1
|
Nahlawi A, Ptaszek LM, Ruskin JN. Cardiovascular effects and safety of classic psychedelics. NATURE CARDIOVASCULAR RESEARCH 2025; 4:131-144. [PMID: 39910289 DOI: 10.1038/s44161-025-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
Psychedelics, used for millennia in spiritual and healing practices, have emerged as promising treatments for mental health conditions including depression, post-traumatic stress disorder (PTSD), substance use disorders and anxiety. Despite the therapeutic potential of psychedelics and their increasing use in both medical and nonmedical settings, there is a paucity of data on their cardiovascular safety. Here we review current evidence on the cardiovascular effects and safety of this unique class of therapeutic agents. The cardiovascular effects and associated risks of classic psychedelics are categorized into three areas: electrophysiological effects and arrhythmia risk, structural effects and valvular heart disease risk, and vascular effects including hypertension and ischemia risks. The Review also emphasizes crucial knowledge gaps that require further basic and clinical investigation including studies in individuals with underlying cardiovascular disease, characterization of important drug-drug interactions and studies on the safety of repetitive, long-term (including microdosing) exposure to classic psychedelics.
Collapse
Affiliation(s)
- Acile Nahlawi
- Corrigan Minehan Heart Centre, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Centre for the Neuroscience of Psychedelics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Leon M Ptaszek
- Corrigan Minehan Heart Centre, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremy N Ruskin
- Corrigan Minehan Heart Centre, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Centre for the Neuroscience of Psychedelics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ghaznavi S, Ruskin JN, Haggerty SJ, King F, Rosenbaum JF. Primum Non Nocere: The Onus to Characterize the Potential Harms of Psychedelic Treatment. Am J Psychiatry 2025; 182:47-53. [PMID: 39741443 DOI: 10.1176/appi.ajp.20230914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The last few years have seen exponential growth in interest, investment, advocacy, and research into psychedelics as therapeutics. This reflects an optimism about the potential promise of psychedelics as therapeutics. As with all therapeutic interventions, research is needed not only into their benefits but also potential risks. Indeed, when substances with therapeutic potential are scrutinized over time, especially in broad populations with psychiatric and medical comorbidities typically excluded from clinical trials, and applied in less well-regulated or controlled settings, a greater understanding of the cautions emerges. Here, we review the literature on the known and potential harms, including enduring perceptual disturbances; triggering or enhancing the risk for onset of mania or psychosis; overuse, misuse, and dependence; challenging experiences or "bad trips"; risks associated with increased neuroplastic potential; and acute and cumulative cardiovascular effects. Each of these issues is addressed in this review, along with the call for continued research, including recommendations for further research and monitoring.
Collapse
Affiliation(s)
- Sharmin Ghaznavi
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| | - Jeremy N Ruskin
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| | - Stephen J Haggerty
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| | - Franklin King
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| | - Jerrold F Rosenbaum
- Department of Psychiatry, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Ghaznavi, King, Rosenbaum); Department of Cardiology, Massachusetts General Hospital, Boston (Ruskin); Department of Psychiatry and Neurology, Chemical Neurobiology Laboratory, Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston (Haggerty); Havard Medical School, Boston (Ghaznavi, Ruskin, Haggerty, King, Rosenbaum)
| |
Collapse
|
3
|
Xu F, Cai W, Liu B, Qiu Z, Zhang X. Natural L-type calcium channels antagonists from Chinese medicine. Chin Med 2024; 19:72. [PMID: 38773596 PMCID: PMC11107034 DOI: 10.1186/s13020-024-00944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
L-type calcium channels (LTCCs), the largest subfamily of voltage-gated calcium channels (VGCCs), are the main channels for Ca2+ influx during extracellular excitation. LTCCs are widely present in excitable cells, especially cardiac and cardiovascular smooth muscle cells, and participate in various Ca2+-dependent processes. LTCCs have been considered as worthy drug target for cardiovascular, neurological and psychological diseases for decades. Natural products from Traditional Chinese medicine (TCM) have shown the potential as new drugs for the treatment of LTCCs related diseases. In this review, the basic structure, function of LTCCs, and the related human diseases caused by structural or functional abnormalities of LTCCs, and the natural LTCCs antagonist and their potential usages were summarized.
Collapse
Affiliation(s)
- Fangfang Xu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Wanna Cai
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Bo Liu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Xiaoqi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
4
|
Knuijver T, ter Heine R, Schellekens AFA, Heydari P, Lucas L, Westra S, Belgers M, van Oosteren T, Verkes RJ, Kramers C. The pharmacokinetics and pharmacodynamics of ibogaine in opioid use disorder patients. J Psychopharmacol 2024; 38:481-488. [PMID: 38519421 PMCID: PMC11102648 DOI: 10.1177/02698811241237873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
OBJECTIVE Ibogaine is a hallucinogenic drug that may be used to treat opioid use disorder (OUD). The relationships between pharmacokinetics (PKs) of ibogaine and its metabolites and their clinical effects on side effects and opioid withdrawal severity are unknown. We aimed to study these relationships in patients with OUD undergoing detoxification supported by ibogaine. METHODS The study was performed in 14 subjects with OUD. They received a single dose of 10mg/kg ibogaine hydrochloride. Plasma PKs of ibogaine, noribogaine, and noribogaine glucuronide were obtained during 24 h. Cytochrome P450 isoenzyme 2D6 (CYP2D6) genotyping was performed. The PKs were analyzed by means of nonlinear mixed effects modeling and related with corrected QT interval (QTc) prolongation, cerebellar ataxia, and opioid withdrawal severity. RESULTS The PK of ibogaine were highly variable and significantly correlated to CYP2D6 genotype (p < 0.001). The basic clearance of ibogaine (at a CYP2D6 activity score (AS) of 0) was 0.82 L/h. This increased with 30.7 L/h for every point of AS. The relation between ibogaine plasma concentrations and QTc was best described by a sigmoid Emax model. Spearman correlations were significant (p < 0.03) for ibogaine but not noribogaine with QTc (p = 0.109) and cerebellar effects (p = 0.668); neither correlated with the severity of opioid withdrawal symptoms. CONCLUSIONS The clearance of ibogaine is strongly related to CYPD2D6 genotype. Ibogaine cardiac side effects (QTc time) and cerebellar effects are most likely more driven by ibogaine rather than noribogaine. Future studies should aim at exploring lower doses and/or applying individualized dosing based on CYP2D6 genotype.
