1
|
He G, Huang X, Dong Y, Chen K, He X, Pan M, Zeng W, Yu X, Xia J. Preliminary investigation on the mechanism of baicalein regulating the effects of Nischarin on invasion and apoptosis of human breast cancer cells MCF-7 through Wnt3α/β-catenin pathway. Int Immunopharmacol 2024; 143:113262. [PMID: 39353394 DOI: 10.1016/j.intimp.2024.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Breast cancer (BC) remains the leading cause of cancer-related mortality in women. Here, we investigate the anti-tumor effects of baicalein on human BC cells (MCF-7 cells) and explore if it regulates the Nischarin protein via Wnt3α/β-catenin signaling pathway. METHODS We employed Wnt3α and DKK-1 to activate and inhibit the Wnt/β-catenin signaling pathway, respectively. We used CCK-8 cell viability, flow cytometry apoptosis, wound-healing and transwell migration/invasion assays. Further, using western blotting and real-time quantitative PCR (q-PCR) we analyzed expression levels of Nischarin, MMP-9, Wnt/β-catenin pathway (β-catenin, Axin 1), and apoptotic pathway (Bax, Bcl-2) proteins and their mRNAs. RESULTS We found that baicalein inhibits MCF-7 cell viability and promotes apoptosis (evidenced by increased Bax and decreased Bcl-2 expressions) in a concentration-dependent manner. It also inhibits TPA-induced migration and invasion, and downregulates MMP-9 expression. Baicalein reverses the increase in cell viability caused by Wnt3α-induced Wnt/β-catenin pathway activation. Conversely, baicalein counteracts the increase in apoptosis caused by DKK-1 mediated inhibition of the Wnt/β-catenin pathway. Additionally, baicalein upregulates Nischarin expression via modulating the Wnt/β-catenin pathway as indicated by the antagonistic effects of Wnt3α and DKK-1 on this effect of baicalein. CONCLUSION Baicalein exerts anti-tumor effects on MCF-7 cells through the Wnt3α/β-catenin signaling pathway, and promotes apoptosis and inhibits migration and invasion. The upregulation of Nischarin by baicalein further suggests a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Gaojian He
- Dean's Office, Dazhou Vocational College of Chinese Medicine, Dazhou, China
| | - Xuemei Huang
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yun Dong
- Department of Traditional Chinese Medicine, Dazhou Vocational College of Chinese Medicine, Dazhou, China
| | - Kun Chen
- Department of Technology and Social Services,Dazhou Vocational College of Chinese Medicine, Dazhou, China
| | - Xuefeng He
- Department of Technology and Social Services,Dazhou Vocational College of Chinese Medicine, Dazhou, China
| | - Meitong Pan
- Department of Technology and Social Services,Dazhou Vocational College of Chinese Medicine, Dazhou, China
| | - Weicheng Zeng
- College of Integration of Traditional Chinese And Western Medicine, Southwest Medical University, Luzhou, China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Jiyi Xia
- Department of Technology and Social Services,Dazhou Vocational College of Chinese Medicine, Dazhou, China; Dazhou Chinese Medicine Research and Development Center, Dazhou, China.
| |
Collapse
|
2
|
Lei C, Yu Y, Zhu Y, Li Y, Ma C, Ding L, Han L, Zhang H. The most recent progress of baicalein in its anti-neoplastic effects and mechanisms. Biomed Pharmacother 2024; 176:116862. [PMID: 38850656 DOI: 10.1016/j.biopha.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Problems, such as toxic side effects and drug resistance of chemoradiotherapy, target therapy and immunotherapy accompanying the current anti-cancer treatments, have become bottlenecks limiting the clinical benefit for patients. Therefore, it is urgent to find promising anti-cancer strategies with higher efficacy and lesser side effects. Baicalein, a flavonoid component derived from the Chinese medicine scutellaria baicalensis, has been widely studied for its remarkable anti-cancer activity in multiple types of malignancies both at the molecular and cellular levels. Baicalein exerts its anti-tumor effects by inhibiting angiogenesis, invasion and migration, inducing cell apoptosis and cell cycle arrest, as well as regulating cell autophagy, metabolism, the tumor microenvironment and cancer stem cells with no obvious toxic side effects. The role of classic signaling pathways, such as PI3K/AKT/mTOR, MAPK, AMPK, Wnt/β-catenin, JAK/STAT3, MMP-2/-9, have been highlighted as the major targets for baicalein exerting its anti-malignant potential. Besides, baicalein can regulate the relevant non-coding RNAs, such as lncRNAs, miRNAs and circ-RNAs, to inhibit tumorigenesis and progression. In addition to the mentioned commonalities, baicalein shows some specific anti-tumor characteristics in some specific cancer types. Moreover, the preclinical studies of the combination of baicalein and chemoradiotherapy pave the way ahead for developing baicalein as an adjunct treatment with chemoradiotherapy. Our aim is to summary the role of baicalein in different types of cancer with its mechanisms based on in vitro and in vivo experiments, hoping providing proof for baicalein serving as an effective and safe compound for cancer treatment in clinic in the future.
Collapse
Affiliation(s)
- Chenjing Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yaya Yu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Yanjuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China
| | - Yanan Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Changju Ma
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Lina Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ling Han
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China.
| | - Haibo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
3
|
Li Z, Cai X. Baicalein targets STMN1 to inhibit the progression of nasopharyngeal carcinoma via regulating the Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3003-3013. [PMID: 38317500 DOI: 10.1002/tox.24173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUNDS Nasopharyngeal carcinoma is a common malignancy in the head and neck. Baicalein has been reported to exert the anticancer effects on various cancers. In this study, our aim was to explore the function of baicalein in the development of nasopharyngeal carcinoma and further investigate the potential underlying mechanisms. METHODS Cell Counting Kit (CCK)-8 assay, EdU assay, sphere formation assay, flow cytometry, and transwell invasion assay were conducted to determine cell proliferation, stemness, apoptosis, and invasion, respectively. Western blot was performed to examine the protein levels of PCNA, MMP9, STMN1, β-catenin, and Wnt3A. The mRNA level of STMN1 was assessed using real-time quantitative polymerase chain reaction (RT-qPCR). Xenograft tumor model was carried out to evaluate the effects of baicalein on tumor growth in vivo. Immunohistochemistry (IHC) assay was used to detect the levels of PCNA, MMP9, and STMN1 in tumor tissues from mice. RESULTS Baicalein significantly induced cell apoptosis and impeded cell proliferation, invasion, and stemness of nasopharyngeal carcinoma cells. STMN1 was highly expressed in nasopharyngeal carcinoma, and baicalein could directly downregulate STMN1 expression. STMN1 knockdown hampered the progression of nasopharyngeal carcinoma cells. Moreover, the effects of baicalein on cell proliferation, stemness, invasion, and apoptosis in nasopharyngeal carcinoma cells were harbored by STMN1 overexpression. Baicalein regulated STMN1 to inhibit the activation of the Wnt/β-catenin pathway. SKL2001, an agonist of the Wnt/β-catenin pathway, could reverse the effects of STMN1 knockdown on the progression of nasopharyngeal carcinoma. In addition, baicalein markedly impeded tumor growth in vivo. CONCLUSION Baicalein regulated the STMN1/Wnt/β-catenin pathway to restrain the development of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Zheng Li
- Department of Otolaryngology, Nanyang First People's Hospital, Nanyang, China
| | - Xiaohang Cai
- The Second Department of Cardiology, Nanyang First People's Hospital, Nanyang, China
| |
Collapse
|
4
|
Islam MT, Jang NH, Lee HJ. Natural Products as Regulators against Matrix Metalloproteinases for the Treatment of Cancer. Biomedicines 2024; 12:794. [PMID: 38672151 PMCID: PMC11048580 DOI: 10.3390/biomedicines12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers are currently the major cause of mortality in the world. According to previous studies, matrix metalloproteinases (MMPs) have an impact on tumor cell proliferation, which could lead to the onset and progression of cancers. Therefore, regulating the expression and activity of MMPs, especially MMP-2 and MMP-9, could be a promising strategy to reduce the risk of cancers. Various studies have tried to investigate and understand the pathophysiology of cancers to suggest potent treatments. In this review, we summarize how natural products from marine organisms and plants, as regulators of MMP-2 and MMP-9 expression and enzymatic activity, can operate as potent anticancer agents.
