T47D, with 105 genes regulated 1.5 fold or higher (p < 0.05) in estradiol-independent manner. Using Ingenuity Pathway Analysis (IPA), we additionally assessed functional enrichment analyses, including biological functions and canonical pathways, and found that, in concordance with the role of 17β-HSD1 in cancer cell growth, most regulated genes are cancer-related genes. Genes that primarily involved in the cell cycle progression, such as the cyclin A2 gene, CCNA2, are generally down-regulated whereas genes involved in apoptosis and cell death, including the pro-apoptotic gene XAF1, IFIH1 and FGF12, are on the contrary up-regulated by 17β-HSD1 knockdown, and 21% of the modulated genes belong to this latter functional category. This indicates that 17β-HSD1 may be involved in oncogenesis by favoring anti-apoptosis pathway in breast cancer cells and correborates with its previously shown role in increasing breast cancer cell proliferation. The gene regulation occurring in steroid-deprived conditions showed that 17β-HSD1 can modulate endogenous gene expression in steroid-independent manners. Besides, we tested the ability of estrogen to induce or repress endogenous genes of T47D by microarray analysis. Expression of a total of 130 genes were found to increase or decrease 1.5-fold or higher (p < 0.05) in response to E2 treatment (1 nM for 48 h), revealing a list of potential new estrogen-responsive genes and providing useful information for further studies of estrogen-dependent breast cancer mechanisms. In conclusion, in breast cancer cells, in addition to its implication in the E2-dependent gene transcription, the present study demonstrates that 17β-HSD1 also modulates gene expression via mechanisms independent of steroid actions. Those mechanisms that may include the ligand-independent gene transcription of estrogen receptor alpha (ERα), whose expression is positively correlated with that of the enzyme, and that may implicate 17β-HSD1 in anti-apoptosis pathways, have been discussed.
Collapse
Affiliation(s)
- Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Ezequiel-Luis Calvo
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada.
| |
Collapse
|
25
|
Spatholobus suberectus Column Extract Inhibits Estrogen Receptor Positive Breast Cancer via Suppressing ER MAPK PI3K/AKT Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2934340. [PMID: 28096885 PMCID: PMC5209621 DOI: 10.1155/2016/2934340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022]
Abstract
Although Chinese herbal compounds have long been alternatively applied for cancer treatment in China, their treatment effects have not been sufficiently investigated. The Chinese herb Spatholobus suberectus is commonly prescribed to cancer patients. HPLC analysis has shown that the main components of Spatholobus suberectus are flavonoids that can be classified as phytoestrogens, having a structure similar to estrogen. This study was designed to investigate the effects of Spatholobus suberectus column extract (SSCE) on the estrogen receptor-positive (ER+) breast cancer cell line MCF-7 and its possible molecular mechanism. In our study, MTT assay was performed to evaluate cell viability. The results show that SSCE (80, 160, and 320 μg/ml) significantly decreased the viability of MCF-7 cells. SSCE also triggered apoptosis, arrested the cell cycle at the G0/G1 phase, and inhibited cell migration. A dual-luciferase reporter system showed that SSCE suppressed intranuclear p-ER activity; Western blot analysis confirmed the repressed expression of phosphorylated-ER alpha (p-ERα), ERK1/2, p-ERK1/2, AKT, p-AKT, p-mTOR, PI3K, and p-PI3K, indicating that SSCE suppressed the MAPK PI3K/AKT signaling pathway. Collectively, our results suggest that SSCE causes apoptosis, an arrest in the G0/G1 phase, and a decrease in migration in ER+ MCF-7 cells via hypoactivity of the ER and suppression of the MAPK PI3K/AKT pathway.
Collapse
|
26
|
Nemec AA, Bush KB, Towle-Weicksel JB, Taylor BF, Schulz V, Weidhaas JB, Tuck DP, Sweasy JB. Estrogen Drives Cellular Transformation and Mutagenesis in Cells Expressing the Breast Cancer-Associated R438W DNA Polymerase Lambda Protein. Mol Cancer Res 2016; 14:1068-1077. [PMID: 27621267 DOI: 10.1158/1541-7786.mcr-16-0209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
Repair of DNA damage is critical for maintaining the genomic integrity of cells. DNA polymerase lambda (POLL/Pol λ) is suggested to function in base excision repair (BER) and nonhomologous end-joining (NHEJ), and is likely to play a role in damage tolerance at the replication fork. Here, using next-generation sequencing, it was discovered that the POLL rs3730477 single-nucleotide polymorphism (SNP) encoding R438W Pol λ was significantly enriched in the germlines of breast cancer patients. Expression of R438W Pol λ in human breast epithelial cells induces cellular transformation and chromosomal aberrations. The role of estrogen was assessed as it is commonly used in hormone replacement therapies and is a known breast cancer risk factor. Interestingly, the combination of estrogen treatment and the expression of the R438W Pol λ SNP drastically accelerated the rate of transformation. Estrogen exposure produces 8-oxoguanine lesions that persist in cells expressing R438W Pol λ compared with wild-type (WT) Pol λ-expressing cells. Unlike WT Pol λ, which performs error-free bypass of 8-oxoguanine lesions, expression of R438W Pol λ leads to an increase in mutagenesis and replicative stress in cells treated with estrogen. Together, these data suggest that individuals who carry the rs3730477 POLL germline variant have an increased risk of estrogen-associated breast cancer. IMPLICATIONS The Pol λ R438W mutation can serve as a biomarker to predict cancer risk and implicates that treatment with estrogen in individuals with this mutation may further increase their risk of breast cancer. Mol Cancer Res; 14(11); 1068-77. ©2016 AACR.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Korie B Bush
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | | | - B Frazier Taylor
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Vincent Schulz
- Department of Pediatrics, Yale University, New Haven, Connecticut
| | - Joanne B Weidhaas
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,Division of Molecular and Cellular Oncology, UCLA, Los Angeles, California
| | - David P Tuck
- Departmentof Pathology, Yale University, New Haven, Connecticut
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
27
|
