1
|
Tirgar P, Vekaria M, Raval K. Pre-clinical Evaluation of Karanjin Against DMBA-Induced Breast Cancer in Female Sprague-Dawley Rats Through Modulation of SMAR1 and CDP/CUx genes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03389-w. [PMID: 39177785 DOI: 10.1007/s00210-024-03389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE To investigate the chemoprotective potential of karanjin against 7,12-dimethylbenz(α)anthracene (DMBA)-induced breast cancer. METHODOLOGY Thirty-six female rats were utilized for the study. Breast cancer was induced through a subcutaneous injection of 35 mg/kg DMBA. The animals were allocated to six groups. Three groups were allocated for karanjin (50 mg/kg, 100 mg/kg, and 200 mg/kg), and received daily treatment for 20 weeks (including 2 weeks as pre-treatment). Doxorubicin (4 mg/kg) was administered to the standard control group twice a week for 20 weeks. The disease control (DC) and normal control (NC) groups received daily treatment with saline. After the treatment, oxidative stress parameters, biochemical parameters, and inflammatory parameters were estimated. CCAAT-displacement protein/cut homeobox (CUP/Cux) and scaffold/matrix attachment region binding protein 1 (SMAR1) expression levels were measured through gene expression analysis. Immunohistochemical (IHC) analysis was performed to estimate the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). RESULTS Tumor growth reduced significantly (P-value < 0.01) in karanjin-treated animals compared to the DC group. Karanjin significantly (P-value < 0.01) regulated the levels of oxidative stress parameters, biochemical parameters, and inflammatory parameters compared to the DC group. Karanjin treatment significantly (P-value < 0.001) regulated the expression levels of SMAR1 and CDP/Cux. A notable reduction in the IHC scores was observed for ER, PR, and HER2 expression in karanjin groups. CONCLUSION Karanjin demonstrated chemoprotective activity against DMBA-induced breast cancer in animals potentially through modulation of SMAR1 and CDP/Cux gene expression and reduction of ER, PR and HER2 expression levels.
Collapse
Affiliation(s)
- Pravin Tirgar
- School of Pharmacy, RK University, Rajkot, Gujarat, India
| | | | - Keval Raval
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa-388421, Anand, Gujarat, India.
| |
Collapse
|
2
|
Kim YJ, Park JE, Chung JY, Kim JY, Lee SG, Lee SJ, Yu WJ, Kim HY, Kim HJ, Koh H, Bae HR, Yoo YH, Kim JM. Constitutive expression of cytochrome P450 1B1 endows testicular Leydig cells with susceptibility to 7,12-dimethylbenzanthracene-induced cell death. J Toxicol Sci 2022; 47:317-326. [PMID: 35908932 DOI: 10.2131/jts.47.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Testicular Leydig cells produce testosterone through the participation of steroidogenic proteins. The CYP1B1 enzyme has been shown to catalyze 7,12-dimethylbenzanthracene (DMBA), a representative polycyclic aromatic hydrocarbon. We hypothesized that exposure to DMBA causes Leydig cell cytotoxicity through activation of CYP1B1. Leydig cells were exposed to various concentrations of DMBA for the induction of CYP1B1 expression and activity. The status of CYP1B1 function was monitored by evaluation of cytotoxicity-mediated cell death. Our data show that exposure to DMBA causes cytotoxicity in Leydig cells by CYP1B1 activation. DMBA evoked a significant increase in the generation of reactive oxygen species (ROS) by which the depolarization of mitochondrial membrane potential (MMP) is initiated and caspase-3 activation is augmented. The knockdown of CYP1B1 expression resulted in the suppression of DMBA-induced apoptosis via reduced p53 activation and caspase-3 activation, suggesting that a final metabolite of DMBA (i.e., DMBA-DE) bioactivated by CYP1B1 induces p53 activation by binding to DNA and subsequently causing apoptosis via caspase-3 activation. This finding provides evidence for constitutive expression of CYP1B1 in Leydig cells, which is a trait that only requires an initiating signal for its activity. Further research on CYP1B1 activation-provoked steroid metabolism in Leydig cells may provide decisive clues for elucidating its innate function.