Collapse
Affiliation(s)
- Md. Towhedul Islam
- Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Nak Han Jang
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
5
|
Wang J, Wu Z, Peng J, You F, Ren Y, Li X, Xiao C. Multiple roles of baicalin and baicalein in the regulation of colorectal cancer. Front Pharmacol 2024; 15:1264418. [PMID: 38375035 PMCID: PMC10875017 DOI: 10.3389/fphar.2024.1264418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of colorectal cancer is increasing worldwide, and despite advances in treatment, colorectal cancer (CRC) remains in the top three for mortality due to several issues, including drug resistance and low efficiency. There is increasing evidence that baicalin and baicalein, novel small molecule inhibitor extracts of the Chinese herb Scutellaria baicalensis, have better anti-colorectal cancer effects and are less likely to induce drug resistance in cancer cells. The present review article explains the anti-proliferative properties of baicalin and baicalein in the context of against CRC. Additionally, it explores the underlying mechanisms by which these compounds modulate diverse signaling pathways associated with apoptosis, cell proliferation, tumor angiogenesis, invasion, metastasis, and tumor microenvironment. Moreover, this review article highlights the inhibitory effect of colorectal inflammatory-cancer transformation and the near-term therapeutic strategy of using them as adjuvant agents in chemotherapy.
Collapse
Affiliation(s)
- Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayuan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yifeng Ren
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Zhang S, Wang Y, Shan J, Qi X, Liu Q. Improved Bioavailability and Hepatoprotective Activity of Baicalein Via a Self-assembled Solutol HS15 Micelles System. Curr Drug Deliv 2024; 21:461-472. [PMID: 37282637 DOI: 10.2174/1567201820666230606163452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Baicalein (BA) is a flavonoid extract from the root of Scutellaria baicalensis Georgi with excellent biological activities, such as antioxidant and anti-inflammatory activities. However, its poor water solubility limits its further development. OBJECTIVE This study aims to prepare BA-loaded Solutol HS15 (HS15-BA) micelles, evaluate the bioavailability, and explore protective effects on carbon tetrachloride (CCl4) induced acute liver injury. METHODS The thin-film dispersion method was used to prepare HS15-BA micelles. The physicochemical, in vitro release, pharmacokinetics, and hepatoprotective effects of HS15-BA micelles were studied. RESULTS The optimal formulation showed a spherical shape by characterization of the transmission electron microscope (TEM) with an average small size (12.50 nm). The pharmacokinetic results illustrated that HS15-BA increased the oral bioavailability of BA. The in vivo results showed that HS15-BA micelles significantly inhibited the activity of the CCl4-induced liver injury marker enzymes aspartate transaminase (AST) and alanine transaminase (ALT). Also, CCl4 induced oxidative damage to liver tissue, leading to increased L-glutathione (GSH) and superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) activity, while HS15-BA significantly reversed the above changes. Moreover, BA also had a hepatoprotective effect through anti-inflammatory activity; the results of ELISA and RT-PCR revealed that HS15-BA pretreatment significantly inhibited the increase in the expression of inflammatory factors induced by CCl4. CONCLUSION In summary, our study confirmed that HS15-BA micelles enhanced the bioavailability of BA, and showed hepatoprotective effects through antioxidant and anti-inflammatory activities. HS15 could be considered a promising oral delivery carrier in treating liver disease.
Collapse
Affiliation(s)
- Shuna Zhang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Ying Wang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Jiaojiao Shan
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Xueju Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qun Liu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| |
Collapse
|
7
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
8
|
Jiang M, Poudel S, Song K. Androgen receptor and hyaluronan-mediated motility receptor as new molecular targets of baicalein: new molecular mechanisms for its anticancer properties. Arch Pharm Res 2023; 46:679-693. [PMID: 37691050 DOI: 10.1007/s12272-023-01461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Natural compounds known as phytochemicals have served as valuable resources for the development of new anti-cancer drugs and treatment of malignancies. Among these phytochemicals, baicalein is an emerging anti-tumor flavonoid obtained from Scutellaria baicaleinsis (Lamiaceae), but its underlying mechanisms of action and molecular targets have not yet been completely elucidated. Here, we identified new mechanisms for the anti-tumor activities of baicalein, providing evidence that hyaluronan-mediated motility receptor (HMMR) and androgen receptor (AR) are new molecular targets of baicalein in human cancer cells. We observed that HMMR, known to be highly associated with poor prognosis in a wide range of human cancers, was substantially downregulated by baicalein at mRNA and protein levels. Reporter assays further revealed that the suppression of HMMR by baicalein might occur through a transcriptional regulatory mechanism with the participation of Egr-1, E2F3α, and serum response factor (SRF). We also found that baicalein significantly inhibits androgenic responses in hormone-responsive prostate cancer cells, indicating that this might be attributed to the downregulation of AR promoter activity by baicalein. Additionally, baicalein markedly induced the expression of tumor suppressive miR-30C, which might be partly involved in baicalein-mediated autophagy and anti-cancer effects. Overall, our study sheds light on new diverse mechanisms of the anti-cancer effects exhibited by baicalein, implying that baicalein could be a potential therapeutic agent against human cancers and function as an inhibitor of HMMR and AR.
Collapse
Affiliation(s)
- Mingyue Jiang
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea
| | - Suman Poudel
- Department of Pharmacy, Graduate School of Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea
| | - Kyung Song
- Department of Pharmacy, College of Pharmacy, and Institute of Pharmaceutical Research and Development, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea.
- Institute of Pharmaceutical Research and Development, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea.
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea.
- Department of Pharmacy, Graduate School of Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea.
- Integrated Omics Institute, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea.
| |
Collapse
|
9
|
Li XY, Luo YT, Wang YH, Yang ZX, Shang YZ, Guan QX. Anti-inflammatory effect and antihepatoma mechanism of carrimycin. World J Gastroenterol 2023; 29:2134-2152. [PMID: 37122599 PMCID: PMC10130968 DOI: 10.3748/wjg.v29.i14.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND New drugs are urgently needed for the treatment of liver cancer, a feat that could be feasibly accomplished by finding new therapeutic purposes for marketed drugs to save time and costs. As a new class of national anti-infective drugs, carrimycin (CAM) has strong activity against gram-positive bacteria and no cross resistance with similar drugs. Studies have shown that the components of CAM have anticancer effects.
AIM To obtain a deeper understanding of CAM, its distribution, metabolism and anti-inflammatory effects were assessed in the organs of mice, and its mechanism of action against liver cancer was predicted by a network pharmacology method.
METHODS In this paper, the content of isovaleryl spiramycin III was used as an index to assess the distribution and metabolism of CAM and its effect on inflammatory factors in various mouse tissues and organs. Reverse molecular docking technology was utilized to determine the target of CAM, identify each target protein based on disease type, and establish a target protein-disease type network to ascertain the effect of CAM in liver cancer. Then, the key action targets of CAM in liver cancer were screened by a network pharmacology method, and the core targets were verified by molecular docking and visual analyses.
RESULTS The maximum CAM concentration was reached in the liver, kidney, lung and spleen 2.5 h after intragastric administration. In the intestine, the maximum drug concentration was reached 0.5 h after administration. In addition, CAM significantly reduced the interleukin-4 (IL-4) levels in the lung and kidney and especially the liver and spleen; moreover, CAM significantly reduced the IL-1β levels in the spleen, liver, and kidney and particularly the small intestine and lung. CAM is predicted to regulate related pathways by acting on many targets, such as albumin, estrogen receptor 1, epidermal growth factor receptor and caspase 3, to treat cancer, inflammation and other diseases.
CONCLUSION We determined that CAM inhibited inflammation. We also predicted the complex multitargeted effects of CAM that involve multiple pathways and the diversity of these effects in the treatment of liver cancer, which provides a basis and direction for further clinical research.
Collapse
Affiliation(s)
- Xiu-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Ting Luo
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yan-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Zhi-Xin Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Zhou Shang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Qing-Xia Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
10
|
Morshed AKMH, Paul S, Hossain A, Basak T, Hossain MS, Hasan MM, Hasibuzzaman MA, Rahaman TI, Mia MAR, Shing P, Sohel M, Bibi S, Dey D, Biswas P, Hasan MN, Ming LC, Tan CS. Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives. Cancers (Basel) 2023; 15:cancers15072128. [PMID: 37046789 PMCID: PMC10093079 DOI: 10.3390/cancers15072128] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Despite significant therapeutic advancements for cancer, an atrocious global burden (for example, health and economic) and radio- and chemo-resistance limit their effectiveness and result in unfavorable health consequences. Natural compounds are generally considered safer than synthetic drugs, and their use in cancer treatment alone, or in combination with conventional therapies, is increasingly becoming accepted. Interesting outcomes from pre-clinical trials using Baicalein in combination with conventional medicines have been reported, and some of them have also undergone clinical trials in later stages. As a result, we investigated the prospects of Baicalein, a naturally occurring substance extracted from the stems of Scutellaria baicalensis Georgi and Oroxylum indicum Kurz, which targets a wide range of molecular changes that are involved in cancer development. In other words, this review is primarily driven by the findings from studies of Baicalein therapy in several cancer cell populations based on promising pre-clinical research. The modifications of numerous signal transduction mechanisms and transcriptional agents have been highlighted as the major players for Baicalein’s anti-malignant properties at the micro level. These include AKT serine/threonine protein kinase B (AKT) as well as PI3K/Akt/mTOR, matrix metalloproteinases-2 & 9 (MMP-2 & 9), Wnt/-catenin, Poly(ADP-ribose) polymerase (PARP), Mitogen-activated protein kinase (MAPK), NF-κB, Caspase-3/8/9, Smad4, Notch 1/Hes, Signal transducer and activator of transcription 3 (STAT3), Nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap 1), Adenosine monophosphate-activated protein kinase (AMPK), Src/Id1, ROS signaling, miR 183/ezrin, and Sonic hedgehog (Shh) signaling cascades. The promise of Baicalein as an anti-inflammatory to anti-apoptotic/anti-angiogenic/anti-metastatic medicinal element for treating various malignancies and its capability to inhibit malignant stem cells, evidence of synergistic effects, and design of nanomedicine-based drugs are altogether well supported by the data presented in this review study.