Collapse
Affiliation(s)
- Thomas Knuijver
- IrisZorg, Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, The Netherlands
| | - Rob ter Heine
- Department of Pharmacy, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Arnt F. A. Schellekens
- Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, The Netherlands
- Department of Psychiatry, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Paniz Heydari
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Luc Lucas
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Westra
- Department of Cardiology, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Maarten Belgers
- IrisZorg, Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, The Netherlands
| | | | - Robbert Jan Verkes
- Department of Psychiatry, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Pompestichting, Nijmegen, The Netherlands
| | - Cornelis Kramers
- Department of Pharmacy, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Cherian K, Shinozuka K, Tabaac BJ, Arenas A, Beutler BD, Evans VD, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-Ibogaine. Am J Ther 2024; 31:e133-e140. [PMID: 38518270 DOI: 10.1097/mjt.0000000000001723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Ibogaine is a plant-derived alkaloid that has been used for thousands of years in rites of passage and spiritual ceremonies in West-Central Africa. In the West, it has primarily been used and studied for its anti-addictive properties and more recently for other neuropsychiatric indications, including post-traumatic stress disorder, depression, anxiety, and traumatic brain injury. AREAS OF UNCERTAINTY Ibogaine requires careful patient screening and monitoring because of significant safety issues. There is potential for cardiotoxicity (prolonged QT interval); without rigorous screening, fatal arrhythmias may occur. However, preliminary research suggests that co-administration of ibogaine with magnesium may mitigate cardiotoxicity. Additionally, ibogaine may have dangerous interactions with opiates, so patients who receive ibogaine treatment for opioid use disorder must withdraw from long-acting opioids. Other potential concerning effects of ibogaine include rare incidences of mania or psychosis. Anticipated transient effects during ibogaine treatment can include ataxia, tremors, and gastrointestinal symptoms. THERAPEUTIC ADVANCES Robust effects after a single treatment with ibogaine have been reported. In open-label and randomized controlled trials (RCTs), ibogaine reduces heroin and opioid cravings by upwards of 50%, up to 24 weeks after the treatment. An observational study of 30 Special Operations Forces veterans with mild traumatic brain injury reported that 86% were in remission from post-traumatic stress disorder, 83% from depression, and 83% from anxiety, one month after a single-dose ibogaine treatment. LIMITATIONS Although there are several observational and open-label studies, there is only a single double-blind, placebo-controlled RCT on ibogaine. More RCTs with large sample sizes must be conducted to support ibogaine's safety and efficacy. CONCLUSIONS Given the promising preliminary findings, ibogaine could potentially fill a much-needed gap in treatments for challenging conditions, including opioid dependence. Ibogaine's remarkable effects in traditionally treatment-resistant, combat-exposed individuals hints at its potential in broader populations with physical and psychological trauma.
Collapse
Affiliation(s)
- Kirsten Cherian
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Burton J Tabaac
- University of Nevada, Reno School of Medicine, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Bryce D Beutler
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Owen S Muir
- Fermata Health, Brooklyn, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
6
|
Ona G, Reverte I, Rossi GN, Dos Santos RG, Hallak JE, Colomina MT, Bouso JC. Main targets of ibogaine and noribogaine associated with its putative anti-addictive effects: A mechanistic overview. J Psychopharmacol 2023; 37:1190-1200. [PMID: 37937505 DOI: 10.1177/02698811231200882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND There is a growing interest in studying ibogaine (IBO) as a potential treatment for substance use disorders (SUDs). However, its clinical use has been hindered for mainly two reasons: First, the lack of randomized, controlled studies informing about its safety and efficacy. And second, IBO's mechanisms of action remain obscure. It has been challenging to elucidate a predominant mechanism of action responsible for its anti-addictive effects. OBJECTIVE To describe the main targets of IBO and its main metabolite, noribogaine (NOR), in relation to their putative anti-addictive effects, reviewing the updated literature available. METHODS A comprehensive search involving MEDLINE and Google Scholar was undertaken, selecting papers published until July 2022. The inclusion criteria were both theoretical and experimental studies about the pharmacology of IBO. Additional publications were identified in the references of the initial papers. RESULTS IBO and its main metabolite, NOR, can modulate several targets associated with SUDs. Instead of identifying key targets, the action of IBO should be understood as a complex modulation of multiple receptor systems, leading to potential synergies. The elucidation of IBO's pharmacology could be enhanced through the application of methodologies rooted in the polypharmacology paradigm. Such approaches possess the capability to describe multifaceted patterns within multi-target drugs. CONCLUSION IBO displays complex effects through multiple targets. The information detailed here should guide future research on both mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Genís Ona
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Giordano N Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto (SP), Brazil
| | - Jaime Ec Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto (SP), Brazil
| | - Maria Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - José Carlos Bouso
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Hackl B, Todt H, Kubista H, Hilber K, Koenig X. Psilocybin Therapy of Psychiatric Disorders Is Not Hampered by hERG Potassium Channel-Mediated Cardiotoxicity. Int J Neuropsychopharmacol 2022; 25:280-282. [PMID: 34871422 PMCID: PMC9017764 DOI: 10.1093/ijnp/pyab085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
Psilocybin, a hallucinogen contained in "magic" mushrooms, holds great promise for the treatment of various psychiatric disorders, and early clinical trials are encouraging. Adverse cardiac events after intake of high doses of psilocybin and a trial reporting QT interval prolongation in the electrocardiogram attributed to the drug's main metabolite, psilocin, gave rise to safety concerns. Here we show that clinical concentrations of psilocin do not cause significant human ether-a-go-go-related gene (hERG) potassium channel inhibition, a major risk factor for adverse cardiac events. We conclude that hERG channel blockage by psilocin is not liable for psilocybin- associated cardiotoxic effects.
