1
|
Zhou Y, Zou J, Xu J, Zhou Y, Cen X, Zhao Y. Recent advances of mitochondrial complex I inhibitors for cancer therapy: Current status and future perspectives. Eur J Med Chem 2023; 251:115219. [PMID: 36893622 DOI: 10.1016/j.ejmech.2023.115219] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Mitochondrial complex I (CI) as a critical multifunctional respiratory complex of electron transport chain (ETC) in mitochondrial oxidative phosphorylation has been identified as vital and essence in ATP production, biosynthesis and redox balance. Recent progress in targeting CI has provided both insight and inspiration for oncotherapy, highlighting that the development of CI-targeting inhibitors is a promising therapeutic approach to fight cancer. Natural products possessing of ample scaffold diversity and structural complexity are the majority source of CI inhibitors, although low specificity and safety hinder their extensive application. Along with the gradual deepening in understanding of CI structure and function, significant progress has been achieved in exploiting novel and selective small molecules targeting CI. Among them, IACS-010759 had been approved by FDA for phase I trial in advanced cancers. Moreover, drug repurposing represents an effective and prospective strategy for CI inhibitor discovery. In this review, we mainly elaborate the biological function of CI in tumor progression, summarize the CI inhibitors reported in recent years and discuss the further perspectives for CI inhibitor application, expecting this work may provide insights into innovative discovery of CI-targeting drugs for cancer treatment.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Adarsh Krishna TP, Edachery B, Athalathil S. Bakuchiol - a natural meroterpenoid: structure, isolation, synthesis and functionalization approaches. RSC Adv 2022; 12:8815-8832. [PMID: 35424800 PMCID: PMC8985110 DOI: 10.1039/d1ra08771a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bakuchiol is an emblematic meroterpene class of natural product extracted from Psoralea corylifolia. It has been reported to possess a broad range of biological and pharmacological properties and is considered as a leading biomolecule. It is highly desirable to devise an efficient approach to access bakuchiol and its chemical biology applications. In this review we provided structural features, isolation methods, various chemical routes and late-stage functionalization (LSF) approaches for bakuchiol and its derivatives. Moreover, this review encompasses the structure-activity relationships (SAR), value-added contributions and future perspectives of bakuchiol.
Collapse
Affiliation(s)
- T P Adarsh Krishna
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Baldev Edachery
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Sunil Athalathil
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| |
Collapse
|
3
|
Liu Y, Yu S, Xing X, Qiao J, Yin Y, Wang J, Liu M, Zhang W. Ginsenoside Rh2 stimulates the production of mitochondrial reactive oxygen species and induces apoptosis of cervical cancer cells by inhibiting mitochondrial electron transfer chain complex. Mol Med Rep 2021; 24:873. [PMID: 34713297 PMCID: PMC8569524 DOI: 10.3892/mmr.2021.12513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
Ginsenoside Rh2 (G-Rh2) is a monomeric compound that extracted from ginseng and possesses anti-cancer activities both in vitro and in vivo. Previously, we reported that G-Rh2 induces apoptosis in HeLa cervical cancer cells and that the process was related to reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. However, the upstream mechanisms of G-Rh2, along with its cellular targets, remain to be elucidated. In the present study, the Cell Counting Kit-8 assay, flow cytometry and Hoechst staining revealed that G-Rh2 significantly inhibited cell viability and induced apoptosis of cervical cancer cells. However, G-Rh2 was demonstrated to be non-toxic to End1/e6e7 cells. JC-1, rhodamine 123 staining, oxidative phosphorylation and glycolysis capacity assays demonstrated that G-Rh2 exposure caused an immediate decrease in mitochondrial transmembrane potential due to its inhibition of mitochondrial oxidative phosphorylation, as well as glycolysis, both of which reduced cellular ATP production. Western blotting and electron transport chain (ETC) activity assays revealed that G-Rh2 significantly inhibited the activity of ETC complexes I, III and V. Overexpression of ETC complex III partially significantly restored mitochondrial ROS and inhibited the apoptosis of cervical cancer cells induced by G-Rh2. The predicted results of binding energy in molecular docking, confirmed that G-Rh2 was highly likely to induce mitochondrial ROS production and promote cell apoptosis by targeting the ETC complex, especially for ETC complex III. Taken together, the present results revealed the potential anti-cervical cancer activity of G-Rh2 and provide direct evidence for the contribution of impaired ETC complex activity to cervical cancer cell death.
