1
|
Fadaly WAA, Nemr MTM, Zidan TH, Mohamed FEA, Abdelhakeem MM, Abu Jayab NN, Omar HA, Abdellatif KRA. New 1,2,3-triazole/1,2,4-triazole hybrids linked to oxime moiety as nitric oxide donor selective COX-2, aromatase, B-RAF V600E and EGFR inhibitors celecoxib analogs: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis and molecular modeling study. J Enzyme Inhib Med Chem 2023; 38:2290461. [PMID: 38061801 PMCID: PMC11003496 DOI: 10.1080/14756366.2023.2290461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A new series of bis-triazole 19a-l was synthesised for the purpose of being hybrid molecules with both anti-inflammatory and anti-cancer activities and assessed for cell cycle arrest, NO release. Compounds 19c, 19f, 19h, 19 l exhibited COX-2 selectivity indexes in the range of 18.48 to 49.38 compared to celecoxib S.I. = 21.10), inhibit MCF-7 with IC50 = 9-16 μM compared to tamoxifen (IC50 = 27.9 μM). and showed good inhibitory activity against HEP-3B with IC50 = 4.5-14 μM compared to sorafenib (IC50 = 3.5 μM) (HEP-3B). Moreover, derivatives 19e, 19j, 19k, 19 l inhibit HCT-116 with IC50 = 5.3-13.7 μM compared to 5-FU with IC50 = 4.8 μM (HCT-116). Compounds 19c, 19f, 19h, 19 l showed excellent inhibitory activity against A549 with IC50 = 3-4.5 μM compared to 5-FU with IC50 = 6 μM (A549). Compounds 19c, 19f, 19h, 19 l inhibit aromatase (IC50 of 22.40, 23.20, 22.70, 30.30 μM), EGFR (IC50 of 0.112, 0.205, 0.169 and 0.066 μM) and B-RAFV600E (IC50 of 0.09, 0.06, 0.07 and 0.05 μM).
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pharmacology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Fadaly WAA, Zidan TH, Kahk NM, Mohamed FEA, Abdelhakeem MM, Khalil RG, Nemr MTM. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J Enzyme Inhib Med Chem 2023; 38:2281262. [PMID: 38010912 PMCID: PMC11003491 DOI: 10.1080/14756366.2023.2281262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Two new series of pyrazolyl-thiazolidinone/thiazole derivatives 16a-b and 18a-j were synthesised, merging the scaffolds of celecoxib and dasatinib. Compounds 16a, 16b and 18f inhibit COX-2 with S.I. 134.6, 26.08 and 42.13 respectively (celecoxib S.I. = 24.09). Compounds 16a, 16b, 18c, 18d and 18f inhibit MCF-7 with IC50 = 0.73-6.25 μM (dasatinib IC50 = 7.99 μM) and (doxorubicin IC50 = 3.1 μM) and inhibit A549 with IC50 = 1.64-14.3 μM (dasatinib IC50 = 11.8 μM and doxorubicin IC50 = 2.42 μM) with S.I. (F180/MCF7) of 33.15, 7.13, 18.72, 13.25 and 8.28 respectively higher than dasatinib (4.03) and doxorubicin (3.02) and S.I. (F180/A549) of 14.75, 12.96, 4.16, 7.07 and 18.88 respectively higher than that of dasatinib (S.I. = 2.72) and doxorubicin (S.I = 3.88). Derivatives 16a, 18c, 18d, 18f inhibit EGFR and HER-2 IC50 for EGFR of 0.043, 0.226, 0.388, 0.19 μM respectively and for HER-2 of 0.032, 0.144, 0.195, 0.201 μM respectively.