Collapse
Affiliation(s)
- Benjamin Hackl
- Department of Neurophysiology and -Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and -Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and -Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and -Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and -Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Knuijver T, Schellekens A, Belgers M, Donders R, van Oosteren T, Kramers K, Verkes R. Safety of ibogaine administration in detoxification of opioid-dependent individuals: a descriptive open-label observational study. Addiction 2022; 117:118-128. [PMID: 33620733 PMCID: PMC9292417 DOI: 10.1111/add.15448] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 02/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Ibogaine is an indole alkaloid used in rituals of the African Bwiti tribe. It is also used in non-medical settings to treat addiction. However, ibogaine has been linked to several deaths, mainly due to cardiac events called torsades des pointes preceded by QTc prolongation as well as other safety concerns. This study aimed to evaluate the cardiac, cerebellar and psychomimetic safety of ibogaine in patients with opioid use disorder. DESIGN A descriptive open-label observational study. SETTING Department of psychiatry in a university medical center, the Netherlands. PARTICIPANTS Patients with opioid use disorder (n = 14) on opioid maintenance treatment with a lasting wish for abstinence, who failed to reach abstinence with standard care. INTERVENTION AND MEASUREMENTS After conversion to morphine-sulphate, a single dose of ibogaine-HCl 10 mg/kg was administered and patients were monitored at regular intervals for at least 24 hours assessing QTc, blood pressure and heart rate, scale for the assessment and rating of ataxia (SARA) to assess cerebellar side effects and the delirium observation scale (DOS) to assess psychomimetic effects. FINDINGS The maximum QTc (Fridericia) prolongation was on average 95ms (range 29-146ms). Fifty percent of subjects reached a QTc of over 500ms during the observation period. In six out 14 subjects prolongation above 450ms lasted beyond 24 hours after ingestion of ibogaine. No torsades des pointes were observed. Severe transient ataxia with inability to walk without support was seen in all patients. Withdrawal and psychomimetic effects were mostly well-tolerated and manageable (11/14 did not return to morphine within 24 hours, DOS scores remained below threshold). CONCLUSIONS This open-label observational study found that ibogaine treatment of patients with opioid use disorder can induce a clinically relevant but reversible QTc prolongation, bradycardia, and severe ataxia.
Collapse
Affiliation(s)
- Thomas Knuijver
- IrisZorg verslavingszorgArnhemthe Netherlands
- Nijmegen Institute for Science Practitioners in Addiction (NISPA)Nijmegenthe Netherlands
- Department of Pharmacology–ToxicologyRadboud UMC NijmegenNijmegenthe Netherlands
| | - Arnt Schellekens
- Nijmegen Institute for Science Practitioners in Addiction (NISPA)Nijmegenthe Netherlands
- Department of PsychiatryRadboud UMCNijmegenthe Netherlands
| | - Maarten Belgers
- IrisZorg verslavingszorgArnhemthe Netherlands
- Nijmegen Institute for Science Practitioners in Addiction (NISPA)Nijmegenthe Netherlands
| | - Rogier Donders
- Department for Health EvidenceRadboud UMC NijmegenNijmegenthe Netherlands
| | | | - Kees Kramers
- Department of Pharmacology–ToxicologyRadboud UMC NijmegenNijmegenthe Netherlands
| | - Robbert Verkes
- Department of PsychiatryRadboud UMCNijmegenthe Netherlands
- Centre of Forensic PsychiatryPompe KliniekNijmegenthe Netherlands
| |
Collapse
|
9
|
Baracaldo-Santamaría D, Llinás-Caballero K, Corso-Ramirez JM, Restrepo CM, Dominguez-Dominguez CA, Fonseca-Mendoza DJ, Calderon-Ospina CA. Genetic and Molecular Aspects of Drug-Induced QT Interval Prolongation. Int J Mol Sci 2021; 22:8090. [PMID: 34360853 PMCID: PMC8347245 DOI: 10.3390/ijms22158090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
Long QT syndromes can be either acquired or congenital. Drugs are one of the many etiologies that may induce acquired long QT syndrome. In fact, many drugs frequently used in the clinical setting are a known risk factor for a prolonged QT interval, thus increasing the chances of developing torsade de pointes. The molecular mechanisms involved in the prolongation of the QT interval are common to most medications. However, there is considerable inter-individual variability in drug response, thus making the application of personalized medicine a relevant aspect in long QT syndrome, in order to evaluate the risk of every individual from a pharmacogenetic standpoint.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (D.B.-S.); (J.M.C.-R.); (C.A.D.-D.)
| | - Kevin Llinás-Caballero
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (K.L.-C.); (C.M.R.); (D.J.F.-M.)
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia
| | - Julián Miguel Corso-Ramirez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (D.B.-S.); (J.M.C.-R.); (C.A.D.-D.)
| | - Carlos Martín Restrepo
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (K.L.-C.); (C.M.R.); (D.J.F.-M.)
| | | | - Dora Janeth Fonseca-Mendoza
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (K.L.-C.); (C.M.R.); (D.J.F.-M.)
| | - Carlos Alberto Calderon-Ospina
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (K.L.-C.); (C.M.R.); (D.J.F.-M.)
| |
Collapse
|
10
|
Sharifi-Rad J, Quispe C, Herrera-Bravo J, Martorell M, Sharopov F, Tumer TB, Kurt B, Lankatillake C, Docea AO, Moreira AC, Dias DA, Mahomoodally MF, Lobine D, Cruz-Martins N, Kumar M, Calina D. A Pharmacological Perspective on Plant-derived Bioactive Molecules for Epilepsy. Neurochem Res 2021; 46:2205-2225. [PMID: 34120291 DOI: 10.1007/s11064-021-03376-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy is a related chronic neurological condition of a predisposition for recurrent epileptic seizures, with various manifestations and causes. Although there are antiepileptic drugs, complementary natural therapies are widely used. The purpose of this systematic review was to analyze the antiepileptic/anticonvulsant pharmacological properties of plant-food derived bioactive molecules. In this regard, a systematic review of the PubMed database was made based on the inclusion criteria. Natural compounds/herbs with scientifically proven antiepileptic properties were selected. Experimental pharmacological studies in vitro and in vivo have shown that flavonoids, alkaloids and terpenoids may have anticonvulsant mechanisms similar to the new generation antiepileptic drugs. The relationships of structure-anticonvulsant effect, pharmacological models, seizure-inducing factors and response, effective dose were also analyzed and discussed. The results of in vitro and in vivo pharmacological studies analyzed in this systematic review support the clinical importance of plant-food-derived bioactive molecules for the complementary treatment of epilepsy. Thus, are opened new perspectives to develop new natural anticonvulsant drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386, Concepcion, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386, Concepcion, Chile
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe, 734003, Tajikistan
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Begum Kurt
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Chintha Lankatillake
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Ana Catarina Moreira
- Pulmonology Department, Hospital Garcia de Orta, EPE Almada, 2801-951, Lisboa, Portugal
| | - Daniel A Dias
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| | | | - Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal. .,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal.