Zingue S, Cisilotto J, Tueche AB, Bishayee A, Mefegue FA, Sandjo LP, Magne Nde CB, Winter E, Michel T, Ndinteh DT, Awounfack CF, Silihe KK, Melachio Tanekou TT, Creczynski-Pasa TB, Njamen D. Crateva adansonii DC, an African ethnomedicinal plant, exerts cytotoxicity in vitro and prevents experimental mammary tumorigenesis in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:183-199. [PMID: 27267829 DOI: 10.1016/j.jep.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crateva adansonii DC is a plant traditionally used in Cameroon to treat constipation, asthma, snakebites, postmenopausal complaints and cancers. AIM The anticancer potential of the dichloromethane/methanol extract of C. adansonii stem barks was investigated using human breast cancer cell and 7,12 dimethylbenz(a)anththracene (DMBA)-induced mammary tumorigenesis model in rats. MATERIAL AND METHODS The cytotoxicity of C. adansonii extract was assessed in vitro towards breast carcinoma (MCF-7 and MDA-MB-231) and non-tumoral cell lines (NIH/3T3 and HUVEC) by Alamar Blue assay. Furthermore, in vivo studies were performed on female Wistar rats treated either with C. adansonii extract at a dose of 75 or 300mg/kg body weight or with tamoxifen (3.3mg/kg body weight), starting 1 week prior DMBA treatment and lasted 12 weeks. The investigation focused on tumour burden, tumour DNA fingerprint, morphological, histological, hematological, and biochemical parameters. RESULTS CC50 values for the in vitro assays were 289µg/mL against MCF-7 cells and >500µg/mL in others cells, leading to a selectivity index ≥1.73. C. adansonii extract significantly (p<0.001) revealed in vivo the reduction of the cumulative tumour yield (87.23%), total tumour burden (88.64%), average tumour weight (71.11%) and tumour volume (78.07%) at the dose of 75mg/kg as compared to DMBA control group. A weak effect was also observed at 300mg/kg. This extract showed a moderate hyperplasia at the dose of 75mg/kg while at 300mg/kg no significant change was noted as compared to DMBA group. It protected rats from the DNA alteration induced by DMBA and increased antioxydant enzymes activities in mammary gland tissue homogenates. In addition, Ultra-High Performance Liquid Chromatography/ESI-QTOF-Mass Spectrometry analysis of C. adansonii extract detected structure-related of many well-known anticancer agents such as flavane gallate, flavonol, phenylpropanoïds, sesquiterpene derivatives, gallotannins and lignans. The LD50 of C. adansonii was estimated to be greater than 5000mg/kg. CONCLUSIONS These aforementioned results suggest that the C. adansonii extract may possess antitumor constituents, which could combat breast cancer and prevent chemically-induced breast cancer in rats.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Africa
- Animals
- Anticarcinogenic Agents/chemistry
- Anticarcinogenic Agents/isolation & purification
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/toxicity
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/toxicity
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Capparaceae/chemistry
- Chromatography, Liquid
- DNA Damage/drug effects
- Dose-Response Relationship, Drug
- Ethnobotany
- Female
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Inhibitory Concentration 50
- Lethal Dose 50
- MCF-7 Cells
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Medicine, African Traditional
- Mice
- Molecular Structure
- NIH 3T3 Cells
- Oxidative Stress/drug effects
- Phytotherapy
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plant Extracts/toxicity
- Plants, Medicinal
- Rats, Wistar
- Spectrometry, Mass, Electrospray Ionization
- Tamoxifen/pharmacology
- Time Factors
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Stéphane Zingue
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, Maroua, Cameroon; Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon; Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Julia Cisilotto
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Alain Brice Tueche
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, Maroua, Cameroon
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA
| | - Francine Azegha Mefegue
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, Maroua, Cameroon
| | - Louis Pergaud Sandjo
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Evelyn Winter
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thomas Michel
- Institute of Chemistry of Nice, Faculty of Sciences, University Nice Sophia-Antipolis, UMR CNRS 7272, Valrose Park, Nice Cedex 2, France
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, Faculty of Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | | | - Kevine Kamga Silihe
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | | | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon; Department of Applied Chemistry, Faculty of Sciences, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
28
|
Das Gupta S, Sae-tan S, Wahler J, So JY, Bak MJ, Cheng LC, Lee MJ, Lin Y, Shih WJ, Shull JD, Safe S, Yang CS, Suh N. Dietary γ-Tocopherol-Rich Mixture Inhibits Estrogen-Induced Mammary Tumorigenesis by Modulating Estrogen Metabolism, Antioxidant Response, and PPARγ. Cancer Prev Res (Phila) 2015; 8:807-16. [PMID: 26130252 DOI: 10.1158/1940-6207.capr-15-0154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
This study evaluated the anticancer activity and mechanism of action of a γ-tocopherol-rich tocopherol mixture, γ-TmT, in two different animal models of estrogen-induced breast cancer. The chemopreventive effect of γ-TmT at early (6 weeks), intermediate (18 weeks), and late (31 weeks) stages of mammary tumorigenesis was determined using the August-Copenhagen Irish rat model. Female rats receiving 17β-estradiol (E2) implants were administered with different doses (0%, 0.05%, 0.1%, 0.3%, and 0.5%) of γ-TmT diet. Treatment with 0.3% and 0.5% γ-TmT decreased tumor volume and multiplicity. At 31 weeks, serum concentrations of E2 were significantly decreased by γ-TmT. γ-TmT preferentially induced expression of the E2-metabolizing enzyme CYP1A1, over CYP1B1 in the rat mammary tissues. Nrf2-dependent antioxidant response was stimulated by γ-TmT, as evident from enhanced expression of its downstream targets, NQO1, GCLM, and HMOX1. Serum concentrations of the oxidative stress marker, 8-isoprostane, were also decreased in the γ-TmT-treated groups. Treatment with γ-TmT increased expression of PPARγ and its downstream genes, PTEN and p27, whereas the cell proliferation marker, PCNA, was significantly reduced in γ-TmT-treated mammary tumors. In an orthotopic model in which human MCF-7 breast cancer cells were injected into the mammary fat pad of immunodeficient mice, γ-TmT inhibited E2-dependent tumor growth at all the doses tested. In conclusion, γ-TmT reduced mammary tumor development, in part through decreased E2 availability and reduced oxidative stress in mammary tissues; γ-TmT could thus be an effective agent for the prevention and treatment of E2-induced breast cancer.