Collapse
Affiliation(s)
- Wael A. A. Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H. Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M. Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E. A. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M. Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G. Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T. M. Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Mohamed YT, Naguib IA, Abo-Saif AA, Mohamed WR. Protective effects of perindopril against indomethacin-induced gastric mucosal damage through modulation of DDAH-1/ADMA and ACE-2/ANG-(1-7) signaling pathways. Drug Chem Toxicol 2021; 45:2509-2518. [PMID: 34384315 DOI: 10.1080/01480545.2021.1962672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Indomethacin is a widely used nonsteroidal anti-inflammatory drug; however, its clinical utility is accompanied by serious adverse reactions including peptic ulcers. The current study aims to investigate the protective potential of perindopril against indomethacin-induced gastric injury in rats. Perindopril (4 mg/kg) was administered orally for 7 days and indomethacin (60 mg/kg, single oral dose) was administered on the 7th day, 1 h after perindopril administration. Pantoprazole was used as a standard agent. Ulcer index (UI), preventive index ratio (PI), histopathological examination, oxidative stress, and inflammatory biomarkers were investigated. Perindopril significantly decreased UI while increased PI and counteracted histopathological aberrations induced by indomethacin. It alleviated indomethacin-induced oxidative stress by lowering NO while increasing GSH content and superoxide dismutase activity. Perindopril significantly downregulated TNF-α and asymmetric dimethylarginine (ADMA), while significantly upregulated COX-2, PGE-2, dimethylarginine dimethylaminohydrolase-1 (DDAH-1), ANG-(1-7), and ACE-2 expression. Together, these findings suggest the gastroprotective effects of perindopril through modulation of DDAH-1/ADMA and ACE-2/ANG-(1-7) signaling.HIGHLIGHTSPerindopril attenuated gastric histopathological damage.It increased GSH content and SOD activity while decreased NO content.It modulated gastric ADMA and DDAH-1 activity.It reduced TNF-α, while increased COX-2 and PGE-2 expression.It upregulated ACE-2 activity and ANG-(1-7) protein expression.
Collapse
Affiliation(s)
- Yasmin T Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
González A, Alonso-González C, González-González A, Menéndez-Menéndez J, Cos S, Martínez-Campa C. Melatonin as an Adjuvant to Antiangiogenic Cancer Treatments. Cancers (Basel) 2021; 13:3263. [PMID: 34209857 PMCID: PMC8268559 DOI: 10.3390/cancers13133263] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a hormone with different functions, antitumor actions being one of the most studied. Among its antitumor mechanisms is its ability to inhibit angiogenesis. Melatonin shows antiangiogenic effects in several types of tumors. Combination of melatonin and chemotherapeutic agents have a synergistic effect inhibiting angiogenesis. One of the undesirable effects of chemotherapy is the induction of pro-angiogenic factors, whilst the addition of melatonin is able to overcome these undesirable effects. This protective effect of the pineal hormone against angiogenesis might be one of the mechanisms underlying its anticancer effect, explaining, at least in part, why melatonin administration increases the sensitivity of tumors to the inhibitory effects exerted by ordinary chemotherapeutic agents. Melatonin has the ability to turn cancer totally resistant to chemotherapeutic agents into a more sensitive chemotherapy state. Definitely, melatonin regulates the expression and/or activity of many factors involved in angiogenesis which levels are affected (either positively or negatively) by chemotherapeutic agents. In addition, the pineal hormone has been proposed as a radiosensitizer, increasing the oncostatic effects of radiation on tumor cells. This review serves as a synopsis of the interaction between melatonin and angiogenesis, and we will outline some antiangiogenic mechanisms through which melatonin sensitizes cancer cells to treatments, such as radiotherapy or chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain; (A.G.); (A.G.-G.); (J.M.-M.); (C.M.-C.)
| | | |
Collapse
|
5
|
El Azab IH, Bakr RB, Elkanzi NAA. Facile One-Pot Multicomponent Synthesis of Pyrazolo-Thiazole Substituted Pyridines with Potential Anti-Proliferative Activity: Synthesis, In Vitro and In Silico Studies. Molecules 2021; 26:molecules26113103. [PMID: 34067399 PMCID: PMC8196987 DOI: 10.3390/molecules26113103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Pyrazolothiazole-substituted pyridine conjugates are an important class of heterocyclic compounds with an extensive variety of potential applications in the medicinal and pharmacological arenas. Therefore, herein, we describe an efficient and facile approach for the synthesis of novel pyrazolo-thiazolo-pyridine conjugate 4, via multicomponent condensation. The latter compound was utilized as a base for the synthesis of two series of 15 novel pyrazolothiazole-based pyridine conjugates (5-16). The newly synthesized compounds were fully characterized using several spectroscopic methods (IR, NMR and MS) and elemental analyses. The anti-proliferative impact of the new synthesized compounds 5-13 and 16 was in vitro appraised towards three human cancer cell lines: human cervix (HeLa), human lung (NCI-H460) and human prostate (PC-3). Our outcomes regarding the anti-proliferative activities disclosed that all the tested compounds exhibited cytotoxic potential towards all the tested cell lines with IC50 = 17.50-61.05 µM, especially the naphthyridine derivative 7, which exhibited the most cytotoxic potential towards the tested cell lines (IC50 = 14.62-17.50 µM) compared with the etoposide (IC50 = 13.34-17.15 µM). Moreover, an in silico docking simulation study was performed on the newly prepared compounds within topoisomerase II (3QX3), to suggest the binding mode of these compounds as anticancer candidates. The in silico docking results indicate that compound 7 was a promising lead anticancer compound which possesses high binding affinity toward topoisomerase II (3QX3) protein.