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Echnology, Mumbai, 400019, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
11
|
Su S, Sun J, Wang Y, Xu Y. Cardiac hERG K + Channel as Safety and Pharmacological Target. Handb Exp Pharmacol 2021; 267:139-166. [PMID: 33829343 DOI: 10.1007/164_2021_455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human ether-á-go-go related gene (hERG, KCNH2) encodes the pore-forming subunit of the potassium channel responsible for a fast component of the cardiac delayed rectifier potassium current (IKr). Outward IKr is an important determinant of cardiac action potential (AP) repolarization and effectively controls the duration of the QT interval in humans. Dysfunction of hERG channel can cause severe ventricular arrhythmias and thus modulators of the channel, including hERG inhibitors and activators, continue to attract intense pharmacological interest. Certain inhibitors of hERG channel prolong the action potential duration (APD) and effective refractory period (ERP) to suppress premature ventricular contraction and are used as class III antiarrhythmic agents. However, a reduction of the hERG/IKr current has been recognized as a predominant mechanism responsible for the drug-induced delayed repolarization known as acquired long QT syndromes (LQTS), which is linked to an increased risk for "torsades de pointes" (TdP) ventricular arrhythmias and sudden cardiac death. Many drugs of different classes and structures have been identified to carry TdP risk. Hence, assessing hERG/IKr blockade of new drug candidates is mandatory in the drug development process according to the regulatory agencies. In contrast, several hERG channel activators have been shown to enhance IKr and shorten the APD and thus might have potential antiarrhythmic effects against pathological LQTS. However, these activators may also be proarrhythmic due to excessive shortening of APD and the ERP.
Collapse
Affiliation(s)
- Shi Su
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yi Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China.
| |
Collapse
|
12
|
Konrath EL, Arbo MD, Arbo BD, Hort MA, Elisabetsky E, Leal MB. Plants with Anti-Addictive Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:185-215. [PMID: 33861445 DOI: 10.1007/978-3-030-64872-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Drug addiction is prevalent among individuals of modern society, being a major cause of disability and premature loss of life. Although the drug addiction have profound social, economical and health impact in the world population, its management remains a challenge as available pharmacological treatments remains ineffective for most people. The limited efficacy and adverse effects have led to a search for alternative therapies to treat drug addiction. In this context, natural products are an important source for new chemical substances with a potential therapeutic applicability. Therefore, this chapter will present data obtained after an extensive literature search regarding the use of medicinal plants as a pharmacological alternative for drug addiction treatment.
Collapse
Affiliation(s)
- Eduardo Luis Konrath
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Dutra Arbo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Appel Hort
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Elaine Elisabetsky
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirna Bainy Leal
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Arias HR, Tae HS, Micheli L, Yousuf A, Ghelardini C, Adams DJ, Di Cesare Mannelli L. Coronaridine congeners decrease neuropathic pain in mice and inhibit α9α10 nicotinic acetylcholine receptors and Ca V2.2 channels. Neuropharmacology 2020; 175:108194. [PMID: 32540451 DOI: 10.1016/j.neuropharm.2020.108194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022]
Abstract
The primary aim of this study was to determine the anti-neuropathic activity of (±)-18-methoxycoronaridine [(±)-18-MC] and (+)-catharanthine in mice by using the oxaliplatin-induced neuropathic pain paradigm and cold plate test. The results showed that both coronaridine congeners induce anti-neuropathic pain activity at a dose of 72 mg/kg (per os), whereas a lower dose (36 mg/kg) of (+)-catharanthine decreased the progress of oxaliplatin-induced neuropathic pain. To determine the underlying molecular mechanism, electrophysiological recordings were performed on α9α10, α3β4, and α4β2 nAChRs as well as voltage-gated calcium (CaV2.2) channels modulated by G protein-coupled γ-aminobutyric acid type B receptors (GABABRs). The results showed that (±)-18-MC and (+)-catharanthine competitively inhibit α9α10 nAChRs with potencies higher than that at α3β4 and α4β2 nAChRs and directly block CaV2.2 channels without activating GABABRs. Considering the potency of the coronaridine congeners at Cav2.2 channels and α9α10 nAChRs, and the calculated brain concentration of (+)-catharanthine, it is plausible that the observed anti-neuropathic pain effects are mediated by peripheral and central mechanisms involving the inhibition of α9α10 nAChRs and/or CaV2.2 channels.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA.
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Arsalan Yousuf
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| |
Collapse
|
14
|
Han D, Xu L, Liu P, Liu Y, Sun C, Yin Y. Allicin disrupts cardiac Cav1.2 channels via trafficking. PHARMACEUTICAL BIOLOGY 2019; 57:245-249. [PMID: 30929547 PMCID: PMC6450490 DOI: 10.1080/13880209.2019.1577469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/06/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
CONTEXT Allicin is a potential antiarrhythmic agent. The antiarrhythmic properties of allicin rely on its blockade of various cardiac ion channels. The l-type calcium (Cav1.2) channel provides a pivotal substrate for cardiac electrophysiologic activities. The mechanism of allicin on Cav1.2 remains unclear. OBJECTIVE This study evaluated the potential of allicin on the synthesis and trafficking of Cav1.2 channels. MATERIALS AND METHODS Primary cardiomyocytes (CMs) from neonatal Sprague-Dawley (SD) rats were exposed to allicin (0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 μg/mL) for 24 and 48 h. The CellTiter-Glo assay was performed to measure CM viability. Western blot with grayscale analysis and confocal laser scanning microscopy were used to evaluate the effects of allicin on the synthesis and trafficking of Cav1.2 channel proteins in primary CMs. RESULTS There was no significant difference in apoptotic toxicity from the actual cell viability (p > 0.05) in any group (0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 μg/mL allicin), except that viability in the 0.001 and 0.01 μg/mL groups at 24 h were significantly greater (137.37 and 135.96%) (p < 0.05). Western blot with grayscale analysis revealed no substantial inhibition by allicin of the synthesis of Cav1.2 proteins. Confocal laser scanning microscopy revealed trafficking dysfunction of Cav1.2 channels caused by allicin in primary CMs. CONCLUSION This study is the first to demonstrate that allicin inhibits cardiac Cav1.2 channels by disrupting trafficking, possibly mediating its antiarrhythmic benefits. Therefore, allicin might serve as a new antiarrhythmic agent in the future.