Collapse
Affiliation(s)
- Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sudathip Sae-tan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jae Young So
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Larry C Cheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mao-Jung Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yong Lin
- Department of Biostatistics, School of Public Health, Rutgers University. Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Weichung Joe Shih
- Department of Biostatistics, School of Public Health, Rutgers University. Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - James D Shull
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey. Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey. Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
29
|
Ronghe A, Chatterjee A, Singh B, Dandawate P, Murphy L, Bhat NK, Padhye S, Bhat HK. Differential regulation of estrogen receptors α and β by 4-(E)-{(4-hydroxyphenylimino)-methylbenzene,1,2-diol}, a novel resveratrol analog. J Steroid Biochem Mol Biol 2014; 144 Pt B:500-12. [PMID: 25242450 PMCID: PMC4195806 DOI: 10.1016/j.jsbmb.2014.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/05/2023]
Abstract
Breast cancer is the second leading cause of death among women in the United States. Estrogens have been implicated as major risk factors in the development of breast neoplasms. Recent epidemiologic studies have suggested a protective role of phytoestrogens in prevention of breast and other cancers. Resveratrol, a naturally occurring phytoestrogen found notably in red grapes, berries and peanuts, has been shown to possess potent anti-cancer properties. However, the poor efficacy of resveratrol has prevented its use in a clinical setting. In order to improve the efficacy of resveratrol, we have synthesized a small combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the growth of breast cancer cell lines. We have recently shown that one of the synthesized analogs, 4-(E)-{(4-hydroxyphenylimino)-methylbenzene,1,2-diol} (HPIMBD), has better anti-cancer properties than resveratrol. The objective of this study was to investigate the differential regulation of estrogen receptors (ERs) α and β as a potential mechanism of inhibition of breast cancer by HPIMBD. Estrogen receptors α and β have been shown to have opposing roles in cellular proliferation. Estrogen receptor α mediates the proliferative responses of estrogens while ERβ plays an anti-proliferative and pro-apoptotic role. We demonstrate that HPIMBD significantly induces the expression of ERβ and inhibits the expression of ERα. HPIMBD also inhibits the protein expression levels of oncogene c-Myc and cell cycle protein cyclin D1, genes downstream to ERα and important regulators of cell cycle, and cellular proliferation. HPIMBD significantly induces protein expression levels of tumor suppressors p53 and p21 in MCF-7 cells. Additionally, HPIMBD inhibits c-Myc in an ERβ-dependent fashion in MCF-10A and ERβ1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this novel compound. Molecular docking studies confirm higher affinity for binding of HPIMBD in the ERβ cavity. Thus, HPIMBD, a novel azaresveratrol analog may inhibit the proliferation of breast cancer cells by differentially modulating the expressions of ERs α and β.
Collapse
Affiliation(s)
- Amruta Ronghe
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Anwesha Chatterjee
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Bhupendra Singh
- Department of Genetics, School of Medicine, University of AL at Birmingham, Birmingham, AL 35294, USA
| | - Prasad Dandawate
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, India
| | - Leigh Murphy
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Manitoba R3E0V9, Canada
| | - Nimee K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Subhash Padhye
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, India
| | - Hari K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
30
|
Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography–mass spectrometry. Clin Chim Acta 2014; 436:59-67. [DOI: 10.1016/j.cca.2014.04.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 11/21/2022]
|
31
|
Chatterjee A, Ronghe A, Singh B, Bhat NK, Chen J, Bhat HK. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis. J Biochem Mol Toxicol 2014; 28:529-38. [PMID: 25130429 DOI: 10.1002/jbt.21594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and NAD(P)H quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways.
Collapse
Affiliation(s)
- Anwesha Chatterjee
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Singh B, Shoulson R, Chatterjee A, Ronghe A, Bhat NK, Dim DC, Bhat HK. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis 2014; 35:1872-80. [PMID: 24894866 DOI: 10.1093/carcin/bgu120] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The importance of estrogens in the etiology of breast cancer is widely recognized. Estrogen-induced oxidative stress has been implicated in this carcinogenic process. Resveratrol (Res), a natural antioxidant phytoestrogen has chemopreventive effects against a variety of illnesses including cancer. The objective of the present study was to characterize the mechanism(s) of Res-mediated protection against estrogen-induced breast carcinogenesis. Female August Copenhagen Irish rats were treated with 17β-estradiol (E2), Res and Res + E2 for 8 months. Cotreatment of rats with Res and E2 inhibited E2-mediated proliferative changes in mammary tissues and significantly increased tumor latency and reduced E2-induced breast tumor development. Resveratrol treatment alone or in combination with E2 significantly upregulated expression of nuclear factor erythroid 2-related factor 2 (NRF2) in mammary tissues. Expression of NRF2-regulated antioxidant genes NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage was increased in Res- and Res + E2-treated mammary tissues. Resveratrol also prevented E2-mediated inhibition of detoxification genes AOX1 and FMO1. Inhibition of E2-mediated alterations in NRF2 promoter methylation and expression of NRF2 targeting miR-93 after Res treatment indicated Res-mediated epigenetic regulation of NRF2 during E2-induced breast carcinogenesis. Resveratrol treatment also induced apoptosis and inhibited E2-mediated increase in DNA damage in mammary tissues. Increased apoptosis and decreased DNA damage, cell migration, colony and mammosphere formation in Res- and Res + E2-treated MCF-10A cells suggested a protective role of Res against E2-induced mammary carcinogenesis. Small-interfering RNA-mediated silencing of NRF2 inhibited Res-mediated preventive effects on the colony and mammosphere formation. Taken together, these results suggest that Res inhibits E2-induced breast carcinogenesis via induction of NRF2-mediated protective pathways.