Collapse
Affiliation(s)
- Islam H. El Azab
- Food Science and Nutrition Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Nadia A. A. Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia;
- Chemistry Department, Faculty of Science, Aswan University, Aswan, P.O. Box 81528, Aswan, Egypt
| |
Collapse
|
6
|
Abdel-Fattah MM, Elgendy ANAM, Mohamed WR. Xanthenone, ACE2 activator, counteracted gentamicin-induced nephrotoxicity in rats: Impact on oxidative stress and ACE2/Ang-(1-7) signaling. Life Sci 2021; 275:119387. [PMID: 33774027 DOI: 10.1016/j.lfs.2021.119387] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Nephrotoxicity is a rapid deterioration of kidney function due to exposure to nephrotoxic drugs as gentamicin. Gentamicin increases the generation of reactive oxygen species (ROS) leading to inflammatory responses and nuclear factor-κB (NF-κB) activation. The renal renin-angiotensin system (RAS) is considered a crucial regulator for physiological homeostasis and disease progression through the classic ACE/Ang-II/AT1 axis and its antagonist, ACE2/Ang-(1-7)/Mas axis which exerts an important role in the kidney. The present study evaluates the protective effects of the angiotensin-converting enzyme 2 (ACE2) activator; xanthenone; against experimental nephrotoxicity induced by gentamicin. Rats were divided into 4 groups, normal control, xanthenone (2 mg/kg, s.c), gentamicin (100 mg/kg, i.p. for one week) and xanthenone + gentamicin groups. Blood urea nitrogen (BUN) and serum creatinine levels were measured. The kidney tissues were used for estimating glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), NF-κB, Angiotensin II (AngII), and Ang-(1-7). In addition, histopathological examination and Western blot analysis of ACE2 expression were done. Xanthenone significantly restored serum levels of BUN and creatinine. Xanthenone exerted significant antioxidant effect as revealed by increased GSH content and SOD activity together with reduced MDA content. It exerted anti-inflammatory effect by significant reduction in TNF-α, NF-κB and IL-6 expression compared to gentamicin group. Xanthenone increased Ang-(1-7) and ACE2 expression while significantly decreased Ang-II expression. Histopathologically, xanthenone markedly counteracted gentamicin-induced renal aberrations. Activation of ACE2/Ang-(1-7) by xanthenone produced significant antioxidant and anti-inflammatory effects that counteracted gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Abdel Nasser A M Elgendy
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
7
|
Liu X, Guo A, Tu Y, Li W, Li L, Liu W, Ju Y, Zhou Y, Sang A, Zhu M. Fruquintinib inhibits VEGF/VEGFR2 axis of choroidal endothelial cells and M1-type macrophages to protect against mouse laser-induced choroidal neovascularization. Cell Death Dis 2020; 11:1016. [PMID: 33247124 PMCID: PMC7695853 DOI: 10.1038/s41419-020-03222-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Abstract
Wet age-related macular degeneration, which is characterized by choroidal neovascularization (CNV) and induces obvious vision loss. Vascular endothelial growth factor (VEGF) family member VEGF-A (also named as VEGF) and its receptor VEGFR2 contribute to the pathogenesis of CNV. Choroidal endothelial cells (CECs) secret C–C motif chemokine ligand 2 (CCL2), which attracts macrophages to CNV lesion and promotes macrophage M1 polarization. Accordingly, infiltrating macrophages secret inflammatory cytokines to promote CNV. In vivo, intravitreal injection of fruquintinib (HMPL-013), an antitumor neovascularization drug, alleviated mouse CNV formation without obvious ocular toxicity. Meanwhile, HMPL-013 inhibited VEGF/VEGFR2 binding in CECs and macrophages, as well as macrophage M1 polarization. In vitro, noncontact coculture of human choroidal vascular endothelial cells (HCVECs) and macrophages under hypoxia conditions was established. HMPL-013 downregulated VEGF/VEGFR2/phosphoinositide-3-kinase/protein kinase B (AKT)/nuclear factor kappa B pathway and CCL2 secretion in HCVECs, as well as VEGF/VEGFR2-induced macrophage M1 polarization under hypoxia condition. In addition, HMPL-013 inhibited HCEVC derived CCL2-induced macrophage migration and M1 polarization, along with macrophage M1 polarization-induced HCVECs proliferation, migration, and tube formation. Altogether, HMPL-013 alleviated CNV formation might via breaking detrimental cross talk between CECs and macrophages.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Aisong Guo
- Department of Traditional Chinese Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wendie Li
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang, China
| | - Lele Li
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Yuanyuan Ju
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yamei Zhou