Collapse
Affiliation(s)
- Dan Han
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lingping Xu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xianyang Central Hospital, Xianyang, China
| | - Peng Liu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingying Liu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chaofeng Sun
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanrong Yin
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Corkery JM. Ibogaine as a treatment for substance misuse: Potential benefits and practical dangers. PROGRESS IN BRAIN RESEARCH 2018; 242:217-257. [PMID: 30471681 DOI: 10.1016/bs.pbr.2018.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ibogaine is an indole alkaloid found in the root bark of the Iboga shrub native to west Africa possessing hallucinogenic properties. For centuries it has been used in religious ceremonies and to gain spiritual enlightenment. However, since the early 1960s, its apparent ability to reduce craving for psychoactive substances including alcohol, cocaine, methamphetamine, opiates, and nicotine has led to its use in detoxification treatments. In many instances, clients receive treatment in non-medical settings, with little by way of robust scientific clinical trials. This chapter provides an overview of the potential benefits that could arise from such research. This is balanced against the serious adverse effects that can occur due to undiagnosed health conditions and/or concomitant use of other drugs. A detailed update is provided of the 33 deaths known to have occurred, including 5 in the UK. Looking forward, there is a need to develop better opiate detoxification treatment against a background of increasing opioid-related fatalities. A congener of ibogaine, 18-MC, appears to be safer and is to undergo clinical trials. In the meantime, would-be consumers and treatment providers must make more careful, detailed risk-assessments before using ibogaine. Treatment outcomes, including deaths, need to be accurately recorded and published.
Collapse
Affiliation(s)
- John Martin Corkery
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom.
| |
Collapse
|
16
|
Camlin TJ, Eulert D, Thomas Horvath A, Bucky SF, Barsuglia JP, Polanco M. A phenomenological investigation into the lived experience of ibogaine and its potential to treat opioid use disorders. JOURNAL OF PSYCHEDELIC STUDIES 2018. [DOI: 10.1556/2054.2018.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Thaddeus James Camlin
- Department of Clinical Psychology, California School of Professional Psychology, San Diego, CA, USA
- Practical Recovery Psychology Group, La Jolla, CA, USA
| | - Donald Eulert
- Department of Clinical Psychology, California School of Professional Psychology, San Diego, CA, USA
| | - Arthur Thomas Horvath
- Department of Clinical Psychology, California School of Professional Psychology, San Diego, CA, USA
- Practical Recovery Psychology Group, La Jolla, CA, USA
| | - Steven F. Bucky
- Department of Clinical Psychology, California School of Professional Psychology, San Diego, CA, USA
| | | | | |
Collapse
|
17
|
Rubi L, Eckert D, Boehm S, Hilber K, Koenig X. Anti-addiction Drug Ibogaine Prolongs the Action Potential in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cardiovasc Toxicol 2017; 17:215-218. [PMID: 27020671 PMCID: PMC5334404 DOI: 10.1007/s12012-016-9366-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ibogaine is a plant alkaloid used as anti-addiction drug in dozens of alternative medicine clinics worldwide. Recently, alarming reports of life-threatening cardiac arrhythmias and cases of sudden death associated with the ingestion of ibogaine have accumulated. Using whole-cell patch clamp recordings, we assessed the effects of ibogaine and its main metabolite noribogaine on action potentials in human ventricular-like cardiomyocytes derived from induced pluripotent stem cells. Therapeutic concentrations of ibogaine and its long-lived active metabolite noribogaine significantly retarded action potential repolarization in human cardiomyocytes. These findings represent the first experimental proof that ibogaine application entails a cardiac arrhythmia risk for humans. In addition, they explain the clinically observed delayed incidence of cardiac adverse events several days after ibogaine intake. We conclude that therapeutic concentrations of ibogaine retard action potential repolarization in the human heart. This may give rise to a prolongation of the QT interval in the electrocardiogram and cardiac arrhythmias.
Collapse
Affiliation(s)
- Lena Rubi
- Department of Neurophysiology and - Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Daniel Eckert
- Department of Neurophysiology and - Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and - Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and - Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| | - Xaver Koenig
- Department of Neurophysiology and - Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| |
Collapse
|
18
|
Rubi L, Kovar M, Zebedin-Brandl E, Koenig X, Dominguez-Rodriguez M, Todt H, Kubista H, Boehm S, Hilber K. Modulation of the heart's electrical properties by the anticonvulsant drug retigabine. Toxicol Appl Pharmacol 2017. [PMID: 28641963 DOI: 10.1016/j.taap.2017.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Retigabine, currently used as antiepileptic drug, has a wide range of potential medical uses. Administration of the drug in patients can lead to QT interval prolongation in the electrocardiogram and to cardiac arrhythmias in rare cases. This suggests that the drug may perturb the electrical properties of the heart, and the underlying mechanisms were investigated here. Effects of retigabine on currents through human cardiac ion channels, heterologously expressed in tsA-201 cells, were studied in whole-cell patch-clamp experiments. In addition, the drug's impact on the cardiac action potential was tested. This was done using ventricular cardiomyocytes isolated from Langendorff-perfused guinea pig hearts and cardiomyocytes derived from human induced pluripotent stem cells. Further, to unravel potential indirect effects of retigabine on the heart which might involve the autonomic nervous system, membrane potential and noradrenaline release from sympathetic ganglionic neurons were measured in the absence and presence of the drug. Retigabine significantly inhibited currents through hKv11.1 potassium, hNav1.5 sodium, as well as hCav1.2 calcium channels, but only in supra-therapeutic concentrations. In a similar concentration range, the drug shortened the action potential in both guinea pig and human cardiomyocytes. Therapeutic concentrations of retigabine, on the other hand, were sufficient to inhibit the activity of sympathetic ganglionic neurons. We conclude that retigabine- induced QT interval prolongation, and the reported cases of cardiac arrhythmias after application of the drug in a typical daily dose range, cannot be explained by a direct modulatory effect on cardiac ion channels. They are rather mediated by indirect actions at the level of the autonomic nervous system.