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA, Institute of Comparative Medicine, Columbia University, New York, NY 10032, USA and Division of Pharmacology and Toxicology, School of Pharmacy and School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Rivka Shoulson
- Institute of Comparative Medicine, Columbia University, New York, NY 10032, USA and
| | | | - Amruta Ronghe
- Division of Pharmacology and Toxicology, School of Pharmacy and
| | - Nimee K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy and
| | - Daniel C Dim
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Hari K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy and
| |
Collapse
|
33
|
Das Gupta S, So JY, Wall B, Wahler J, Smolarek AK, Sae-Tan S, Soewono KY, Yu H, Lee MJ, Thomas PE, Yang CS, Suh N. Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats. Mol Carcinog 2014; 54:916-25. [PMID: 24782330 DOI: 10.1002/mc.22164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022]
Abstract
Oxidative stress is known to play a key role in estrogen-induced breast cancer. This study assessed the chemopreventive activity of the naturally occurring γ-tocopherol-rich mixture of tocopherols (γ-TmT) in early stages of estrogen-induced mammary hyperplasia in ACI rats. ACI rats provide an established model of rodent mammary carcinogenesis due to their high sensitivity to estrogen. Female rats were implanted with 9 mg of 17β-estradiol (E2) in silastic tubings and fed with control or 0.3% γ-TmT diet for 1, 3, 7, and 14 d. γ-TmT increased the levels of tocopherols and their metabolites in the serum and mammary glands of the rats. Histological analysis revealed mammary hyperplasia in the E2 treated rats fed with control or γ-TmT diet. γ-TmT decreased the levels of E2-induced nitrosative and oxidative stress markers, nitrotyrosine, and 8-oxo-dG, respectively, in the hyperplastic mammary tissues. 8-Isoprostane, a marker of oxidative stress in the serum, was also reduced by γ-TmT. Noticeably, γ-TmT stimulated Nrf2-dependent antioxidant response in the mammary glands of E2 treated rats, evident from the induced mRNA levels of Nrf2 and its downstream antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. Therefore, inhibition of nitrosative/oxidative stress through induction of antioxidant response is the primary effect of γ-TmT in early stages of E2-induced mammary hyperplasia. Due to its cytoprotective activity, γ-TmT could be a potential natural agent for the chemoprevention of estrogen-induced breast cancer.
Collapse
Affiliation(s)
- Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jae Young So
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Brian Wall
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Amanda K Smolarek
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sudathip Sae-Tan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Kelvin Y Soewono
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Haixiang Yu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mao-Jung Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Paul E Thomas
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
34
|
Mahalingaiah PKS, Singh KP. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 2014; 9:e87371. [PMID: 24489904 PMCID: PMC3905021 DOI: 10.1371/journal.pone.0087371] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence suggests that exposures to elevated levels of either endogenous estrogen or environmental estrogenic chemicals are associated with breast cancer development and progression. These natural or synthetic estrogens are known to produce reactive oxygen species (ROS) and increased ROS has been implicated in both cellular apoptosis and carcinogenesis. Though there are several studies on direct involvement of ROS in cellular apoptosis using short-term exposure model, there is no experimental evidence to directly implicate chronic exposure to ROS in increased growth and tumorigenicity of breast cancer cells. Therefore, the objective of this study was to evaluate the effects of chronic oxidative stress on growth, survival and tumorigenic potential of MCF-7 breast cancer cells. MCF-7 cells were exposed to exogenous hydrogen peroxide (H2O2) as a source of ROS at doses of 25 µM and 250 µM for acute (24 hours) and chronic period (3 months) and their effects on cell growth/survival and tumorigenic potential were evaluated. The results of cell count, MTT and cell cycle analysis showed that while acute exposure inhibits the growth of MCF-7 cells in a dose-dependent manner, the chronic exposure to H2O2-induced ROS leads to increased cell growth and survival of MCF-7 cells. This was further confirmed by gene expression analysis of cell cycle and cell survival related genes. Significant increase in number of soft agar colonies, up-regulation of pro-metastatic genes VEGF, WNT1 and CD44, whereas down-regulation of anti-metastatic gene E-Cadherin in H2O2 treated MCF-7 cells observed in this study further suggests that persistent exposure to oxidative stress increases tumorigenic and metastatic potential of MCF-7 cells. Since many chemotherapeutic drugs are known to induce their cytotoxicity by increasing ROS levels, the results of this study are also highly significant in understanding the mechanism for adaptation to ROS-induced toxicity leading to acquired chemotherapeutic resistance in breast cancer cells.