Collapse
Affiliation(s)
- Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shiting Yu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xin Xing
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Juhui Qiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yiqiu Yin
- GeneScience Pharmaceuticals Co., Ltd., Changchun, Jilin 130012, P.R. China
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Wei Zhang
- Scientific Research Department, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
4
|
Complex Mitochondrial Dysfunction Induced by TPP +-Gentisic Acid and Mitochondrial Translation Inhibition by Doxycycline Evokes Synergistic Lethality in Breast Cancer Cells. Cells 2020; 9:cells9020407. [PMID: 32053908 PMCID: PMC7072465 DOI: 10.3390/cells9020407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPP+C10), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPP+C10 causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity. These events led to cell cycle arrest in the G1 phase and cell death at 24 and 48 h of exposure, and the cells were rescued by the addition of the cell-penetrating metabolic intermediates l-aspartic acid β-methyl ester (mAsp) and dimethyl α-ketoglutarate (dm-KG). In addition, this unexpected blocking of mitochondrial function triggered metabolic remodeling toward glycolysis, AMPK activation, increased expression of proliferator-activated receptor gamma coactivator 1-alpha (pgc1α) and electron transport chain (ETC) component-related genes encoded by mitochondrial DNA and downregulation of the uncoupling proteins ucp3 and ucp4, suggesting an AMPK-dependent prosurvival adaptive response in cancer cells. Consistent with this finding, we showed that inhibition of mitochondrial translation with doxycycline, a broad-spectrum antibiotic that inhibits the 28 S subunit of the mitochondrial ribosome, in the presence of GA-TPP+C10 significantly reduces the mt-CO1 and VDAC protein levels and the FCCP-stimulated maximal electron flux and promotes selective and synergistic cytotoxic effects on BC cells at 24 h of treatment. Based on our results, we propose that this combined strategy based on blockage of the adaptive response induced by mitochondrial bioenergetic inhibition may have therapeutic relevance in BC.
Collapse
|
5
|
Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2019; 2019:2592609. [PMID: 31815016 PMCID: PMC6877993 DOI: 10.1155/2019/2592609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caffeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coffee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inflammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. This review is an overview of the available information about the chemical synthesis and antioxidant activity of caffeic acid derivatives. Considering the relevance of these compounds in human health, many of them have been the focus of reviews, taking as a center their obtaining from the plants. There are few revisions that compile the chemical synthesis methods, in this way, we consider that this review does an important contribution.
Collapse
|
6
|
Xu X, Pu R, Li Y, Wu Z, Li C, Miao X, Yang W. Chemical Compositions of Propolis from China and the United States and their Antimicrobial Activities Against Penicillium notatum. Molecules 2019; 24:E3576. [PMID: 31590214 PMCID: PMC6803850 DOI: 10.3390/molecules24193576] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
The chemical compositions of ethanol extracts of propolis from China (EEP-C) and the United States (EEP-A) and their antifungal activity against Penicillium notatum were determined. The result showed that a total of 49 compounds were detected by UPLC-Q-TOF-MS, 30 of which were present in samples from two regions. The major compounds of EEP-C and EEP-A were similar, including pinocembrin, pinobanksin-3-O-acetate, galanin, chrysin, pinobanksin, and pinobanksin-methyl ether, and both of them showed antifungal activity against P. notatum with same minimum inhibitory concentration (MIC) value of 0.8 mg·mL-1. In the presence of propolis, the mycelial growth was inhibited, the hyphae became shriveled and wrinkled, the extracellular conductivities were increased, and the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) were decreased. In addition, iTRAQ-based quantitative proteomic analysis of P. notatum in response to propolis revealed that a total of 341 proteins were differentially expressed, of which 88 (25.8%) were upregulated and 253 (74.2%) were downregulated. Meanwhile, the differentially expressed proteins (DEPs) involved in energy production and conversion, carbohydrate transport and metabolism, and the sterol biosynthetic pathway were identified. This study revealed that propolis could affect respiration, interfere with energy metabolism, and influence steroid biosynthesis to inhibit the growth of P. notatum.