Collapse
Affiliation(s)
- Lena Rubi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Kovar
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva Zebedin-Brandl
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Dominguez-Rodriguez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Schenberg EE, de Castro Comis MA, Alexandre JFM, Chaves BDR, Tófoli LF, da Silveira DX. Treating drug dependence with the aid of ibogaine: A qualitative study. JOURNAL OF PSYCHEDELIC STUDIES 2017. [DOI: 10.1556/2054.01.2016.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | | | - Bruno Daniel Rasmussen Chaves
- Instituto Plantando Consciência, São Paulo, Brazil
- Hospital e Maternidade Maria Perpétua Piedade Gonçalves, Santa Cruz do Rio Pardo, Brazil
| | - Luís Fernando Tófoli
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
20
|
Heink A, Katsikas S, Lange-Altman T. Examination of the Phenomenology of the Ibogaine Treatment Experience: Role of Altered States of Consciousness and Psychedelic Experiences. J Psychoactive Drugs 2017; 49:201-208. [DOI: 10.1080/02791072.2017.1290855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Annamarie Heink
- Doctoral Candidate, School of Professional Psychology, Spalding University, Louisville, KY, USA
| | - Steve Katsikas
- Chair, School of Professional Psychology, Spalding University, Louisville, KY, USA
| | - Tiffany Lange-Altman
- PTSD/SUD Psychologist, Hampton Veteran Affairs, School of Professional Psychology, Spalding University, Louisville, KY, USA
| |
Collapse
|
21
|
Abstract
The iboga alkaloids are a class of naturally occurring and synthetic compounds, some of which modify drug self-administration and withdrawal in humans and preclinical models. Ibogaine, the prototypic iboga alkaloid that is utilized clinically to treat addictions, has been associated with QT prolongation, torsades de pointes and fatalities. hERG blockade as IKr was measured using the whole-cell patch clamp technique in HEK 293 cells. This yielded the following IC50 values: ibogaine manufactured by semisynthesis via voacangine (4.09 ± 0.69 µM) or by extraction from T. iboga (3.53 ± 0.16 µM); ibogaine's principal metabolite noribogaine (2.86 ± 0.68 µM); and voacangine (2.25 ± 0.34 µM). In contrast, the IC50 of 18-methoxycoronaridine, a product of rational synthesis and current focus of drug development was >50 µM. hERG blockade was voltage dependent for all of the compounds, consistent with low-affinity blockade. hERG channel binding affinities (K i) for the entire set of compounds, including 18-MC, ranged from 0.71 to 3.89 µM, suggesting that 18-MC binds to the hERG channel with affinity similar to the other compounds, but the interaction produces substantially less hERG blockade. In view of the extended half-life of noribogaine, these results may relate to observations of persistent QT prolongation and cardiac arrhythmia at delayed intervals of days following ibogaine ingestion. The apparent structure-activity relationships regarding positions of substitutions on the ibogamine skeleton suggest that the iboga alkaloids might provide an informative paradigm for investigation of the structural biology of the hERG channel.
Collapse
|
22
|
Schep LJ, Slaughter RJ, Galea S, Newcombe D. Ibogaine for treating drug dependence. What is a safe dose? Drug Alcohol Depend 2016; 166:1-5. [PMID: 27426011 DOI: 10.1016/j.drugalcdep.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
Abstract
The indole alkaloid ibogaine, present in the root bark of the West African rain forest shrub Tabernanthe iboga, has been adopted in the West as a treatment for drug dependence. Treatment of patients requires large doses of the alkaloid to cause hallucinations, an alleged integral part of the patient's treatment regime. However, case reports and case series continue to describe evidences of ataxia, gastrointestinal distress, ventricular arrhythmias and sudden and unexplained deaths of patients undergoing treatment for drug dependence. High doses of ibogaine act on several classes of neurological receptors and transporters to achieve pharmacological responses associated with drug aversion; limited toxicology research suggests that intraperitoneal doses used to successfully treat rodents, for example, have also been shown to cause neuronal injury (purkinje cells) in the rat cerebellum. Limited research suggests lethality in rodents by the oral route can be achieved at approximately 263mg/kg body weight. To consider an appropriate and safe initial dose for humans, necessary safety factors need to be applied to the animal data; these would include factors such as intra- and inter-species variability and for susceptible people in a population (such as drug users). A calculated initial dose to treat patients could be approximated at 0.87mg/kg body weight, substantially lower than those presently being administered to treat drug users. Morbidities and mortalities will continue to occur unless practitioners reconsider doses being administered to their susceptible patients.
Collapse
Affiliation(s)
- L J Schep
- National Poisons Centre, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand.
| | - R J Slaughter
- National Poisons Centre, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - S Galea
- Community Alcohol and Drug Services, Waitemata DHB, New Zealand; Social and Community Health and Centre for Addiction Research, University of Auckland, New Zealand
| | - D Newcombe
- Social and Community Health and Centre for Addiction Research, University of Auckland, New Zealand
| |
Collapse
|
23
|
Glue P, Cape G, Tunnicliff D, Lockhart M, Lam F, Hung N, Hung CT, Harland S, Devane J, Crockett RS, Howes J, Darpo B, Zhou M, Weis H, Friedhoff L. Ascending Single-Dose, Double-Blind, Placebo-Controlled Safety Study of Noribogaine in Opioid-Dependent Patients. Clin Pharmacol Drug Dev 2016; 5:460-468. [PMID: 27870477 DOI: 10.1002/cpdd.254] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/04/2016] [Indexed: 11/11/2022]
Abstract
Ibogaine is a psychoactive substance that may reduce opioid withdrawal symptoms. This was the first clinical trial of noribogaine, ibogaine's active metabolite, in patients established on methadone opioid substitution therapy (OST). In this randomized, double-blind, placebo-controlled single ascending-dose study, we evaluated the safety, tolerability, and pharmacokinetics of noribogaine in 27 patients seeking to discontinue methadone OST who had been switched to morphine during the previous week. Noribogaine doses were 60, 120, or 180 mg (n = 6/dose level) or matching placebo (n = 3/dose level). Noribogaine was well tolerated. The most frequent treatment-emergent adverse events were noneuphoric changes in light perception ∼1 hour postdose, headache, and nausea. Noribogaine had dose-linear increases for AUC and Cmax and was slowly eliminated (mean t1/2 range, 24-30 hours). There was a concentration-dependent increase in QTcI (0.17 ms/ng/mL), with the largest observed mean effect of ∼16, 28, and 42 milliseconds in the 60-, 120-, and 180-mg groups, respectively. Noribogaine showed a nonstatistically significant trend toward decreased total score in opioid withdrawal ratings, most notably at the 120-mg dose; however, the study design may have confounded evaluations of time to resumption of OST. Future exposure-controlled multiple-dose noribogaine studies are planned that will address these safety and design issues.