Collapse
Affiliation(s)
- Yoon-Jae Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Korea
| | - Ji-Eun Park
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Korea
| | - Jin-Yong Chung
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Korea
| | - Ji Young Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Korea
| | - Seung Gee Lee
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Korea
| | - Hye Young Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Korea
| | - Hyeon Jun Kim
- Department of Orthopaedic Surgery, College of Medicine, Dong-A University, Korea
| | - Hyungjong Koh
- Department of Pharmacology, College of Medicine, Dong-A University, Korea
| | - Hae-Rahn Bae
- Departmens of Physiology, College of Medicine, Dong-A University, Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Korea
| |
Collapse
|
3
|
Liu Q, Wang W, Zhang Y, Cui Y, Xu S, Li S. Bisphenol A regulates cytochrome P450 1B1 through miR-27b-3p and induces carp lymphocyte oxidative stress leading to apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 102:489-498. [PMID: 32430284 DOI: 10.1016/j.fsi.2020.05.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is an industrial raw material widely used in water bottles, medical devices and food packaging, and is now ubiquitous in the environment. However, the effects of BPA on the toxicity of fish lymphocytes and the roles of microRNA (miRNA) in this process remain poorly understood. To explore the mechanism, we exposed carp spleen lymphocytes to BPA of 1, 5 and 10 nM for 24 h. The results showed that BPA induced carp lymphocyte apoptosis. BPA inhibited the expression of miR-27b-3p mRNA, thereby increasing the expression of cytochrome P450 1B1, increasing ROS levels, inhibiting SOD, CAT, GSH-PX activity, GSH content, promoting the accumulation of NOS and MDA. At the same time, BPA activated the mitochondrial apoptosis pathway, inhibited the expression of BCL-2, and promoted the expression of CytC, BAX, Caspase-9 and Caspase-3. Dual luciferase reporter system showed CYP1B1 is the target genes of miR-27b-3p and negatively regulated by it. Overexpression of miR-27b-3p partially reversed oxidative stress and apoptosis of carp spleen lymphocytes induced by BPA stimulation. Taken together, BPA exposure can target up regulate CYP1B1 expression by down regulating miR-27b-3p expression, thus causing oxidative stress and inducing apoptosis of carp spleen lymphocytes through mitochondrial pathway. Our study will provide theoretical basis for immunotoxicology mechanism research and environmental protection of BPA in fish.
Collapse
Affiliation(s)
- Qingqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, China.
| |
Collapse
|
4
|
van den Berg M, van Duursen MB. Mechanistic considerations for reduced endometrial cancer risk by smoking. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Barcham R, Orsini N, Andres E, Hundt A, Luzy AP. Successful proof of concept of a micronucleus genotoxicity assay on reconstructed epidermis exhibiting intrinsic metabolic activity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:75-86. [PMID: 29704997 DOI: 10.1016/j.mrgentox.2018.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 03/09/2018] [Indexed: 11/27/2022]
Abstract
We investigated the commercially available Episkin LM™ reconstructed epidermis test system as a potential 3D model for human genotoxicity assessment by cytokinesis-block micronucleus assay to mitigate limitations of the currently accepted micronucleus test. We established appropriate culture conditions for cytokinesis-block micronucleus assay in maximizing the frequency of binucleated cells by choice of culture medium and calibration of the system exposure to the cytokinesis inhibitor Cytochalasin B, without affecting the basal frequency of micronuclei in the model. We confirmed that the application of the classic solvents had no significant effect on this basal level of micronuclei. We determined the performance of cytokinesis-block micronucleus assay in Episkin LM™ reconstructed epidermis to predict in vivo genotoxins by testing the genotoxicity potential of 17 well known in vivo genotoxic, progenotoxic and non-genotoxic reference chemicals over a 48 h and 72 h exposure period. We found that cytokinesis-block micronucleus assays in Episkin™ reconstructed epidermis following the 48 h-topical regimen had a specificity of 60-75% and a sensitivity of 83-85%, resulting in an overall accuracy of 76-82% for genotoxicity assessment in tissues depending on the assessment of the reference chemicals with equivocal genotoxic profiles in the literature. The positive micronucleus test results obtained without addition of any exogenous metabolic activation system confirmed the ability of Episkin LM™ reconstructed epidermis to intrinsically bioactivate progenotoxic chemicals. The evidence showed that the 72-h exposure protocol significantly improved the detection of progenotoxins. Taken together, our data demonstrated that the Episkin LM™ reconstructed epidermis system is a relevant in vitro tool in the study of genetic toxicology.
Collapse
|
6
|
Zhang J, Wang F, Wang H, Wang Y, Wu Y, Xu H, Su C. Paeoniflorin inhibits proliferation of endometrial cancer cells via activating MAPK and NF-κB signaling pathways. Exp Ther Med 2017; 14:5445-5451. [PMID: 29285074 PMCID: PMC5740769 DOI: 10.3892/etm.2017.5250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Paeoniflorin (PAE), a principal bioactive component of Paeonia lactiflora Pall., appears to have antitumor properties. However, the pharmacological activity of PAE in endometrial cancer and the specific mechanisms have remained largely elusive. The present study aimed to determine the antitumor activity of PAE in the human endometrial cancer cell line RL95-2 and explore the potential mechanisms. Cell proliferation was assessed to evaluate the antitumor effect of PAE towards RL95-2 cells via a Cell Counting Kit-8 assay. Protein expression was examined to investigate changes in the signaling pathways of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-κB in RL95-2 cells during PAE treatment by western blot analysis. The results revealed that PAE significantly and dose- and time-dependently inhibited the proliferation of RL95-2 cells. In addition, PAE activated MAPK signaling pathways (p38, JNK and ERK) and the NF-κB signaling pathway. Furthermore, p38 MAPK and NF-κB inhibitors (SB203580 and MG-132, respectively) prevented PAE-induced proliferative inhibition in RL95-2 cells. However, ERK and JNK inhibitors (PD98059 and BI-78D3, respectively) did not produce such an inhibition. In conclusion, the present study demonstrated that PAE exerts its anti-proliferative activity via activating p38 MAPK and NF-κB signaling pathways in endometrial cancer cells, providing a potential new drug of choice for endometrial cancer therapy.