Collapse
Affiliation(s)
- Xiaolan Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruixue Pu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Yujie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Zhenghong Wu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Chunxia Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqing Miao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Wenchao Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Wu L, Liu X, Cao KX, Ni ZH, Li WD, Chen ZP. Synergistic antitumor effects of rhein and doxorubicin in hepatocellular carcinoma cells. J Cell Biochem 2018; 121:4009-4021. [PMID: 30378155 DOI: 10.1002/jcb.27514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/26/2018] [Indexed: 01/04/2023]
Abstract
The aim of this study was to investigate the synergistic antitumor activity of rhein and doxorubicin (DOX) and to elucidate the underlying mechanisms in hepatocellular SMMC-7721 and HepG2 cells. Cell growth curves, caspase-3 activity, and intracellular DOX accumulation were observed using an IncuCyte real-time video imaging system. Combination index was used to calculate synergistic potential of rhein and DOX. Cell apoptosis was detected by the Annexin V-FITC/PI apoptosis kit. Lactate dehydrogenase and adenosine triphosphate (ATP) levels were assessed using an assay kit. Oxygen consumption rates (OCR) and extracellular acidification rates were assessed by the Seahorse XFe96 Extracellular Flux Analyzer. Mitochondrial inner membrane potential (ΔΨm) was monitored with JC-1 fluorescence. Western blot analysis was used to detect the level of P-glycoprotein. Synergistic antiproliferative and proapoptotic effects were exerted by the combination of rhein at 10 μM and DOX at 2 μM in SMMC-7721 and HepG2 cells. Rhein could influenced the accumulation of DOX in both cells, which was associated with remarkably decreased mitochondrial energy metabolism and ATP levels. Rhein could reduce ΔΨm in both cells. mPTP, opener atractyloside (ATR) could accelerate the loss of ΔΨm, and further suppress the OCR induced by rhein. In contrast, the mPTP blocker cyclosporin A (Cs A) inhibited the loss of ΔΨm and the OCR induced by rhein. Our data indicate that a decline in mitochondrial energy metabolism was responsible for the synergistic antitumor effects of rhein and DOX in hepatocellular carcinoma cells. Reduction of ΔΨm and opening of mPTP inhibited the exchange of ATP/adenosine diphosphate between mitochondrial matrix and cytoplasm is the important mechanism.
Collapse
Affiliation(s)
- Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ke Xin Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zi Hui Ni
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Dong Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhi Peng Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Synthesis and Evaluation of Bakuchiol Derivatives as Potential Anticancer Agents. Molecules 2018; 23:molecules23030515. [PMID: 29495380 PMCID: PMC6017251 DOI: 10.3390/molecules23030515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
A series of bakuchiol derivatives were synthesized and evaluated for their anti-proliferative and the inhibitory activities on SMMC7721 cell line migration using PX-478 as a positive control. The results showed (S,E)-4-(7-methoxy-3,7-dimethyl-3-vinyloct-1-en-1-yl)phenol (10) to have the best activity among the tested compounds, which included PX-478. In addition, compound 10 showed greater inhibitory activity than that of bakuchiol in the transwell migration and invasion assays at every dose. In western blotting tests, compound 10 showed a promising ability to downregulate the expression of HIF-1α and its associated downstream proteins MMP-2 and MMP-9. Moreover, this effect was dose-dependent and could represent a possible mechanism of action for the anticancer activity of compound 10.