Collapse
Affiliation(s)
- Paul Glue
- University of Otago, Dunedin, New Zealand
| | - Gavin Cape
- Southern District Health Board, Dunedin, New Zealand
| | | | | | - Fred Lam
- Zenith Technology Ltd, Dunedin, New Zealand
| | | | - C Tak Hung
- Zenith Technology Ltd, Dunedin, New Zealand
| | | | | | - R S Crockett
- Design and Analysis of Trials Associates, Inc, Grand Bay, AL, USA
| | | | - Borje Darpo
- iCardiac Technologies, Rochester, NY, USA.,Karolinska Institutet, Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd's Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Meisner JA, Wilcox SR, Richards JB. Ibogaine-associated cardiac arrest and death: case report and review of the literature. Ther Adv Psychopharmacol 2016; 6:95-8. [PMID: 27141291 PMCID: PMC4837967 DOI: 10.1177/2045125315626073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A naturally occurring hallucinogenic plant alkaloid, ibogaine has been used as an adjuvant for opiate withdrawal for the past 50 years. In the setting of an escalating nationwide opiate epidemic, use of substances such as ibogaine may also increase. Therefore, familiarity with the mechanisms and potential adverse effects of ibogaine is important for clinicians. We present the case report of a man whose use of ibogaine resulted in cardiac arrest and death, complemented by a review of the literature regarding ibogaine's clinical effects. A 40-year-old man who used ibogaine for symptoms of heroin withdrawal suffered acute cardiac arrest leading to cerebral edema and brain death. His presentation was consistent with ibogaine-induced cardiotoxicity and ibogaine-induced cardiac arrest, and a review of the literature regarding the history, mechanisms, risks and clinical outcomes associated with ibogaine is presented. The case presented underscores the significant potential clinical risks of ibogaine. It is important the healthcare community be aware of the possible effects of ibogaine such that clinicians can provide informed counseling to their patients regarding the risks of attempting detoxification with ibogaine.
Collapse
Affiliation(s)
- Jessica A Meisner
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Susan R Wilcox
- Division of Emergency Medicine, Medical University of South Carolina, Charleston, South Carolina, USA Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jeremy B Richards
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 812-CSB, MSC 630, Charleston, SC, 29425-6300, USA
| |
Collapse
|
25
|
Kyzar EJ, Kalueff AV. Exploring Hallucinogen Pharmacology and Psychedelic Medicine with Zebrafish Models. Zebrafish 2016; 13:379-90. [PMID: 27002655 DOI: 10.1089/zeb.2016.1251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After decades of sociopolitical obstacles, the field of psychiatry is experiencing a revived interest in the use of hallucinogenic agents to treat brain disorders. Along with the use of ketamine for depression, recent pilot studies have highlighted the efficacy of classic serotonergic hallucinogens, such as lysergic acid diethylamide and psilocybin, in treating addiction, post-traumatic stress disorder, and anxiety. However, many basic pharmacological and toxicological questions remain unanswered with regard to these compounds. In this study, we discuss psychedelic medicine as well as the behavioral and toxicological effects of hallucinogenic drugs in zebrafish. We emphasize this aquatic organism as a model ideally suited to assess both the potential toxic and therapeutic effects of major known classes of hallucinogenic compounds. In addition, novel drugs with hallucinogenic properties can be efficiently screened using zebrafish models. Well-designed preclinical studies utilizing zebrafish can contribute to the reemerging treatment paradigm of psychedelic medicine, leading to new avenues of clinical exploration for psychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- 1 Department of Psychiatry, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Allan V Kalueff
- 2 Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU) , Zhanjiang, China .,3 ZENEREI Institute , Slidell, Louisiana.,4 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,5 Institutes of Chemical Technology and Natural Sciences, Ural Federal University , Ekaterinburg, Russia .,6 The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell, Louisiana
| |
Collapse
|
26
|
|
27
|
Gassaway MM, Jacques TL, Kruegel AC, Karpowicz RJ, Li X, Li S, Myer Y, Sames D. Deconstructing the Iboga Alkaloid Skeleton: Potentiation of FGF2-induced Glial Cell Line-Derived Neurotrophic Factor Release by a Novel Compound. ACS Chem Biol 2016; 11:77-87. [PMID: 26517751 DOI: 10.1021/acschembio.5b00678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Modulation of growth factor signaling pathways in the brain represents a new experimental approach to treating neuropsychiatric disorders such as depression, anxiety, and addiction. Neurotrophins and growth factors exert synaptic, neuronal, and circuit level effects on a wide temporal range, which suggests a possibility of rapid and lasting therapeutic effects. Consequently, identification of small molecules that can either enhance the release of growth factors or potentiate their respective pathways will provide a drug-like alternative to direct neurotrophin administration or viral gene delivery and thus represents an important frontier in chemical biology and drug design. Glial cell line-derived neurotrophic factor (GDNF), in particular, has been implicated in marked reduction of alcohol consumption in rodent addiction models, and the natural product ibogaine, a substance used traditionally in ritualistic ceremonies, has been suggested to increase the synthesis and release of GDNF in the dopaminergic system in rats. In this report, we describe a novel iboga analog, XL-008, created by unraveling the medium size ring of the ibogamine skeleton, and its ability to induce release of GDNF in C6 glioma cells. Additionally, XL-008 potentiates the release of GDNF induced by fibroblast growth factor 2 (FGF2), another neurotrophin implicated in major depressive disorder, increasing potency more than 2-fold (from 7.85 ± 2.59 ng/mL to 3.31 ± 0.98 ng/mL) and efficacy more than 3-fold. The GDNF release by both XL-008 and the FGF2/XL-008 mixture was found to be mediated through the MEK and PI3K signaling pathways but not through PLCγ in C6 glioma cells.