Collapse
Affiliation(s)
- Prathap Kumar S. Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, United States of America
| | - Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Socas-Rodríguez B, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MÁ. Hollow-fiber liquid-phase microextraction for the determination of natural and synthetic estrogens in milk samples. J Chromatogr A 2013; 1313:175-84. [DOI: 10.1016/j.chroma.2013.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
|
36
|
Karayannopoulou M, Fytianou A, Assaloumidis N, Psalla D, Constantinidis TC, Kaldrymidou E, Koutinas AF. Markers of lipid peroxidation and α-tocopherol levels in the blood and neoplastic tissue of dogs with malignant mammary gland tumors. Vet Clin Pathol 2013; 42:323-8. [DOI: 10.1111/vcp.12064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maria Karayannopoulou
- Department of Clinical Studies - Companion Animal Clinic; Faculty of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki; Greece
| | - Anna Fytianou
- Department of Clinical Studies - Companion Animal Clinic; Faculty of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki; Greece
| | - Nikolaos Assaloumidis
- Department of Clinical Studies - Companion Animal Clinic; Faculty of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki; Greece
| | - Dimitra Psalla
- Laboratory of Pathology; Faculty of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki; Greece
| | - Theodoros C. Constantinidis
- Laboratory of Hygiene and Environmental Protection; Medical School; Democritus University of Thrace; Alexandroupolis; Greece
| | - Eleni Kaldrymidou
- Laboratory of Pathology; Faculty of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki; Greece
| | - Alexander F. Koutinas
- Department of Clinical Studies - Companion Animal Clinic; Faculty of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki; Greece
| |
Collapse
|
37
|
Singh B, Chatterjee A, Ronghe AM, Bhat NK, Bhat HK. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer. BMC Cancer 2013; 13:253. [PMID: 23697596 PMCID: PMC3665669 DOI: 10.1186/1471-2407-13-253] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/07/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. METHODS Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. RESULTS The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. CONCLUSIONS Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Room 5251, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
38
|
Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 2013; 34:1165-72. [PMID: 23492819 DOI: 10.1093/carcin/bgt026] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that regulate the expression of approximately 60% of all human genes and play important roles in disease processes. Recent studies have demonstrated a link between dysregulated expression of miRNAs and breast carcinogenesis. Long-term estrogen exposure is implicated in development of human breast cancers, yet underlying mechanisms remain elusive. We have recently demonstrated that antioxidant vitamin C (vit C) prevents estrogen-induced breast tumor development. In this study, we investigated the role of vit C in the regulation of microRNA-93 (miR-93) and its target gene(s) in a rat model of mammary carcinogenesis. Female August Copenhagen Irish (ACI) rats were treated with vit C in the presence or absence of 17β-estradiol (E2) for 8 months. We demonstrate an increased expression of the miR-93 in E2-treated mammary tissues and in human breast cell lines and vit C treatment reverted E2-mediated increase in miR-93 levels. MiRNA target prediction programs suggest one of the target genes of miR-93 to be nuclear factor erythroid 2-related factor 2 (NRF2). In contrast with miR-93 expression, NRF2 protein expression was significantly decreased in E2-treated mammary tissues, mammary tumors, and in breast cancer cell lines, and its expression was significantly increased after vit C treatment. Ectopic expression of miR-93 decreased protein expression of NRF2 and NRF2-regulated genes. Furthermore, miR-93 decreased apoptosis, increased colony formation, mammosphere formation, cell migration and DNA damage in breast epithelial cells, whereas silencing of miR-93 in these cells inhibited these carcinogenic processes. Taken together, our findings suggest an oncogenic potential of miR-93 during E2-induced breast carcinogenesis.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
39
|
Li J, Peng Y, Duan Y. Diagnosis of breast cancer based on breath analysis: an emerging method. Crit Rev Oncol Hematol 2012; 87:28-40. [PMID: 23265856 DOI: 10.1016/j.critrevonc.2012.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 01/06/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed malignancy and the second leading cause of the cancer-related deaths among females. Early diagnosis is one of the most important strategies to reduce breast cancer morbidity rate and improve the survival rate. However, early diagnosis of breast cancer is limited because the disease usually develops asymptomatically. Moreover, current screening techniques for breast cancer are always expensive, discomfort, and even harmful for patients, and furthermore, do not fulfill the requirements for reliable differentiation between breast cancer patients and healthy subjects. Breath analysis is non-invasive, painless, easy to perform and no risk to patients. Therefore, this innovative method provides a potentially useful approach to screen breast cancer. This review summarizes the scientific evidences related to breast cancer patients through detecting unique potential biomarkers in the exhaled breath, and the profile of breath biomarker for breast cancer clinical diagnosis.
Collapse
Affiliation(s)
- Jie Li
- Research Center of Analytical Instrumentation, and College of Chemistry, Sichuan University, Chengdu 610064, China
| | | | | |
Collapse
|
40
|
Singh B, Bhat HK. Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. Carcinogenesis 2012; 33:2601-10. [PMID: 23027624 DOI: 10.1093/carcin/bgs300] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidemiological data and studies in rodent models strongly support the role of estrogens in the development of breast cancers. Oxidative stress has been implicated in this carcinogenic process. We have recently demonstrated that antioxidants vitamin C or butylated hydroxyanisole (BHA) severely inhibit 17β-estradiol (E2)-induced breast tumor development in female ACI rats. The objective of this study was to characterize the mechanism of antioxidant-mediated prevention of breast cancer. Female August Copenhagen Irish (ACI) rats were treated with E2, vitamin C, vitamin C + E2, BHA and BHA + E2 for up to 8 months. Superoxide dismutase 3 (SOD3) was suppressed in E2-exposed mammary tissues and in mammary tumors of rats treated with E2. This suppression was overcome by co-treatment of rats with E2 and vitamin C or BHA. 8-Hydroxydeoxyguanosine (8-OHdG) levels determined as a marker of oxidative DNA damage were higher in E2-exposed mammary tissues and in mammary tumors compared with age-matched controls. Vitamin C or BHA treatment significantly decreased E2-mediated increase in 8-OHdG levels in the mammary tissues and in MCF-10A cells. Increased DNA damage, colony and mammosphere formation, and migration in SOD3 knocked down MCF-10A cells, and nuclear translocation of SOD3 in vitamin C-treated mammary tissues and in MCF-10A cells suggest protective role of SOD3 against DNA damage and mammary carcinogenesis. Our studies further demonstrate that SOD3, but not SOD2 and SOD1, is induced by antioxidants and is regulated through NRF2. SOD3 may thus be an important gene in defense against oxidative stress and in the prevention of estrogen-mediated breast cancer.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Room 5251, Kansas City, MO 64108, USA
| | | |
Collapse
|
41
|
Nadal-Serrano M, Sastre-Serra J, Pons DG, Miró AM, Oliver J, Roca P. The ERalpha/ERbeta ratio determines oxidative stress in breast cancer cell lines in response to 17Beta-estradiol. J Cell Biochem 2012; 113:3178-85. [DOI: 10.1002/jcb.24192] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Woolston CM, Zhang L, Storr SJ, Al-Attar A, Shehata M, Ellis IO, Chan SY, Martin SG. The prognostic and predictive power of redox protein expression for anthracycline-based chemotherapy response in locally advanced breast cancer. Mod Pathol 2012; 25:1106-16. [PMID: 22481283 PMCID: PMC3410251 DOI: 10.1038/modpathol.2012.60] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neoadjuvant chemotherapy has become the standard of care for locally advanced primary breast cancer. Anthracycline-based regimens have proven to be one of the most effective treatments in this setting. As certain cytotoxic antineoplastic agents, such as anthracyclines, generate reactive oxygen species as a by-product of their mechanism of action, we examined whether redox protein expression was involved in the response to anthracycline-based chemotherapy and with clinical outcome. Pre-treatment needle core biopsy and post-anthracycline treatment tumour sections were analysed from 98 cases. In all, 32 individuals had a complete clinical response and 17 had a complete pathological response. Immunohistochemical staining was performed for eight redox proteins: thioredoxin, thioredoxin reductase, thioredoxin interacting protein (TxNIP), glutathione S-transferase (GST) π, θ and α, catalase and manganese superoxide dismutase. GST π (P=0.05) and catalase (P=0.045) were associated with pathological complete response in pre-chemotherapy samples. TxNIP (P=0.017) and thioredoxin reductase (P=0.022) were independent prognostic factors for distant metastasis-free survival and TxNIP for overall survival (P=0.014). In oestrogen receptor negative patients that are known to have a poor overall survival, a considerably worse prognosis was seen in cases that exhibited low expression of TxNIP (P=0.000003), stratifying patients into more defined groups. This study indicates the importance of redox regulation in determining breast cancer response to anthracycline-based chemotherapy and provides ways of further stratifying pre-chemotherapy patients to potentially allow more tailored treatments.