Collapse
|
9
|
Pacini N, Borziani F. Oncostatic-Cytoprotective Effect of Melatonin and Other Bioactive Molecules: A Common Target in Mitochondrial Respiration. Int J Mol Sci 2016; 17:341. [PMID: 26959015 PMCID: PMC4813203 DOI: 10.3390/ijms17030341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 12/27/2022] Open
Abstract
For several years, oncostatic and antiproliferative properties, as well as thoses of cell death induction through 5-methoxy-N-acetiltryptamine or melatonin treatment, have been known. Paradoxically, its remarkable scavenger, cytoprotective and anti-apoptotic characteristics in neurodegeneration models, such as Alzheimer’s disease and Parkinson’s disease are known too. Analogous results have been confirmed by a large literature to be associated to the use of many other bioactive molecules such as resveratrol, tocopherol derivatives or vitamin E and others. It is interesting to note that the two opposite situations, namely the neoplastic pathology and the neurodegeneration, are characterized by deep alterations of the metabolome, of mitochondrial function and of oxygen consumption, so that the oncostatic and cytoprotective action can find a potential rationalization because of the different metabolic and mitochondrial situations, and in the effect that these molecules exercise on the mitochondrial function. In this review we discuss historical and general aspects of melatonin, relations between cancers and the metabolome and between neurodegeneration and the metabolome, and the possible effects of melatonin and of other bioactive molecules on metabolic and mitochondrial dynamics. Finally, we suggest a common general mechanism as responsible for the oncostatic/cytoprotective effect of melatonin and of other molecules examined.
Collapse
Affiliation(s)
- Nicola Pacini
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| | - Fabio Borziani
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| |
Collapse
|
10
|
Madrid A, Cardile V, González C, Montenegro I, Villena J, Caggia S, Graziano A, Russo A. Psoralea glandulosa as a potential source of anticancer agents for melanoma treatment. Int J Mol Sci 2015; 16:7944-59. [PMID: 25860949 PMCID: PMC4425060 DOI: 10.3390/ijms16047944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022] Open
Abstract
With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1), 3-hydroxy-bakuchiol (2) and 12-hydroxy-iso-bakuchiol (3)) against melanoma cells (A2058). In addition, the effect in cancer cells of bakuchiol acetate (4), a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS) production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells.
Collapse
Affiliation(s)
- Alejandro Madrid
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, 2340000 Valparaíso, Chile.
| | - Venera Cardile
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - César González
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España N° 1680, 2340000 Valparaíso, Chile.
| | - Ivan Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de medicina, Universidad de Valparaíso, Blanco N° 1911, 2340000 Valparaíso, Chile.
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda N° 2664, 2340000 Valparaíso, Chile.
| | - Silvia Caggia
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Adriana Graziano
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Alessandra Russo
- Department of Drug Sciences, Biochemistry Section, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
11
|
Jara JA, Castro-Castillo V, Saavedra-Olavarría J, Peredo L, Pavanni M, Jaña F, Letelier ME, Parra E, Becker MI, Morello A, Kemmerling U, Maya JD, Ferreira J. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J Med Chem 2014; 57:2440-54. [PMID: 24568614 DOI: 10.1021/jm500174v] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor cells principally exhibit increased mitochondrial transmembrane potential (ΔΨ(m)) and altered metabolic pathways. The therapeutic targeting and delivery of anticancer drugs to the mitochondria might improve treatment efficacy. Gallic acid exhibits a variety of biological activities, and its ester derivatives can induce mitochondrial dysfunction. Four alkyl gallate triphenylphosphonium lipophilic cations were synthesized, each differing in the size of the linker chain at the cationic moiety. These derivatives were selectively cytotoxic toward tumor cells. The better compound (TPP(+)C10) contained 10 carbon atoms within the linker chain and exhibited an IC50 value of approximately 0.4-1.6 μM for tumor cells and a selectivity index of approximately 17-fold for tumor compared with normal cells. Consequently, its antiproliferative effect was also assessed in vivo. The oxygen consumption rate and NAD(P)H oxidation levels increased in the tumor cell lines (uncoupling effect), resulting in a ΔΨ(m) decrease and a consequent decrease in intracellular ATP levels. Moreover, TPP(+)C10 significantly inhibited the growth of TA3/Ha tumors in mice. According to these results, the antineoplastic activity and safety of TPP(+)C10 warrant further comprehensive evaluation.
Collapse
Affiliation(s)
- José A Jara
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile , Independencia 1027, Santiago 8380453, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|