Collapse
Affiliation(s)
- A K M Helal Morshed
- Pathology and Pathophysiology, Academy of Medical Science, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Supti Paul
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arafat Hossain
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tuli Basak
- Department of Genetic Engineering and Biotechnology, Faculty of Science and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Md. Sanower Hossain
- Centre for Sustainability of Ecosystem and Earth Resources (Pusat ALAM), Universiti Malaysia Pahang, Gambang, Kuantan 26300, Malaysia
| | - Md. Mehedi Hasan
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Al Hasibuzzaman
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Pollob Shing
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Shabana Bibi
- Department of Bioscience, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| |
Collapse
|
11
|
Holanda FH, Ribeiro AN, Sánchez-Ortiz BL, de Souza GC, Borges SF, Ferreira AM, Florentino AC, Yoshioka SA, Moraes LS, Carvalho JCT, Ferreira IM. Anti-inflammatory potential of baicalein combined with silk fibroin protein in a zebrafish model (Danio rerio). Biotechnol Lett 2023; 45:235-253. [PMID: 36550336 PMCID: PMC9778464 DOI: 10.1007/s10529-022-03334-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Baicalein (BA) is a flavonoid with wide-ranging pharmacological activity. However, its biological evaluation is hampered by its low solubility in aqueous medium, making forms of incorporation that improve its solubility necessary. In the present study, BA was combined with a solution of silk fibroin protein (SF), a biomaterial used too as a drug carrier, to evaluate the anti-inflammatory potential of this combination, in vivo, in an experimental model, zebrafish (Danio rerio). Baicalein-silk fibroin (BASF) improved the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging rate (95%) in comparison with BA in solution. The acute toxicity study and histopathological analysis in zebrafish showed that BASF has low cytotoxic potential, except for the maxim dose of 2000 mg/kg. The use of BA in combination with SF enhanced the anti-inflammatory effect of flavonoids by inducing inflammatory peritoneal edema through carrageenan and achieved 77.6% inhibition of abdominal edema at a dose of 75 mg/kg. The results showed that the BASF, significantly increases the bioavailability and therapeutic effect of flavonoids and several results observed in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- Fabrício H Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Arlefe N Ribeiro
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Brenda L Sánchez-Ortiz
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Gisele C de Souza
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Swanny F Borges
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Adriana M Ferreira
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Alexandro C Florentino
- Laboratório de Ictio e Genotoxidade, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Sérgio A Yoshioka
- Biochemistry and Biomaterials Laboratory, Institute of Chemistry of São Carlos, University of São Paulo, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Lienne S Moraes
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - José Carlos T Carvalho
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Irlon M Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil.
| |
Collapse
|
12
|
Hua F, Xiao YY, Qu XH, Li SS, Zhang K, Zhou C, He JL, Zhu Y, Wan YY, Jiang LP, Tou FF, Han XJ. Baicalein sensitizes triple negative breast cancer MDA-MB-231 cells to doxorubicin via autophagy-mediated down-regulation of CDK1. Mol Cell Biochem 2022; 478:1519-1531. [DOI: 10.1007/s11010-022-04597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
|
13
|
Rahmani AH, Almatroudi A, Khan AA, Babiker AY, Alanezi M, Allemailem KS. The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228023. [PMID: 36432119 PMCID: PMC9692503 DOI: 10.3390/molecules27228023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
The roles of medicinal plants or their purified bioactive compounds have attracted attention in the field of health sciences due to their low toxicity and minimal side effects. Baicalein is an active polyphenolic compound, isolated from Scutellaria baicalensis, and plays a significant role in the management of different diseases. Epidemiologic studies have proven that there is an inverse association between baicalein consumption and disease severity. Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation. Additionally, the anticancer potential of baicalein is chiefly mediated through the modulation of various cell-signaling pathways, such as the induction of apoptosis, autophagy, cell cycle arrest, inhibition of angiogenesis, signal transducer and activator of transcription 3, and PI3K/Akt pathways, as well as the regulation of other molecular targets. Therefore, the current review aimed to explore the role of baicalein in different types of cancer along with mechanisms of action. Besides this, the synergistic effects with other anti-cancerous drugs and the nano-formulation based delivery of baicalein have also been discussed.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
- Correspondence:
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Malak Alanezi
- Department of Dentistry, Dr. Sulaiman Al Habib Medical Group, Qassim 51431, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
14
|
Farooqi AA, Kapanova G, Kalmakhanov S, Tanbayeva G, Zhakipbekov KS, Rakhmetova VS, Syzdykbayev MK. Regulation of Cell Signaling Pathways and Non-Coding RNAs by Baicalein in Different Cancers. Int J Mol Sci 2022; 23:ijms23158377. [PMID: 35955525 PMCID: PMC9368823 DOI: 10.3390/ijms23158377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Landmark discoveries in molecular oncology have provided a wide-angle overview of the heterogenous and therapeutically challenging nature of cancer. The power of modern ‘omics’ technologies has enabled researchers to deeply and comprehensively characterize molecular mechanisms underlying cellular functions. Interestingly, high-throughput technologies have opened new horizons for the design and scientific fool-proof evaluation of the pharmacological properties of targeted chemical compounds to tactfully control the activities of the oncogenic protein networks. Groundbreaking discoveries have galvanized the expansion of the repertoire of available pharmacopoeia to therapeutically target a myriad of deregulated oncogenic pathways. Natural product research has undergone substantial broadening, and many of the drugs which constitute the backbone of modern pharmaceuticals have been derived from the natural cornucopia. Baicalein has gradually gained attention because of its unique ability to target different oncogenic signal transduction cascades in various cancers. We have partitioned this review into different sub-sections to provide a broader snapshot of the oncogenic pathways regulated by baicalein. In this review, we summarize baicalein-mediated targeting of WNT/β-catenin, AKT/mTOR, JAK/STAT, MAPK, and NOTCH pathways. We also critically analyze how baicalein regulates non-coding RNAs (microRNAs and long non-coding RNAs) in different cancers. Finally, we conceptually interpret baicalein-mediated inhibition of primary and secondary growths in xenografted mice.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
- Correspondence:
| | - Gulnara Kapanova
- Scientific Center of Anti-Infectious Drugs, 75 al-Faraby Ave, Almaty 050040, Kazakhstan;
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Sundetgali Kalmakhanov
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Gulnur Tanbayeva
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Kairat S. Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University KazNMU, Tole Bi St. 94, Almaty 050000, Kazakhstan;
| | - Venera S. Rakhmetova
- Department Internal Diseases, Astana Medical University, Nur-Sultan 010000, Kazakhstan;
| | - Marat K. Syzdykbayev
- Department of Anesthesiology, Reanimatology and Narcology, Semey Medical University, Semey 071400, Kazakhstan;
| |
Collapse
|
15
|
Chandrashekar N, Pandi A. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma. J Food Biochem 2022; 46:e14230. [PMID: 35543192 DOI: 10.1111/jfbc.14230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Plant-derived flavonoids are reported to function as potential anti-cancer agents against different types of cancer. Baicalein (BE) is an important flavonoid found in the roots of Scutellaria baicalensis that is popularly used in Chinese medicine as an ingredient in herbal tea preparations to promote wellness. BE has been studied for its several biological effects including antioxidant, anti-inflammatory, anti-hepatotoxic, antiviral, and anti-tumor properties. BE has now been discovered to be an effective agent against lung neoplasm. The molecular factors supporting baicalein's anti-cancer activity against lung cancer and its value to human health are discussed in this article. This would help in identifying BE as a promising competent drug against lung carcinoma. PRACTICAL APPLICATIONS: Baicalein is a flavonoid obtained from the roots of Scutellaria baicalensis. It has been widely used as an antioxidant, anti-inflam5matory, anti-hepatotoxic, antiviral, and anti-cancer agent. Lung cancer is one of the most common malignancies in the world with a high fatality rate. Several studies have found that Baicalein is an important candidate for treating lung cancer. Its mechanism of action includes regulation of cell proliferation, metastasis, apoptosis, autophagy, and so on. Baicalein could be used as a novel anti-cancer drug for the treatment of lung carcinoma.