Collapse
Affiliation(s)
- Jianxin Zhang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fengchun Wang
- Department of General Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Huali Wang
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yanna Wang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yan Wu
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hui Xu
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chen Su
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
7
|
Go RE, Hwang KA, Kim CW, Byun YS, Nam KH, Choi KC. Effect of dioxin and 17β-estradiol on the expression of cytochrome P450 1A1 gene via an estrogen receptor dependent pathway in cellular and xenografted models. ENVIRONMENTAL TOXICOLOGY 2017; 32:2225-2233. [PMID: 28618207 DOI: 10.1002/tox.22438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/14/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 (CYP) 1A1 plays a major role in the metabolic activation of procarcinogens to carcinogens via aryl hydrocarbon receptor (AhR) pathway. Especially, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known as an agonist of AhR. In estrogen responsive cancers, 17β-estradiol (E2) may influence on AhR dependent expression of CYP1 family via the interaction between estrogen receptor (ER) and AhR. In the present study, the effect of E2/ER on the expression of AhR and CYP1A1 genes was investigated for MCF-7 clonal variant (MCF-7 CV) breast cancer cells expressing ER. In reverse transcription-PCR and Western blot analysis, mRNA expression level of AhR was not altered, but its protein expression level was increased by TCDD or E2. The transcriptional and translational levels of CYP1A1 appeared to be increased by TCDD or E2. The increased expression of AhR and CYP1A1 induced by E2 was restored to the control level by the co-treatment of ICI 182,780, indicating that E2 induced the protein expression levels of AhR and CYP1A1 like TCDD via an ER dependent pathway. In an in vivo xenograft mouse model transplanted with MCF-7 CV cells, the protein expression levels of AhR and CYP1A1 of tumor masses were also increased by E2 or TCDD. Taken together, these results indicate that E2 may promote AhR dependent expression of CYP1A1 via ER dependent pathway in MCF-7 CV cells expressing ER in the absence of TCDD, an agonist of AhR. The relevance of E2 and ER in CYP1A1 activation of estrogen responsive cancers may be targeted for developing more effective cancer treatments.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yong-Sub Byun
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
8
|
Go RE, Hwang KA, Choi KC. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol 2015; 147:24-30. [PMID: 25448748 DOI: 10.1016/j.jsbmb.2014.11.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that dimerizes with aryl hydrocarbon receptor nuclear translocator (ARNT). This complex binds to xenobiotics response element (XREs), and then starts the expressions of downstream genes including cytochrome P450 (CYP) 1 family members: CYP1A1, CYP1A2 and CYP1B1. Role of CYP1 family is involved in the metabolism of endogenous hormones, xenobiotics and drug. The expression of CYP1 family is regulated by estradiol (E2) or xenobiotics in diverse cancers. In breast cancers expressing estrogen receptors (ERs), level of CYP1B1 is increased by E2 and reversed by an estrogen receptor antagonist, ICI 182,780 or 4-hydrotamoxifen, which indicates that the expression of CYP1 family in downstream region of AhR is regulated by an activation of ERα. In metabolic pathways, E2 is converted into 4-hydroxyestradiol by CYP1B1, which can be converted into mainly estradiol-3,4-quinone, a potential carcinogen, by peroxidase. Increased expression of CYP1 family indicates the possibility of carcinogenesis by exposure of xenobiotics in endometrial and ovarian cancers. Apart from roles of CYP1 family in relation with ER pathway, CYP1 family is over-expressed in ER independent cancers. CYP1A1 exhibits hydroxylase activity in oxidation of arachidonic acid, which has been transformed to 12(R)-hydrxyeicosatetraenoic (HETEs), a potent activator of AhR activity. On the basis of results, phytoestrogens and dexamethasone are provided as cancer therapy regulating the expression of CYP1 family. Thus, this review focuses on the role(s) of CYP1 family in ER-dependent or ER-independent cancers and the potential for cancer therapy to target CYP1 family in these cancers.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763,Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763,Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763,Republic of Korea.
| |
Collapse
|