Collapse
Affiliation(s)
- Caroline M Woolston
- Department of Academic Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Lei Zhang
- Department of Academic Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Sarah J Storr
- Department of Academic Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Ahmad Al-Attar
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Mohamed Shehata
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Ian O Ellis
- Department of Histopathology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Stephen Y Chan
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Stewart G Martin
- Department of Academic Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK,Academic Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK. E-mail:
| |
Collapse
|
43
|
Alfaro-Lira S, Pizarro-Ortiz M, Calaf GM. Malignant transformation of rat kidney induced by environmental substances and estrogen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:1630-48. [PMID: 22754462 PMCID: PMC3386577 DOI: 10.3390/ijerph9051630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/05/2012] [Accepted: 01/11/2012] [Indexed: 11/20/2022]
Abstract
The use of organophosphorous insecticides in agricultural environments and in urban settings has increased significantly. The aim of the present study was to analyze morphological alterations induced by malathion and 17β-estradiol (estrogen) in rat kidney tissues. There were four groups of animals: control, malathion, estrogen and combination of both substances. The animals were injected for five days and sacrificed 30, 124 and 240 days after treatments. Kidney tissues were analyzed for histomorphological and immunocytochemical alterations. Morphometric analysis indicated that malathion plus estrogen-treated animals showed a significantly (p < 0.05) higher grade of glomerular hypertrophy, signs of tubular damage, atypical proliferation in cortical and hilium zone than malathion or estrogen alone-treated and control animals after 240 days. Results indicated that MFG, ER-α, ER-β, PgR, CYP1A1, Neu/ErbB2, PCNA, vimentin and Thrombospondin 1 (THB) protein expression was increased in convoluted tubules of animals treated with combination of malathion and estrogen after 240 days of 5 day treatment. Malignant proliferation was observed in the hilium zone. In summary, the combination of malathion and estrogen induced pathological lesions in glomeruli, convoluted tubules, atypical cell proliferation and malignant proliferation in hilium zone and immunocytochemical alterations in comparison to control animals or animals treated with either substance alone. It can be concluded that an increased risk of kidney malignant transformation can be induced by exposure to environmental and endogenous substances.
Collapse
Affiliation(s)
- Susana Alfaro-Lira
- Instituto de Alta Investigación, Universidad de Tarapacá, Calle Antofagasta 1520, Arica, Chile; (S.A.-L.); (M.P.-O.)
| | - María Pizarro-Ortiz
- Instituto de Alta Investigación, Universidad de Tarapacá, Calle Antofagasta 1520, Arica, Chile; (S.A.-L.); (M.P.-O.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Calle Antofagasta 1520, Arica, Chile; (S.A.-L.); (M.P.-O.)
- Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- Author to whom correspondence should be addressed; ; Tel.: +56-58-230-334
| |
Collapse
|
44
|
Smolarek AK, So JY, Thomas PE, Lee HJ, Paul S, Dombrowski A, Wang CX, Saw CLL, Khor TO, Kong ANT, Reuhl K, Lee MJ, Yang CS, Suh N. Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. Mol Carcinog 2012; 52:514-25. [PMID: 22389237 DOI: 10.1002/mc.21886] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 12/31/2022]
Abstract
Previous clinical and epidemiological studies of vitamin E have used primarily α-tocopherol for the prevention of cancer. However, γ-tocopherol has demonstrated greater anti-inflammatory and anti-tumor activity than α-tocopherol in several animal models of cancer. This study assessed the potential chemopreventive activities of a tocopherol mixture containing 58% γ-tocopherol (γ-TmT) in an established rodent model of mammary carcinogenesis. Female ACI rats were utilized due to their sensitivity to 17β-estradiol (E2 ) to induce mammary hyperplasia and neoplasia. The rats were implanted subcutaneously with sustained release E2 pellets and given dietary 0.3% or 0.5% γ-TmT for 2 or 10 wk. Serum E2 levels were significantly reduced by the treatment with 0.5% γ-TmT. Serum levels of inflammatory markers, prostaglandin E2 and 8-isoprostane, were suppressed by γ-TmT treatment. Histology of mammary glands showed evidence of epithelial hyperplasia in E2 -treated rats. Immunohistochemical analysis of the mammary glands revealed a decrease in proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2), and estrogen receptor α (ERα), while there was an increase in cleaved-caspase 3, peroxisome proliferator-activated receptor γ (PPARγ), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in γ-TmT-treated rats. In addition, treatment with γ-TmT resulted in a decrease in the expression of ERα mRNA, whereas mRNA levels of ERβ and PPARγ were increased. In conclusion, γ-TmT was shown to suppress inflammatory markers, inhibit E2 -induced cell proliferation, and upregulate PPARγ and Nrf2 expression in mammary hyperplasia, suggesting that γ-TmT may be a promising agent for human breast cancer prevention.