Collapse
Affiliation(s)
| | - Anandakumar Pandi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, India
| |
Collapse
|
16
|
Chandrashekar N, Subramanian R, Thiruvengadam D. Baicalein inhibits cell proliferation and enhances apoptosis in human A549 cells and benzo(a)pyrene-induced pulmonary carcinogenesis in mice. J Biochem Mol Toxicol 2022; 36:e23053. [PMID: 35332611 DOI: 10.1002/jbt.23053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/06/2022] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Our current study is done to explore the possible mechanisms to elaborate on the growth inhibitory effect of baicalein (BE) in human lung carcinoma. Initially, BE (25 and 50 µM) treatment for 24 h, suppressed the viability and inhibited population growth in A549 cells. BE upholds the production of reactive oxygen species (ROS) with concomitant replenishment of glutathione, catalase, and glutathione peroxidase activity. The expression level of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 markedly increased after BE treatment will intimidate A549 cells proliferation by the ROS-independent pathway via the antioxidant pathway. In vivo investigations were carried out on BE (12 mg/kg, oral) in benzo(a)pyrene (B(a)P; 50 mg/kg, oral) induced lung carcinogenesis in mice. BE induces caspase-dependent apoptosis by increasing the levels of cytosolic cytochrome c accompanied by upregulating the outflow of p53, Bax, and caspase-3 with a concomitant abatement in the outflow of Bcl-2 in both in vitro and in vivo. In the murine model, BE treatment hindered the countenance of proliferation-related proteins (argyrophilic nucleolar organizing regions and proliferating cell nuclear antigen). Additionally, appraisal of the cell nucleus by transmission electron microscopic assessment uncovered that BE treatment adequately counteracts B(a)P-induced lung cancer cell survival. During the transition of the G0 /G1 phase, BE is arrested in the cell cycle process. This might be the cause of a substantial increase in the appearance of p21Cip1 with concomitant downregulating the expressions of CDK4, cyclin D, and cyclin E both in vitro and in vivo. Our results conclude that BE treatment induced apoptosis and repressed proliferation both in vitro and in vivo of human lung carcinoma.
Collapse
Affiliation(s)
- Naveenkumar Chandrashekar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India.,Department of Biochemistry, Indian Academy Degree College - Autonomous, Meganahalli, Bengaluru, Karnataka, India
| | - Raghunandhakumar Subramanian
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Devaki Thiruvengadam
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
17
|
Guan H, Feng J, Meng W, Liu Y, Li C, Zhang C, Wang P, Almoallim H, Manikandan V. Elucidating the immunomodulatory effect of daidzein in Benzo(a)pyrene -Induced lung cancer mice model through modulation of proliferating cell nuclear antigen, NF-κB, CYP1A1, and NRF. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_325_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, Sobarzo-Sánchez E. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites. Crit Rev Food Sci Nutr 2021; 63:5546-5576. [PMID: 34955042 DOI: 10.1080/10408398.2021.2021138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
Collapse
Affiliation(s)
- A S M Ali Reza
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mst Samima Nasrin
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | |
Collapse
|
19
|
Baicalein Inhibits Metastatic Phenotypes in Nasopharyngeal Carcinoma Cells via a Focal Adhesion Protein Integrin β8. Pharmaceuticals (Basel) 2021; 15:ph15010005. [PMID: 35056061 PMCID: PMC8780671 DOI: 10.3390/ph15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Baicalein, a prominent flavonoid from the indigenous herbal plant Scutellaria baicalensis Georgi, possesses broad-spectrum anticancer activities. However, the biological effects of baicalein on nasopharyngeal carcinoma (NPC) and its underlying mechanisms remain unclarified. Thus, in this study, we examined the effects of baicalein on NPC cell lines and investigated the corresponding molecular mechanism through transcriptome profiling. In the study, four NPC cell lines were treated with various concentrations of baicalein at different time points. Cellular toxicity and proliferative inhibition of baicalein were examined by MTT assay. Metastatic phenotypes of NPC cells were investigated by wound healing, transwell, and adhesion assays. Additionally, microarray experiments were performed to determine the cellular pathways affected by baicalein. The expression and localization of the integrin β8 were validated by western immunoblotting and immunofluorescence. Our results revealed that baicalein exhibited its cytotoxicity and antiproliferative activity on all tested NPC cell lines. It also significantly inhibited metastatic phenotypes at sub-lethal concentrations. Transcriptomic analysis showed that baicalein significantly affected the focal adhesion pathway in NPC, where integrin β8 was greatly diminished. Thus, the present study results suggested that baicalein inhibits the metastatic phenotypes of NPC cells by modulating integrin β8, one of the major molecules in a focal adhesion pathway.
Collapse
|
20
|
Dosumu OA, Rotimi SO, Adeleye OO, Akamo AJ, Osinuga KT, Taiwo OA, Omotosho OO, Sani LO. Vitamin K protects against 7,12-dimethylbenz(A)anthracene induced hepatotoxicity in Wistar rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:362-373. [PMID: 33063951 DOI: 10.1002/tox.23042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/06/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Humans are daily exposed to 7,12-dimethylbenz(a)anthracene (DMBA), a well known polycyclic aromatic hydrocarbons (PAH). This study investigated the role of dietary intake of Vitamin K (VK), a polyphenolic compound, with potential antioxidative properties, against DMBA-induced hepatotoxicity. Sixty experimental animals (120-150 g) were divided into six groups (A-F): Control, DMBA (80 mg/kg bw) only, VK (0.00 g/10 kg) diet only, VK (7.5 g/10 kg) diet only, DMBA + VK (0.0 g/10 kg) diet and DMBA + VK (7.5 g/10 kg) diet. Single oral administration of DMBA (80 mg/kg body weight) to Wistar rats resulted in hepatic damage after 16 weeks. DMBA significantly (P < .05) decreased the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione peroxidase (GPx). Levels of reduced glutathione (GSH) and Vitamin C were significantly decreased with increase in malondialdehyde (MDA) and nitric oxide (NO) levels in serum and liver. Aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were significantly (P < .05) elevated in the serum but reduced in the liver of DMBA-administered group. Ingestion of 7.5 g/10 kg VK diet prevented the up regulations in inflammatory biomarkers (granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin 17A (IL-17A)) which elicited liver damaged in the DMBA-treated group. DMBA induced hepatic alterations in DMBA-treated group but was restored to near normal in VK (7.5 g/10 kg) diet group. These findings suggest the protective potential of increased dietary intake of vitamin K against DMBA-induced hepatic dysfunction.
Collapse
Affiliation(s)
| | | | | | - Adio Jamiu Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Odunayo Anthonia Taiwo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Biochemistry, Chrisland University, Abeokuta, Nigeria
| | | | | |
Collapse
|
21
|
Ciccone L, Vandooren J, Nencetti S, Orlandini E. Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:86. [PMID: 33498927 PMCID: PMC7911533 DOI: 10.3390/ph14020086] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Several studies have reported neuroprotective effects by natural products. A wide range of natural compounds have been investigated, and some of these may play a beneficial role in Alzheimer's disease (AD) progression. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, have been implicated in AD. In particular, MMP-2 and MMP-9 are able to trigger several neuroinflammatory and neurodegenerative pathways. In this review, we summarize and discuss existing literature on natural marine and terrestrial compounds, as well as their ability to modulate MMP-2 and MMP-9, and we evaluate their potential as therapeutic compounds for neurodegenerative and neuroinflammatory diseases, with a focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven—Herestraat 49—Box 1044, 3000 Leuven, Belgium;
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, via Santa Maria 53, 56126 Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
22
|
Liao H, Ye J, Gao L, Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed Pharmacother 2020; 133:110917. [PMID: 33217688 DOI: 10.1016/j.biopha.2020.110917] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Scutellaria baicalensis Georgi., a plant used in traditional Chinese medicine, has multiple biological activities, including anti-inflammatory, antiviral, antitumor, antioxidant, and antibacterial effects, and can be used to treat respiratory tract infections, pneumonia, colitis, hepatitis, and allergic diseases. The main active substances of S. baicalensis, baicalein, baicalin, wogonin, wogonoside, and oroxylin A, can act directly on immune cells such as lymphocytes, macrophages, mast cells, dendritic cells, monocytes, and neutrophils, and inhibit the production of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α, and other inflammatory mediators such as nitric oxide, prostaglandins, leukotrienes, and reactive oxygen species. The molecular mechanisms underlying the immunomodulatory and anti-inflammatory effects of the active compounds of S. baicalensis include downregulation of toll-like receptors, activation of the Nrf2 and PPAR signaling pathways, and inhibition of the nuclear thioredoxin system and inflammation-associated pathways such as those of MAPK, Akt, NFκB, and JAK-STAT. Given that in addition to the downregulation of cytokine production, the active constituents of S. baicalensis also have antiviral and antibacterial effects, they may be more promising candidate therapeutics for the prevention of infection-related cytokine storms than are drugs having only antimicrobial or anti-inflammatory activities.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
23
|
Sun X, Cui X, Chen X, Jiang X. Baicalein alleviated TGF β1-induced type I collagen production in lung fibroblasts via downregulation of connective tissue growth factor. Biomed Pharmacother 2020; 131:110744. [PMID: 32932046 DOI: 10.1016/j.biopha.2020.110744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Although we have reported that baicalein ameliorated bleomycin-induced pulmonary fibrosis in rats and inhibited fibroblast-to-myofibroblast differentiation, the mechanisms of the capability of baicalein to suppress the production of type I collagen in fibroblasts remains unclear. Here, we showed that baicalein suppressed transforming growth factor β1 (TGF β1)-stimulated the production of type I collagen in lung fibroblast MRC-5 cells. By applying SILAC-based proteomic technology, 158 proteins were identified as baicalein-modulated proteins in TGF β1-stimulated the accumulation of type I collagen in MRC-5 cells. Our proteomic and biochemical analysis demonstrated that baicalein decreased the expression levels of connective tissue growth factor (CTGF) in TGF β1-stimulated MRC-5 cells. In addition, CTGF overexpression elevated the levels of type I collagen in baicalein-treated fibroblasts. Moreover, our results demonstrated that baicalein-downregulated CTGF expression might be related with the decrease of Smad2 phosphorylation, but not SP1. This work not only linked CTGF to TGF β1-stimulated the production of type I collagen in its attribution to the effects of baicalein, but also might provide valuable information for enhancing the knowledge of the pharmacological inhibition of collagen production, which might represent a promising strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xionghua Sun
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xinjian Cui
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xihua Chen
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xiaogang Jiang
- College of Pharmaceutical Sciences, Soochow University, China.