Collapse
Affiliation(s)
- Madalee M. Gassaway
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Teresa L. Jacques
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Andrew C. Kruegel
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard J. Karpowicz
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xiaoguang Li
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shu Li
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yves Myer
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dalibor Sames
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
28
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
29
|
Grienke U, Mair CE, Saxena P, Baburin I, Scheel O, Ganzera M, Schuster D, Hering S, Rollinger JM. Human Ether-à-go-go Related Gene (hERG) Channel Blocking Aporphine Alkaloids from Lotus Leaves and Their Quantitative Analysis in Dietary Weight Loss Supplements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5634-5639. [PMID: 26035250 DOI: 10.1021/acs.jafc.5b01901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Blockage of the human ether-à-go-go related gene (hERG) channel can result in life-threatening ventricular tachyarrhythmia. In an in vitro screening of herbal materials for hERG blockers using an automated two-microelectrode voltage clamp assay on Xenopus oocytes, an alkaloid fraction of Nelumbo nucifera Gaertn. (lotus) leaves induced ∼50% of hERG current inhibition at 100 μg/mL. Chromatographic separation resulted in the isolation and identification of (-)-asimilobine, 1, nuciferine, 2, O-nornuciferine, 3, N-nornuciferine, 4, and liensinine, 5. In agreement with in silico predicted ligand-target interactions, 2, 3, and 4 revealed distinct in vitro hERG blockages measured in HEK293 cells with IC50 values of 2.89, 7.91, and 9.75 μM, respectively. Because lotus leaf dietary weight loss supplements are becoming increasingly popular, the identified hERG-blocking alkaloids were quantitated in five commercially available products. Results showed pronounced differences in the content of hERG-blocking alkaloids ranging up to 992 μg (2) in the daily recommended dose.
Collapse
Affiliation(s)
- Ulrike Grienke
- †Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christina E Mair
- †Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | | | | | - Olaf Scheel
- #Cytocentrics Bioscience GmbH, Tannenweg 22k, 18059 Rostock, Germany
| | - Markus Ganzera
- †Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- ⊥Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | | | - Judith M Rollinger
- †Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Koenig X, Hilber K. The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules 2015; 20:2208-28. [PMID: 25642835 PMCID: PMC4382526 DOI: 10.3390/molecules20022208] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022] Open
Abstract
The plant indole alkaloid ibogaine has shown promising anti-addictive properties in animal studies. Ibogaine is also anti-addictive in humans as the drug alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug and despite safety concerns, ibogaine is currently used as an anti-addiction medication in alternative medicine in dozens of clinics worldwide. In recent years, alarming reports of life-threatening complications and sudden death cases, temporally associated with the administration of ibogaine, have been accumulating. These adverse reactions were hypothesised to be associated with ibogaine’s propensity to induce cardiac arrhythmias. The aim of this review is to recapitulate the current knowledge about ibogaine’s effects on the heart and the cardiovascular system, and to assess the cardiac risks associated with the use of this drug in anti- addiction therapy. The actions of 18-methoxycoronaridine (18-MC), a less toxic ibogaine congener with anti-addictive properties, are also considered.
Collapse
Affiliation(s)
- Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria.
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria.
| |
Collapse
|
31
|
Schenberg EE, de Castro Comis MA, Chaves BR, da Silveira DX. Treating drug dependence with the aid of ibogaine: a retrospective study. J Psychopharmacol 2014; 28:993-1000. [PMID: 25271214 DOI: 10.1177/0269881114552713] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ibogaine is an alkaloid purported to be an effective drug dependence treatment. However, its efficacy has been hard to evaluate, partly because it is illegal in some countries. In such places, treatments are conducted in underground settings where fatalities have occurred. In Brazil ibogaine is unregulated and a combined approach of psychotherapy and ibogaine is being practiced to treat addiction. To evaluate the safety and efficacy of ibogaine, we conducted a retrospective analysis of data from 75 previous alcohol, cannabis, cocaine and crack users (72% poly-drug users). We observed no serious adverse reactions or fatalities, and found 61% of participants abstinent. Participants treated with ibogaine only once reported abstinence for a median of 5.5 months and those treated multiple times for a median of 8.4 months. This increase was statistically significant (p < 0.001), and both single or multiple treatments led to longer abstinence periods than before the first ibogaine session (p < 0.001). These results suggest that the use of ibogaine supervised by a physician and accompanied by psychotherapy can facilitate prolonged periods of abstinence, without the occurrence of fatalities or complications. These results suggest that ibogaine can be a safe and effective treatment for dependence on stimulant and other non-opiate drugs.
Collapse
Affiliation(s)
- Eduardo Ekman Schenberg
- Universidade Federal de São Paulo, Departamento de Psiquiatria, Instituto Plantando Consciência, São Paulo, Brazil
| | | | | | - Dartiu Xavier da Silveira
- Universidade Federal de São Paulo, Programa de Orientação e Atendimento a Dependentes (PROAD), Departamento de Psiquiatria, Instituto Plantando Consciência, São Paulo, Brazil
| |
Collapse
|
32
|
Kratz JM, Schuster D, Edtbauer M, Saxena P, Mair CE, Kirchebner J, Matuszczak B, Baburin I, Hering S, Rollinger JM. Experimentally validated HERG pharmacophore models as cardiotoxicity prediction tools. J Chem Inf Model 2014; 54:2887-901. [PMID: 25148533 DOI: 10.1021/ci5001955] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The goal of this study was to design, experimentally validate, and apply a virtual screening workflow to identify novel hERG channel blockers. The hERG channel is an important antitarget in drug development since cardiotoxic risks remain as a major cause of attrition. A ligand-based pharmacophore model collection was developed and theoretically validated. The seven most complementary and suitable models were used for virtual screening of in-house and commercially available compound libraries. From the hit lists, 50 compounds were selected for experimental validation through bioactivity assessment using patch clamp techniques. Twenty compounds inhibited hERG channels expressed in HEK 293 cells with IC50 values ranging from 0.13 to 2.77 μM, attesting to the suitability of the models as cardiotoxicity prediction tools in a preclinical stage.
Collapse
Affiliation(s)
- Jadel M Kratz
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , 88.040-900 Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Thurner P, Stary-Weinzinger A, Gafar H, Gawali VS, Kudlacek O, Zezula J, Hilber K, Boehm S, Sandtner W, Koenig X. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine. J Pharmacol Exp Ther 2013; 348:346-58. [PMID: 24307198 DOI: 10.1124/jpet.113.209643] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.
Collapse
Affiliation(s)
- Patrick Thurner
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria (H.G., V.S.G., K.H., S.B., X.K.), Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria (P.T., O.K., J.Z., W.S.), Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (A.S.-W.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|