Collapse
Affiliation(s)
- Amanda K Smolarek
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Outcome of mammography in women with large breasts. Breast 2012; 21:493-8. [PMID: 22289153 DOI: 10.1016/j.breast.2011.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Mammography has been established as an effective screening tool for the early detection of breast cancer. Obesity may lead to increased breast size and has been linked to increased rates of breast cancer. As women with larger breasts may be predisposed to developing cancer, it is important that mammography is an appropriate test in these women. This study investigated the sensitivity and specificity of mammography in women with larger breasts in a population screening program. METHOD Data was obtained from 848,648 eligible screening episodes of women aged over 40. Of these episodes, 758,860 were eligible for the study, with 7.2% (54,879 screens) deemed to have large breasts. Large breasts were defined as those for whom at least one large cassette was used in the mammographic process. Those women having only four standard cassettes per screen were classified as having average size breasts (703,981 screens, 92.8%). Cancer detection rates, interval cancer rates (false negatives) and recall to assessment rates were compared for women examined on standard sized cassettes versus large cassettes. Chance corrected measures of sensitivity and specificity and 95% confidence intervals (CI) were calculated for women with and without large breasts. RESULTS The study found that the sensitivity and specificity of mammography was greater for larger breasted woman. The incidence of breast cancer was also found to be higher in woman with larger breasts in the combined population (73.1 per 100,000 (95% CI 65.9-80.2) in large breasted women versus 52.8 (95% CI 51.1-54.5) in other women) and in each of the specific age groups. This study confirms the appropriateness of mammographic screening for women with large breasts.
Collapse
|
46
|
Smolarek AK, Suh N. Chemopreventive activity of vitamin E in breast cancer: a focus on γ- and δ-tocopherol. Nutrients 2011; 3:962-86. [PMID: 22254089 PMCID: PMC3257724 DOI: 10.3390/nu3110962] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/20/2011] [Accepted: 11/03/2011] [Indexed: 02/07/2023] Open
Abstract
Vitamin E consists of eight different variants: α-, β-, γ-, and δ-tocopherols (saturated phytyl tail) and α-, β-, γ-, and δ-tocotrienols (unsaturated phytyl tail). Cancer prevention studies with vitamin E have primarily utilized the variant α-tocopherol. To no avail, a majority of these studies focused on variant α-tocopherol with inconsistent results. However, γ-tocopherol, and more recently δ-tocopherol, have shown greater ability to reduce inflammation, cell proliferation, and tumor burden. Recent results have shown that γ-enriched mixed tocopherols inhibit the development of mammary hyperplasia and tumorigenesis in animal models. In this review, we discuss the possible differences between the variant forms, molecular targets, and cancer-preventive effects of tocopherols. We recommend that a γ-enriched mixture, γ- and δ-tocopherol, but not α-tocopherol, are promising agents for breast cancer prevention and warrant further investigation.
Collapse
Affiliation(s)
- Amanda K. Smolarek
- Department of Chemical Biology, Ernest Mario School of Pharmacy, 164 Frelinghuysen Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, 164 Frelinghuysen Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-732-445-3400 (ext. 226); Fax: +1-732-445-0687
| |
Collapse
|
47
|
Singh B, Bhat NK, Bhat HK. Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer. Carcinogenesis 2011; 33:156-63. [PMID: 22072621 DOI: 10.1093/carcin/bgr237] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exact mechanisms underlying the initiation and progression of estrogen-related cancers are not clear. Literature, evidence and our studies strongly support the role of estrogen metabolism-mediated oxidative stress in estrogen-induced breast carcinogenesis. We have recently demonstrated that antioxidants vitamin C and butylated hydroxyanisole (BHA) or estrogen metabolism inhibitor α-naphthoflavone (ANF) inhibit 17β-estradiol (E2)-induced mammary tumorigenesis in female ACI rats. The objective of the current study was to identify the mechanism of antioxidant-mediated protection against E2-induced DNA damage and mammary tumorigenesis. Female ACI rats were treated with E2 in the presence or absence of vitamin C or BHA or ANF for up to 240 days. Nuclear factor erythroid 2-related factor 2 (NRF2) and NAD(P)H-quinone oxidoreductase 1 (NQO1) were suppressed in E2-exposed mammary tissue and in mammary tumors after treatment of rats with E2 for 240 days. This suppression was overcome by co-treatment of rats with E2 and vitamin C or BHA. Time course studies indicate that NQO1 levels tend to increase after 4 months of E2 treatment but decrease on chronic exposure to E2 for 8 months. Vitamin C and BHA significantly increased NQO1 levels after 120 days. 8-Hydroxydeoxyguanosine (8-OHdG) levels were higher in E2-exposed mammary tissue and in mammary tumors compared with age-matched controls. Vitamin C or BHA treatment significantly decreased E2-mediated increase in 8-OHdG levels in the mammary tissue. In vitro studies using silencer RNA confirmed the role of NQO1 in prevention of oxidative DNA damage. Our studies further demonstrate that NQO1 upregulation by antioxidants is mediated through NRF2.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
48
|
Partial inhibition of estrogen-induced mammary carcinogenesis in rats by tamoxifen: balance between oxidant stress and estrogen responsiveness. PLoS One 2011; 6:e25125. [PMID: 21966433 PMCID: PMC3180376 DOI: 10.1371/journal.pone.0025125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental evidences strongly support the role of estrogens in breast tumor development. Both estrogen receptor (ER)-dependent and ER-independent mechanisms are implicated in estrogen-induced breast carcinogenesis. Tamoxifen, a selective estrogen receptor modulator is widely used as chemoprotectant in human breast cancer. It binds to ERs and interferes with normal binding of estrogen to ERs. In the present study, we examined the effect of long-term tamoxifen treatment in the prevention of estrogen-induced breast cancer. Female ACI rats were treated with 17β-estradiol (E2), tamoxifen or with a combination of E2 and tamoxifen for eight months. Tissue levels of oxidative stress markers 8-iso-Prostane F2α (8-isoPGF2α), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) were quantified in the mammary tissues of all the treatment groups and compared with age-matched controls. Levels of tamoxifen metabolizing enzymes cytochrome P450s as well as estrogen responsive genes were also quantified. At necropsy, breast tumors were detected in 44% of rats co-treated with tamoxifen+E2. No tumors were detected in the sham or tamoxifen only treatment groups whereas in the E2 only treatment group, the tumor incidence was 82%. Co-treatment with tamoxifen decreased GPx and catalase levels; did not completely inhibit E2-mediated oxidative DNA damage and estrogen-responsive genes monoamine oxygenase B1 (MaoB1) and cell death inducing DFF45 like effector C (Cidec) but differentially affected the levels of tamoxifen metabolizing enzymes. In summary, our studies suggest that although tamoxifen treatment inhibits estrogen-induced breast tumor development and increases the latency of tumor development, it does not completely abrogate breast tumor development in a rat model of estrogen-induced breast cancer. The inability of tamoxifen to completely inhibit E2-induced breast carcinogenesis may be because of increased estrogen-mediated oxidant burden.