| |
Collapse
|
24
|
Yi L, Yu J, Han L, Li T, Yang H, Huang C. Combination of baicalein and ethanol-wet-bonding improves dentin bonding durability. J Dent 2019; 90:103207. [PMID: 31586587 DOI: 10.1016/j.jdent.2019.103207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the potential of baicalein combined with ethanol-wet bonding (EWB) in improving dentin bonding durability. METHODS Sixty caries-free human third molars were randomly allocated into four groups and pretreated with solutions after sectioning and polishing. The pretreatments were prepared via dissolving baicalein in ethanol at concentrations of 0, 0.01%, 0.05% and 0.1% (w/v). Microtensile bond strength (MTBS) test, failure mode analysis and interfacial nanoleakage evaluation were conducted immediately or after thermocycling or 1 month of collagenase aging. In situ zymography, contact angle, antibacterial activity and bioactivity were comprehensively assessed. RESULTS Results demonstrated that the three experimental groups exhibited higher MTBS and lower nanoleakage expression regardless of aging. MMP activity within hybrid layer and Streptococcus. mutans biofilm formation were inhibited in the experimental groups in a dose-dependent manner. Baicalein also reduced reactive oxygen species (ROS) expression in human dental pulp cells and resisted adhesive-induced cytotoxicity. Baicalein exhibited remarkable capabilities at concentrations higher than 0.05% (w/v). CONCLUSION Baicalein is a prospective candidate as bioactive dentin bonding agent. Combined with EWB, baicalein may form a functional bonding interface, thereby enhancing dentin bond strength and durability. SIGNIFICANCE Joint efforts by baicalein and EWB provides a novel therapeutic strategy for obtaining ideal adhesive-dentin interface and prolonging the longevity of restorations.
Collapse
Affiliation(s)
- Luyao Yi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin Han
- CR&WISCO General Hospital, Wuhan, China
| | - Tingting Li
- Lanzhou Hospital of Stomatology, Lanzhou, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomedicine 2019; 14:2029-2053. [PMID: 30962686 PMCID: PMC6435121 DOI: 10.2147/ijn.s197889] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major public health problem, and is now the world’s leading cause of death. Traditional Chinese medicine (TCM)-combination therapy is a new treatment approach and a vital therapeutic strategy for cancer, as it exhibits promising antitumor potential. Nano-targeted drug-delivery systems have remarkable advantages and allow the development of TCM-combination therapies by systematically controlling drug release and delivering drugs to solid tumors. In this review, the anticancer activity of TCM compounds is introduced. The combined use of TCM for antitumor treatment is analyzed and summarized. These combination therapies, using a single nanocarrier system, namely codelivery, are analyzed, issues that require attention are determined, and future perspectives are identified. We carried out a systematic review of >280 studies published in PubMed since 1985 (no patents involved), in order to provide a few basic considerations in terms of the design principles and management of targeted nanotechnology-based TCM-combination therapies.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yumei Wu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Peng Lu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Jiaxin Pi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| |
Collapse
|
26
|
Wang Q, Lu D, Fan L, Li Y, Liu Y, Yu H, Wang H, Liu J, Sun G. COX-2 induces apoptosis-resistance in hepatocellular carcinoma cells via the HIF-1α/PKM2 pathway. Int J Mol Med 2019; 43:475-488. [PMID: 30365092 DOI: 10.3892/ijmm.2018.3936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/30/2018] [Indexed: 11/09/2022] Open
Abstract
The pyruvate kinase M2 isoform (PKM2) is a key component of aerobic glycolysis and has been reported to regulate apoptosis. However, it is unclear whether PKM2 is involved in cyclooxygenase‑2 (COX‑2) induced apoptosis‑resistance in hepatocellular carcinoma (HCC) cells. In the present study, it was observed that COX‑2 and PKM2 were significantly elevated in hepatocellular carcinoma tissues compared with adjacent liver tissues (P<0.05). Furthermore, their expression was positively associated with worse clinicopathological characteristics, which indicates poor prognosis in patients with HCC. COX‑2 knockdown significantly reduced the expression of PKM2 and hypoxia inducible factor‑1α (HIF‑1α) at the mRNA and protein levels in addition to inhibiting proliferation (P<0.05), whereas apoptosis was notably increased. Furthermore, HIF‑1α and PKM2‑knockdown increased cell apoptosis without inhibiting COX‑2 expression. PKM2 inhibition did not have a marked effect on COX‑2 and HIF‑1α expression. In conclusion, the results of the present study suggested that HIF‑1α/PKM2 pathway‑associated metabolic changes may facilitate COX‑2‑induced apoptosis resistance in HCC cells.
Collapse
Affiliation(s)
- Qin Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Donghui Lu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuhuan Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yu Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
27
|
Zhou W, Wang J, Qi Q, Feng Z, Huang B, Chen A, Zhang D, Li W, Zhang Q, Bjerkvig R, Li X, Wang J. Matrine induces senescence of human glioblastoma cells through suppression of the IGF1/PI3K/AKT/p27 signaling pathway. Cancer Med 2018; 7:4729-4743. [PMID: 30079478 PMCID: PMC6143938 DOI: 10.1002/cam4.1720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Matrine, a traditional Chinese medicine, has recently been shown to have antitumor properties in diverse cancer cells. Here, we explored the effect of matrine on human glioblastoma multiforme (GBM) cells. METHODS Glioblastoma multiforme cell lines were treated with matrine to assess proliferation and viability using EdU and CCK8 assays. SA-β-gal assays were used to evaluate cellular senescence, and a cytokine array and ELISA assay were used to screen for secreted cytokines altered in GBM cells after matrine treatment. Immunohistochemistry and Western blot analysis were performed to evaluate protein levels in matrine-treated cell lines and in samples obtained from orthotopic xenografts. Specific activators of AKT and IGF1 were used to identify the pathways mediating the effect. RESULTS Matrine potently inhibited growth of GBM cell lines in vitro. Based on in situ assays, growth arrest induced by matrine was primarily achieved through induction of cellular senescence. Matrine treatment led to decreased expression of proteins involved in promoting cell growth, IGF1, PI3K, and pAKT. Exposure of cells to a small molecule activating AKT (SC79) and recombinant IGF1 led to a reduced number of senescent SA-β-gal-positive cells in the presence of matrine. Finally, matrine inhibited growth of orthotopic xenografts established from luciferase-stable-U251 or luciferase-stable-P3 cells and prolonged overall survival in mice. CONCLUSIONS These results indicated that matrine arrested cell growth through inhibition of IGF1/PI3K/AKT signaling. Matrine warrants further investigation as a potential therapy in the treatment of patients with GBM.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Rolf Bjerkvig
- Department of Biomedicine, K G Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Key Laboratory of Brain Functional Remodeling, Shandong University, Jinan, Shandong, China.,Department of Biomedicine, K G Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Jayakumar T, Liu CH, Wu GY, Lee TY, Manubolu M, Hsieh CY, Yang CH, Sheu JR. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis. Int J Mol Sci 2018; 19:ijms19040939. [PMID: 29565268 PMCID: PMC5979393 DOI: 10.3390/ijms19040939] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 02/04/2023] Open
Abstract
Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1–5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1–5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.
Collapse
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chao-Hong Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Dermatology, Yuan's General Hospital, Kaohsiung 249, Taiwan.
| | - Guan-Yi Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Tzu-Yin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA.
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
29
|
Cheng CS, Chen J, Tan HY, Wang N, Chen Z, Feng Y. Scutellaria baicalensis and Cancer Treatment: Recent Progress and Perspectives in Biomedical and Clinical Studies. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:25-54. [DOI: 10.1142/s0192415x18500027] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Scutellaria baicalensis (Huangqin in Chinese) is a major traditional Chinese medicine (TCM) herb, which has a long history of use in the treatment of a variety of symptoms correlated with cancer. In the past decade, the potential of S. baicalensis and single compounds derived from it as anticancer agents targeting various pathways has received extensive research attention. Specifically, the proliferation and metastases inhibiting properties of the single compounds in cancer have been studied; however, the underlying mechanisms remain unclear. This review summarizes the various mechanisms, pathways and molecular targets involved in the anticancer activity of S. baicalensis and its single compounds. However, the aim of this review is to provide a more thorough view of the last 10 years to link traditional use with modern research and to highlight recently discovered molecular mechanisms. Extracts and major flavonoids derived from S. baicalensis have been found to possess anticancer effects in multiple cancer cell lines both in vitro and in vivo. Further investigation is warranted to better understand the underlying mechanisms and to discover novel targets and cancer therapeutic drugs that may improve both the survival and quality of life of cancer patients.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
| | - Jie Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
- Department of Orthopedics, Shanghai Institute of Orthopedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
| | - Ning Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
| |
Collapse
|
30
|
Chen L, Teng H, Jia Z, Battino M, Miron A, Yu Z, Cao H, Xiao J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit Rev Food Sci Nutr 2017; 58:2908-2924. [PMID: 28682647 DOI: 10.1080/10408398.2017.1345853] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhen Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Maurizio Battino
- Center for Nutrition & Health, Universidad Europea del Atlantico, Santander, Spain and Dept. of Clinical Sciences, Universitr Nutrition & Health, Universidad Europea
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania
| | - Zhiling Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|
31
|
Özdemir A, Sever B, Altıntop MD, Temel HE, Atlı Ö, Baysal M, Demirci F. Synthesis and Evaluation of New Oxadiazole, Thiadiazole, and Triazole Derivatives as Potential Anticancer Agents Targeting MMP-9. Molecules 2017; 22:molecules22071109. [PMID: 28677624 PMCID: PMC6152322 DOI: 10.3390/molecules22071109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/01/2017] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are important proteases involved in tumor progression including angiogenesis, tissue invasion, and migration. Therefore, MMPs have been reported as potential diagnostic and prognostic biomarkers in many types of cancer. New oxadiazole, thiadiazole, and triazole derivatives were synthesized and evaluated for their anticancer effects on A549 human lung adenocarcinoma and C6 rat glioma cell lines. In order to examine the relationship between their anticancer activity and MMP-9, the compounds were evaluated for their inhibitory effects on MMPs. N-(1,3-Benzodioxol-5-ylmethyl)-2-{[5-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)-1,3,4-oxadiazol-2-yl]thio}acetamide (8) and N-(1,3-benzodioxol-5-ylmethyl)-2-[(5-phenyl-1,3,4-oxadiazol-2-yl)thio]acetamide (9) revealed promising cytotoxic effects on A549 and C6 cell lines similar to cisplatin without causing any toxicity towards NIH/3T3 mouse embryonic fibroblast cell line. Compounds 8 and 9 were also the most effective MMP-9 inhibitors in this series. Moreover, docking studies pointed out that compounds 8 and 9 had good affinity to the active site of the MMP-9 enzyme. The molecular docking and in vitro studies suggest that the MMP-9 inhibitory effects of compounds 8 and 9 may play an important role in lung adenocarcinoma and glioma treatment.
Collapse
Affiliation(s)
- Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Özlem Atlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Fatih Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|
32
|
Wang Z, Zhang X. Chemopreventive Activity of Honokiol against 7, 12 - Dimethylbenz[a]anthracene-Induced Mammary Cancer in Female Sprague Dawley Rats. Front Pharmacol 2017; 8:320. [PMID: 28620301 PMCID: PMC5450001 DOI: 10.3389/fphar.2017.00320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is a predominant cause of death in women across the globe. Chemoprevention by using natural, dietary or synthetic products has been appearing to be a fascinating approach to combat the growing burden of breast cancer. In the current study, we intended to explore the mechanisms of chemopreventive action of honokiol against 7, 12 - dimethylbenz[a]anthracene (DMBA)-induced mammary cancer in female Sprague Dawlely (SD) rats. We induced mammary cancer in SD rats by administering single dose of DMBA (80 mg/kg) through intra gastric route. Chemopreventive effects of honokiol (80 mg/kg, i.p.) were confirmed from its ameliorating effect on the DMBA-induced anomalies such as liver marker enzymes, Phases I and II metabolizing enzymes and oxidative stress markers. Further, honokiol reversed the DMBA-induced abnormalities in inflammatory cytokines levels and serum tumor markers. Additionally, histopathological examination of mammary tissue and protein expression analysis of NF-κB revealed that honokiol is effective against DMBA-induced mammary cancer. In summary, the results of our study support the chemopreventive feature of honokiol in mammary cancer.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Breast Surgery, The Second Hospital of Jilin UniversityChangchun, China
| | - Xingyi Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin UniversityChangchun, China
| |
Collapse
|
33
|
Chai Y, Xu J, Yan B. The anti-metastatic effect of baicalein on colorectal cancer. Oncol Rep 2017; 37:2317-2323. [DOI: 10.3892/or.2017.5437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/14/2016] [Indexed: 11/06/2022] Open
|
34
|
Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, Chen A, Huang H. The Fascinating Effects of Baicalein on Cancer: A Review. Int J Mol Sci 2016; 17:ijms17101681. [PMID: 27735841 PMCID: PMC5085714 DOI: 10.3390/ijms17101681] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide and a major global health problem. In recent decades, the rates of both mortality and morbidity of cancer have rapidly increased for a variety of reasons. Despite treatment options, there are serious side effects associated with chemotherapy drugs and multiple forms of drug resistance that significantly reduce their effects. There is an accumulating amount of evidence on the pharmacological activities of baicalein (e.g., anti-inflammatory, antioxidant, antiviral, and antitumor effects). Furthermore, there has been great progress in elucidating the target mechanisms and signaling pathways of baicalein's anti-cancer potential. The anti-tumor functions of baicalein are mainly due to its capacities to inhibit complexes of cyclins to regulate the cell cycle, to scavenge oxidative radicals, to attenuate mitogen activated protein kinase (MAPK), protein kinase B (Akt) or mammalian target of rapamycin (mTOR) activities, to induce apoptosis by activating caspase-9/-3 and to inhibit tumorinvasion and metastasis by reducing the expression of matrix metalloproteinase-2/-9 (MMP-2/-9). In this review, we focused on the relevant biological mechanisms of baicalein involved in inhibiting various cancers, such as bladder cancer, breast cancer, and ovarian cancer. Moreover, we also summarized the specific mechanisms by which baicalein inhibited the growth of various tumors in vivo. Taken together, baicalein may be developed as a potential, novel anticancer drug to treat tumors.
Collapse
Affiliation(s)
- Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yutong Gao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhipeng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
35
|
Jiang G, Zhang L, Wang J, Zhou H. Baicalein induces the apoptosis of U251 glioblastoma cell lines via the NF-kB-p65-mediated mechanism. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1229216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Sheweita SA, Al-Shora S, Hassan M. Effects of benzo[a]pyrene as an environmental pollutant and two natural antioxidants on biomarkers of reproductive dysfunction in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17226-17235. [PMID: 27221463 DOI: 10.1007/s11356-016-6934-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
Benzo[a]pyrene (B[a]P) is an environmental toxicant and endocrine disruptor. Therefore, the aim of the present study was to investigate the toxicity of B[a]P in testis of rats and also to study the role of silymarin and thymoquinone (TQ) as natural antioxidants in the alleviation of such toxicity. Data of the present study showed that levels of testosterone, estrogen and progesterone were significantly decreased after treatment of rats with B[a]P. In addition, B[a]P caused downregulation of the expressions of steroidogenic enzymes including CYP17A1 and CP19A1, and decreased the activity of 17-β hydroxysteroid dehydrogenase (17β-HSD). Moreover, B[a]P decreased the activities of antioxidant enzymes including catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD), and significantly increased free radicals levels in testis of male rats. However, pretreatment of rats with silymarin prior to administration of B[a]P was found to restore the level of free radicals, antioxidant status, and activities of steroidogenic enzymes to their normal levels in testicular tissues. Moreover, histopathological finding showed that silymarin recovered the abnormalities occurred in tubules caused by B[a] P in testis of rats. On the other hand, TQ showed pro-oxidant effects and did not ameliorate the toxic effects of B[a] P on the testicular tissue since it decreased antioxidant enzymes activities and inhibited the protein expression of CYP11A1 and CYP21A2 compared to control rats. Moreover, TQ decreased the levels of testosterone, estrogen, and progesterone either in the presence or absence of B[a]P. It is concluded that B[a]P decreased testosterone levels, inhibited antioxidant enzymes activities, caused downregulation of CYP isozymes involved in steroidogenesis, and increased free radical levels in testis. Moreover, silymarin was more effective than TQ in restoring organism health and alleviating the deleterious effects caused by B[a]P in the testis of rats. Due to its negative impact, it is highly recommended to limit the use of TQ as a dietary supplement since millions of people in the Middle East are using it to improve their health.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt.
| | - S Al-Shora
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt
| | - M Hassan
- Department of Environmental Studies, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt
| |
Collapse
|
37
|
Abstract
The constituents of many traditional Chinese herbal remedies are currently at the forefront of modern cancer research. Baicalein, a bioactive flavone widely used in nutraceuticals and pharmaceuticals, has shown great potential in the treatment and prevention of cancer without causing severe side effects. Baicalein induces cancer cell apoptosis and cause cell cycle arrest. It shows inhibitory effects on angiogenesis, metastasis and inflammation, all of which are necessary for the promotion and progression of cancer. This review presents an overview of the anti-cancer effects and mechanisms of baicalein. In addition, the bioavailability of baicalein and approaches to improve it are summarized. Treatments of baicalein in combination with other anti-cancer agents are also mentioned.