Collapse
|
49
|
Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 2011; 286:40725-33. [PMID: 21926171 DOI: 10.1074/jbc.m111.275495] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NF-E2-related factor 2 (Nrf2) is an important transcription factor that activates the expression of cellular detoxifying enzymes. Nrf2 expression is largely regulated through the association of Nrf2 with Kelch-like ECH-associated protein 1 (Keap1), which results in cytoplasmic Nrf2 degradation. Conversely, little is known concerning the regulation of Keap1 expression. Until now, a regulatory role for microRNAs (miRs) in controlling Keap1 gene expression had not been characterized. By using miR array-based screening, we observed miR-200a silencing in breast cancer cells and demonstrated that upon re-expression, miR-200a targets the Keap1 3'-untranslated region (3'-UTR), leading to Keap1 mRNA degradation. Loss of this regulatory mechanism may contribute to the dysregulation of Nrf2 activity in breast cancer. Previously, we have identified epigenetic repression of miR-200a in breast cancer cells. Here, we find that treatment with epigenetic therapy, the histone deacetylase inhibitor suberoylanilide hydroxamic acid, restored miR-200a expression and reduced Keap1 levels. This reduction in Keap1 levels corresponded with Nrf2 nuclear translocation and activation of Nrf2-dependent NAD(P)H-quinone oxidoreductase 1 (NQO1) gene transcription. Moreover, we found that Nrf2 activation inhibited the anchorage-independent growth of breast cancer cells. Finally, our in vitro observations were confirmed in a model of carcinogen-induced mammary hyperplasia in vivo. In conclusion, our study demonstrates that miR-200a regulates the Keap1/Nrf2 pathway in mammary epithelium, and we find that epigenetic therapy can restore miR-200a regulation of Keap1 expression, therefore reactivating the Nrf2-dependent antioxidant pathway in breast cancer.
Collapse
Affiliation(s)
- Gabriel Eades
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
50
|
Wang ZC, E D, Batu DL, Saixi YL, Zhang B, Ren LQ. 2D-DIGE proteomic analysis of changes in estrogen/progesterone-induced rat breast hyperplasia upon treatment with the Mongolian remedy RuXian-I. Molecules 2011; 16:3048-65. [PMID: 21478820 PMCID: PMC6260641 DOI: 10.3390/molecules16043048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/31/2011] [Accepted: 04/02/2011] [Indexed: 11/17/2022] Open
Abstract
RuXian-I has traditionally been used as a remedy for breast hyperplasia in the Inner Mongolia Autonomous Region of China. As a first step toward the investigation of biomarkers associated with RuXian-I treatment, a proteome-wide analysis of rat breast tissue was conducted. First, rat breast hyperplasia was induced by injection of estradiol and progesterone. After treatment with RuXian-I, there is a marked decrease in the hyperplasia, as can be shown by decreases in the nipple diameter and the pathological changes in breast. Subsequently, we used an approach that integrates size-based 2D-DIGE, MALDI-TOF/TOF-MS, and bioinformatics to analyze data from the control group, the model group and the RuXian-I treatment group. Using this approach, seventeen affected proteins were identified. Among these, 15 (including annexin A1, annexin A2, superoxide dismutase [Mn], peroxiredoxin-1, translationally-controlled tumor protein and α B-crystallin) were significantly up-regulated in the model group and down-regulated upon treatment with RuXian-I, and two (Tpil protein and myosin-4) have the opposite change trend. The expression of annexin A1 was confirmed using immunohistochemistry. The expression of superoxide dismutase (SOD) activity was confirmed biochemically. These results indicated that RuXian-I treats rat breast hyperplasia through regulation of cell cycle, immune system, metabolic, signal transduction, etc. The differential expressions of these proteins (annexin A1, superoxide dismutase [Mn], alpha B-crystallins and translationally controlled tumor protein, among others) were associated with occurrence and metastasis of breast cancer. These findings might provide not only far-reaching valuable insights into the mechanism of RuXian-I action, but also leads for prognosis and diagnosis of breast hyperplasia and breast cancer.
Collapse
Affiliation(s)
- Zhong-Chao Wang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Du E
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Institute of Mongolia and Western Medicinal treatment, Tongliao 028000, China
| | - De-Ligen Batu
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Institute of Mongolia and Western Medicinal treatment, Tongliao 028000, China
| | - Ya-Latu Saixi
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Institute of Mongolia and Western Medicinal treatment, Tongliao 028000, China
| | - Bin Zhang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Institute of Mongolia and Western Medicinal treatment, Tongliao 028000, China
- Authors to whom correspondence should be addressed; (B.Z.); (L.-Q.R.); Tel.: +86-475-8267818 (B.Z.); +86-431-85619702 (L.-Q.R.); Fax: +86-475-8267813(B.Z.); +86-431-85619252(L.-Q.R.)
| | - Li-Qun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Authors to whom correspondence should be addressed; (B.Z.); (L.-Q.R.); Tel.: +86-475-8267818 (B.Z.); +86-431-85619702 (L.-Q.R.); Fax: +86-475-8267813(B.Z.); +86-431-85619252(L.-Q.R.)
| |
Collapse
|