Collapse
|
38
|
Bai C, Yang X, Zou K, He H, Wang J, Qin H, Yu X, Liu C, Zheng J, Cheng F, Chen J. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:573-84. [DOI: 10.1007/s00210-016-1217-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/08/2016] [Indexed: 01/28/2023]
|
39
|
Bodduluru LN, Kasala ER, Madhana RM, Barua CC, Hussain MI, Haloi P, Borah P. Naringenin ameliorates inflammation and cell proliferation in benzo(a)pyrene induced pulmonary carcinogenesis by modulating CYP1A1, NFκB and PCNA expression. Int Immunopharmacol 2016; 30:102-110. [DOI: 10.1016/j.intimp.2015.11.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/22/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
40
|
Antiproliferative and antioxidant potential of hesperetin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Chem Biol Interact 2015; 242:345-52. [DOI: 10.1016/j.cbi.2015.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022]
|
41
|
Ding S, Hou X, Yuan J, Tan X, Chen J, Yang N, Luo Y, Jiang Z, Jin P, Dong Z, Feng L, Jia X. Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway. Int Immunopharmacol 2015; 29:648-655. [DOI: 10.1016/j.intimp.2015.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
|
42
|
Huang CH, Jayakumar T, Chang CC, Fong TH, Lu SH, Thomas PA, Choy CS, Sheu JR. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture. Molecules 2015; 20:17720-34. [PMID: 26404213 PMCID: PMC6332280 DOI: 10.3390/molecules201017720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022] Open
Abstract
Melanoma is extremely resistant to chemotherapy and the death rate is increasing hastily worldwide. Extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP)-2 and -9. Evidence has shown that natural dietary antioxidants are capable of inhibiting cancer cell growth. Our recent studies showed that hinokitiol, a natural bioactive compound, inhibited vascular smooth muscle cell proliferation and platelets aggregation. The present study is to investigate the anticancer efficacy of hinokitiol against B16-F10 melanoma cells via modulating tumor invasion factors MMPs, antioxidant enzymes in vitro. An in vivo mice model of histological investigation was performed to study the patterns of elastic and collagen fibers. Hinokitiol inhibited the expression and activity of MMPs-2 and -9 in B16-F10 melanoma cells, as measured by western blotting and gelatin zymography, respectively. An observed increase in protein expression of MMPs 2/9 in melanoma cells was significantly inhibited by hinokitiol. Notably, hinokitiol (1–5 μM) increased the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in melanoma cells. Also, hinokitiol (2–10 µM) concentration dependently reduced in vitro Fenton reaction induced hydroxyl radical (OH·) formation. An in vivo study showed that hinokitiol treatment increased elastic fibers (EF), collagens dispersion, and improved alveolar alterations in the lungs of B16/F10 injected mice. Overall, our findings propose that hinokitiol may be a potent anticancer candidate through down regulation of MMPs 9/2, reduction of OH· production and enhancement of antioxidant enzymes SOD and CAT.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Division of Urology, Department of Surgery, Taipei City Hospital, Zhongxiao Branch, Taipei 115, Taiwan.
| | - Thanasekaran Jayakumar
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chao-Chien Chang
- Department of Cardiology, Cathay General Hospital, Taipei 106, Taiwan.
| | - Tsorng-Harn Fong
- Department of Anatomy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Shing-Hwa Lu
- Division of Urology, Department of Surgery, Taipei City Hospital, Zhongxiao Branch, Taipei 115, Taiwan.
| | - Philip Aloysius Thomas
- Department of Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli 620001, Tamil Nadu, India.
| | - Cheuk-Sing Choy
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Emergency, Min-Sheng General Hospital, Taoyuan 330, Taiwan.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
43
|
Baicalein inhibits MMP-2 expression in human ovarian cancer cells by suppressing the p38 MAPK-dependent NF-κB signaling pathway. Anticancer Drugs 2015; 26:649-56. [DOI: 10.1097/cad.0000000000000230] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang L, Li L, Wu W, Hann SS. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:41. [PMID: 25948105 PMCID: PMC4457308 DOI: 10.1186/s13046-015-0160-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Background Baicalein, a natural flavonoid obtained from the Scutellaria baicalensis root, has been reported to inhibit growth of human lung cancer. However, the detailed mechanism underlying this has not been well elucidated. Methods Cell viability was measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was detected by flow cytometry analysis and caspase 3/7 assays. The expression of RUNX3 and FOXO3a mRNA were measured by real time RT-PCR methods. Western blot analysis was performed to measure the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα) and extracellular signal-regulated kinase 1/2 (ERK1/2), runt-related transcription factor 3 (RUNX3) and forkhead box O3a (FOXO3a). Silencing of FOXO3a and RUNX3 were performed by small interfering RNA (siRNA) methods. Exogenous expression of FOXO3a or RUNX3 was carried out by electroporated transfection assays. Results We showed that baicalein significantly inhibited growth and induced apoptosis of non-small cell lung cancer (NSCLC) cells in a time- and dose-dependent manner. Baicalein induced RUNX3 and FOXO3a protein expression, and increased phosphorylation of AMPKα and ERK1/2. Moreover, the inhibitors of AMPK and MEK/ERK1/2 reversed the effect of baicalein on RUNX3 and FOXO3a protein expression. Interestingly, while compound C had little effect on blockade of baicalein-induced phosphorylation of ERK1/2, PD98059 significantly abrogated baicalein-induced phosphorylation of AMPKα. Intriguingly, while silencing of RUNX3 abolished the effect of baicalein on expression of FOXO3a and apoptosis, silencing of FOXO3a significantly attenuated baicalein-reduced cell proliferation. On the contrary, overexpression of FOXO3a restored the effect of baicalein on cell growth inhibition in cells silencing of endogenous FOXO3a gene and enhanced the effect of baicalein on RUNX3 protein expression. Finally, exogenous expression of RUNX3 increased FOXO3a protein and strengthened baicalein-induced phosphorylation of ERK1/2. Conclusion Collectively, our results show that baicalein inhibits growth and induces apoptosis of NSCLC cells through AMPKα- and MEK/ERK1/2-mediated increase and interaction of FOXO3a and RUNX3 protein. The crosstalk between AMPKα and MEK/ERK1/2 signaling pathways, and the reciprocal interplay of FOXO3a and RUNX3 converge on the overall response of baicalein. This study reveals a novel mechanism for regulating FOXO3a and RUNX3 signaling axis in response to baicalein and suggests a new strategy for NSCLC associated targeted therapy.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Jingjing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Shunyu Zhao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qingmei Luo
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - WanYing Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China. .,Higher Education Mega Center, No. 55, Neihuan West Road, Panyu District, Guangzhou, Guangdong Province, 510006, People's Republic of China.
| |
Collapse
|
45
|
Wang Z, Wu Y, Wang Y, Jin Y, Ma X, Zhang Y, Ren H. Matrine inhibits the invasive properties of human glioma cells by regulating epithelial‑to‑mesenchymal transition. Mol Med Rep 2015; 11:3682-6. [PMID: 25572156 DOI: 10.3892/mmr.2015.3167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 11/07/2014] [Indexed: 11/05/2022] Open
Abstract
Matrine is reported to be effective in tumor therapies; however, the anti‑metastatic effect and molecular mechanism(s) of matrine on glioma remain poorly understood. Therefore, the purpose of this study was to assess the effects of matrine on glioma and the associated mechanism(s). In the study, we demonstrated that matrine inhibited the proliferation of glioma cells. We also observed that matrine inhibited the migration and invasion of glioma cells at non‑toxic concentrations. Matrine also decreased the expression of E‑cadherin and increased the expression of N‑cadherin. These results suggest that the anti‑metastatic effect of matrine may be correlated with epithelial‑to‑mesenchymal transition (EMT). Moreover, matrine could reduce the phosphorylation levels of p38 and AKT proteins. In conclusion, these results suggest matrine may be a potential alternative against invasive glioma cells via the p38 MAPK and AKT signaling‑dependent inhibition of EMT.
Collapse
Affiliation(s)
- Zhongwei Wang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yi Wu
- Department of Pathology, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yali Wang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yingying Jin
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiulong Ma
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yang Zhang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongtao Ren
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
46
|
Jantan I, Ahmad W, Bukhari SNA. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. FRONTIERS IN PLANT SCIENCE 2015; 6:655. [PMID: 26379683 PMCID: PMC4548092 DOI: 10.3389/fpls.2015.00655] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/07/2015] [Indexed: 05/17/2023]
Abstract
The phagocyte-microbe interactions in the immune system is a defense mechanism but when excessively or inappropriately deployed can harm host tissues and participate in the development of different non-immune and immune chronic inflammatory diseases such as autoimmune problems, allergies, some rheumatoid disorders, cancers and others. Immunodrugs include organic synthetics, biological agents such as cytokines and antibodies acting on single targets or pathways have been used to treat immune-related diseases but with limited success. Most of immunostimulants and immunosuppressants in clinical use are the cytotoxic drugs which possess serious side effects. There is a growing interest to use herbal medicines as multi-component agents to modulate the complex immune system in the prevention of infections rather than treating the immune-related diseases. Many therapeutic effects of plant extracts have been suggested to be due to their wide array of immunomodulatory effects and influence on the immune system of the human body. Phytochemicals such as flavonoids, polysaccharides, lactones, alkaloids, diterpenoids and glycosides, present in several plants, have been reported to be responsible for the plants immunomodulating properties. Thus the search for natural products of plant origin as new leads for development of potent and safe immunosuppressant and immunostimulant agents is gaining much major research interest. The present review will give an overview of widely investigated plant-derived compounds (curcumin, resveratrol, epigallocatechol-3-gallate, quercetin, colchicine, capsaicin, andrographolide, and genistein) which have exhibited potent effects on cellular and humoral immune functions in pre-clinical investigations and will highlight their clinical potential.
Collapse
Affiliation(s)
- Ibrahim Jantan
- *Correspondence: Ibrahim Jantan, Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia,
| | | | | |
Collapse
|
47
|
Yan X, Rui X, Zhang K. Baicalein inhibits the invasion of gastric cancer cells by suppressing the activity of the p38 signaling pathway. Oncol Rep 2014; 33:737-43. [PMID: 25502212 DOI: 10.3892/or.2014.3669] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Baicalein, one of the major flavonoids in Scutellaria baicalensis, has been used in anti-inflammatory and anticancer therapies for a long time. However, the antimetastatic effects and related mechanism(s) in gastric cancer remain unclear. In the present study, we tested the hypothesis that administration of baicalein may inhibit the proliferation, motility and invasion of human gastric cancer cell lines by regulating the p38 signaling pathway. In the present study, we found that baicalein could inhibit migration and invasion of gastric cancer cells. Additionally, after treating with baicalein for 24 h, the expression levels of matrix metalloproteinase (MMP)-2 and -9 as well as proteinase activity in gastric cancer cells were reduced in a dose-dependent manner. Moreover, baicalein clearly reduced the phosphorylated levels of p38. Combined treatment with p38 activator partially blocked the antimetastatic effects of baicalein, while p38 inhibitor (SB203580) and baicalein resulted in a synergistic reduction in MMP-2 and -9 expression; the invasive ability of gastric cancer cells was also inhibited. In conclusion, baicalein inhibits gastric cancer cell invasion and metastasis by reducing cell motility and migration via suppression of the p38 signaling pathway, suggesting that baicalein is a potential therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Xi Yan
- Department of Gastroenterology, 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaojiang Rui
- Department of Gastroenterology, 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Kai Zhang
- Department of Gastroenterology, 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
48
|
Aryal P, Kim K, Park PH, Ham S, Cho J, Song K. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J 2014; 281:4644-58. [DOI: 10.1111/febs.12969] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Pramod Aryal
- Department of Pharmacy; Wonkwang University; Iksan Korea
| | - Kijoong Kim
- Department of Pharmacy; Wonkwang University; Iksan Korea
| | - Pil-Hoon Park
- Department of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Seongho Ham
- Jeollanamdo Development Institute of Traditional Korean Medicine; Jangheung-goon Korea
| | - Junghee Cho
- Jeollanamdo Development Institute of Traditional Korean Medicine; Jangheung-goon Korea
| | - Kyung Song
- Department of Pharmacy; Wonkwang University; Iksan Korea
- Institute of Pharmaceutical Research and Development; Wonkwang University; Iksan Korea
- Integrated Omics Institute; Wonkwang University; Iksan Korea
| |
Collapse
|
49
|
Zhao W, Zhou S, Yao W, Gan X, Su G, Yuan D, Hei Z. Propofol prevents lung injury after intestinal ischemia-reperfusion by inhibiting the interaction between mast cell activation and oxidative stress. Life Sci 2014; 108:80-7. [PMID: 24878149 DOI: 10.1016/j.lfs.2014.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/19/2014] [Accepted: 05/13/2014] [Indexed: 12/22/2022]
Abstract
AIMS Both mast cells and oxidative stress are involved in acute lung injury (ALI) induced by intestinal ischemia-reperfusion (IIR). The aim of this study was to investigate whether propofol could improve IIR-induced ALI through inhibiting their interaction. MAIN METHODS Repetitive, brief IIR or IIR+compound 48/80 was performed in adult Sprague-Dawley rats pretreated with saline, apocynin or propofol. And their lungs were excised for histology, ELISA and protein-expression measurements 2h after reperfusion. KEY FINDINGS Rats pretreated with saline developed critical ALI 2h after IIR. We found significant elevations in lung injury scores, lung wet/dry ratio and gp91phox, p47phox, intercellular cell adhesion molecule-1 protein expressions and higher level of malondialdehyde, interleukin-6 contents, and myeloperoxidase activities, as well as significant reductions in superoxide dismutase activities, accompanied with increases in mast cell degranulation evidenced by significant increases in mast cell counts, β-hexosaminidase concentrations, and tryptase expression. And the lung injury was aggravated in the presence of compound 48/80. However, pretreated with propofol and apocynin not only ameliorated the IIR-mediated pulmonary changes beyond the biochemical changes but also reversed the changes that were aggravated by compound 48/80. SIGNIFICANCE Propofol protects against IIR-mediated ALI, most likely by inhibiting the interaction between oxidative stress and mast cell degranulation.
Collapse
Affiliation(s)
- Weicheng Zhao
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North of Rinlan Road, Foshan 528000, China; Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoliang Gan
- Department of Anesthesiology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South of Xianlie Road, Guangzhou 510060, China
| | - Guangjie Su
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
50
|
Gong WY, Wu JF, Liu BJ, Zhang HY, Cao YX, Sun J, Lv YB, Wu X, Dong JC. Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro. Int J Oncol 2014; 44:1561-70. [PMID: 24604573 DOI: 10.3892/ijo.2014.2320] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/12/2014] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the therapeutic efficacy of flavonoid components in Scutellaria baicalensis on proliferation, metastasis and lung cancer-associated inflammation during nicotine induction in the A549 and H1299 lung cancer cell lines. After experimental period, augmentation of proliferation was observed, accompanied by marked decrease in apoptotic cells in nicotine-induced lung cancer cells; additionally, nicotine-exposed cells exhibited increased invasive and migratory abilities based on invasion and wound-healing assay. Flavones in Scutellaria, baicalin, baicalein and wogonin significantly counteracted the above deleterious changes. Moreover, assessment of tumor apoptotic and metastatic factors on mRNA levels by quantitative PCR and protein levels by western blotting revealed that these phytochemical treatments effectively negated nicotine-induced upregulated expression of bcl-2, bcl-2/bax ratio, caspase-3, matrix metalloproteinase (MMP)-2 and MMP-9 as well as downregulated expression of bax. Further analysis of inflammatory markers such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in cell culture supernatant and mRNA and protein expression of nuclear transcription factor-kappaB (NF-κB) and I kappa B-alpha (IκB-α) was carried out to substantiate the anti-inflammatory effect of flavones in Scutellaria in nicotine-exposed lung cancer cells. The therapeutic effects observed in the present study are attributed to the potent potential against proliferation, metastasis and inflammatory microenvironment by flavonoid components in Scutellaria in nicotine-induced lung cancer cells.
Collapse
Affiliation(s)
- Wei-Yi Gong
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Jin-Feng Wu
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Bao-Jun Liu
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Hong-Ying Zhang
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Yu-Xue Cao
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Jing Sun
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Yu-Bao Lv
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Xiao Wu
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Jing-Cheng Dong
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| |
Collapse
|