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Fadaly WA, Elshaier YA, Hassanein EH, Abdellatif KR. New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies. Bioorg Chem 2020; 98:103752. [DOI: 10.1016/j.bioorg.2020.103752] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
|
9
|
Gliclazide attenuates acetic acid-induced colitis via the modulation of PPARγ, NF-κB and MAPK signaling pathways. Toxicol Appl Pharmacol 2020; 391:114919. [PMID: 32045587 DOI: 10.1016/j.taap.2020.114919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Ulcerative Colitis is a universal autoimmune disease with high incidence rates worldwide. It is characterized by the existence of many other concurrent immune-associated ailments, including diabetes. The used strategies for the management of this highly costing and complicated disease face great challenges. Therefore, the urge for new medication with fewer side effects and high efficacy is growing. The peroxisome proliferator-activated receptor-gamma (PPARγ) and nuclear factor Kappa-B (NF-κB) can be considered as crucial targets for the treatment of ulcerative colitis. Several studies reported the antioxidants, anti-inflammatory, and antiapoptotic actions of gliclazide and evaluated its cardioprotective and renoprotective effects. However, its impact on ulcerative colitis has never been investigated. This study delineated the effect of gliclazide administration on ulcerative colitis induced by acetic acid in rats and the underlying molecular mechanisms. Gliclazide (10 mg/kg; p.o) prominently decreased colon tissue injury as assessed by the histopathological analysis as well as myeloperoxidase, and intercellular adhesion molecule-1 levels. Gliclazide significantly alleviated the proinflammatory mediator, IL-6, promoted the anti-inflammatory cytokine, IL-10 and, withheld oxidative stress in the injured colon tissues. The protective effect of gliclazide was mediated through the upregulation of PPARγ and downregulation of NF-κB expression. The diminution of ulcerative colitis was also accompanied by an inhibition of the elevated activity and expression of mitogen-activated protein kinases and caspase-3 as assessed by Western blot and immunohistochemistry, respectively. Our findings spotlight, for the first time, the potential of the antidiabetic agent, gliclazide, to attenuate the experimentally induced ulcerative colitis. Therefore, gliclazide might be a propitious agent for the management of ulcerative colitis in diabetic patients.
Collapse
|
10
|
Weng JR, Huang TH, Lin ZC, Alalaiwe A, Fang JY. Cutaneous delivery of [1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol, an indole-3-carbinol derivative, mitigates psoriasiform lesion by blocking MAPK/NF-κB/AP-1 activation. Biomed Pharmacother 2019; 119:109398. [PMID: 31493747 DOI: 10.1016/j.biopha.2019.109398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 02/03/2023] Open
Abstract
[1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol (CIM) has been used as a bioactive agent for inhibiting tumor growth and angiogenesis via mitogen-activated protein kinase (MAPK) and NF-κB blocking. The present work was undertaken to investigate the potential of CIM against psoriasis using imiquimod (IMQ)-stimulated psoriasis-like mouse and in vitro HaCaT keratinocytes as the models. We demonstrated that topical CIM treatment reduced IMQ-activated scaling, erythema, and barrier dysfunction. This compound also restrained the recruitment of neutrophils. The cytokines, including TNF-α, IL-1β, IL-6, and IL-17 in psoriasiform skin, can be attenuated to normal baseline by CIM. Topically applied CIM can be easily delivered into skin based on the affinity with stratum corneum (SC) ceramides. IMQ intervention increased the permeability by 3-fold as compared to healthy skin. CIM ameliorated psoriatic lesion without incurring overt signs of irritation. Both TNF-α and IMQ were employed as the stimulators to activate HaCaT for reciprocal elucidation of the mechanism of action. CIM inhibited the overexpression of IL-1β, IL-6, and IL-24 in HaCaT. CIM exerted anti-inflammatory activity by suppressing the phosphorylation of NF-κB and activator protein-1 (AP-1) through MAPK pathways. Our results indicate that CIM has potential as the antipsoriatic molecule. The detailed signaling pathways still need further investigation.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwane; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwang
| | - Zih-Chan Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Lin CW, Chin HK, Lee SL, Chiu CF, Chung JG, Lin ZY, Wu CY, Liu YC, Hsiao YT, Feng CH, Bai LY, Weng JR. Ursolic acid induces apoptosis and autophagy in oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:983-991. [PMID: 31062913 DOI: 10.1002/tox.22769] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the fifth common cause of cancer mortality in Taiwan with high incidence and recurrence and needs new therapeutic strategies. In this study, ursolic acid (UA), a triterpenoid, was examined the antitumor potency in OSCC cells. Our results showed that UA inhibited the proliferation of OSCC cells in a dose- and time-dependent manner in both Ca922 and SCC2095 oral cancer cells. UA induced caspase-dependent apoptosis accompanied with the modulation of various biological biomarkers including downregulating Akt/mTOR/NF-κB signaling, ERK, and p38. In addition, UA inhibited angiogenesis as evidenced by abrogation of migration/invasion and blocking MMP-2 secretion in Ca922 cells. Interestingly, UA induced autophagy in OSCC cells, as manifested by LC3B-II conversion and increased p62 expression and accumulation of autophagosomes. Inhibition by autophagy inhibitor enhanced UA-mediated apoptosis in Ca922 cells. The experiment provides a rationale for using triterpenoid in the treatment of OSCC.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Hsien-Kuo Chin
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang-Fang Chiu
- College of Medicine, China Medical University, Taichung, Taiwan
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Zi-Yin Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Yung Wu
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chen Liu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Yuan Bai
- College of Medicine, China Medical University, Taichung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Thiohydantoin derivatives incorporating a pyrazole core: Design, synthesis and biological evaluation as dual inhibitors of topoisomerase-I and cycloxygenase-2 with anti-cancer and anti-inflammatory activities. Bioorg Chem 2019; 91:103132. [PMID: 31374529 DOI: 10.1016/j.bioorg.2019.103132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
Abstract
A new series of hybrid structures 14a-l containing thiohydantoin as anti-cancer moiety and pyrazole core possessing SO2Me pharmacophore as selective COX-2 moiety was designed and synthesized to be evaluated for both anti-inflammatory and anti-cancer activities. The synthesized compounds were evaluated for their COX inhibition, in vivo anti-inflammatory activity, ulcerogenic liability, in vitro cytotoxic activity and human topoisomerase-1 inhibition. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. Also, all derivatives were significantly less ulcerogenic (ulcer indexes = 2.64-3.87) than ibuprofen (ulcer index = 20.25) and were of acceptable ulcerogenicity when compared with the non-ulcerogenic reference drug celecoxib (ulcer index = 2.99). Regarding anti-cancer activity, most of the target derivatives showed activities against A-549, MCF-7 and HCT-116 cell lines (IC50 = 5.32-17.90, 3.67-19.04 and 3.19-14.87 µM respectively) in comparison with doxorubicin (IC50 = 0.20, 0.50 and 2.44 µM respectively). Compound 14a inhibited the human topoisomerase-1 with IC50 = 29.7 µg/ml while 14b and 14c showed more potent inhibitory activity with IC50 = 26.5 and 23.3 µg/ml. respectively in comparison with camptothecin (IC50 = 20.2 µg/ml). Additionally, COX-2 and human topoisomerase-1 docking studies were carried out to explain the interaction of the synthesized hybrid structures 14a-l with the target enzymes.
Collapse
|
13
|
Arab HH, Salama SA, Maghrabi IA. Camel milk attenuates methotrexate-induced kidney injury via activation of PI3K/Akt/eNOS signaling and intervention with oxidative aberrations. Food Funct 2018; 9:2661-2672. [PMID: 29667662 DOI: 10.1039/c8fo00131f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methotrexate (MTX) is a classical chemotherapeutic agent with nephrotoxicity as the most disturbing adverse effect. So far, its underlying molecular mechanisms, particularly PI3K/Akt/eNOS transduction, are inadequately explored. Several antioxidant modalities have been characterized to ameliorate MTX-induced renal injury. In this regard, Camel milk (CM) is a natural product with recognized antioxidant and anti-inflammatory features. Thus, the current study aimed to investigate the potential ameliorating effects of CM in MTX-induced kidney injury in rats. Renal tissues were studied in terms of renal injury markers, histopathology, oxidative stress, apoptosis and PI3K/Akt/eNOS signaling. CM was orally administered (10 ml kg-1) and the renal injury was induced by a single i.p. injection of MTX (20 mg kg-1). Interestingly, CM dose-dependently attenuated MTX-triggered increase of BUN and serum creatinine and renal Kim-1 expression and mitigated the renal histopathological changes. CM counteracted renal oxidative stress as manifested by lowering of lipid peroxides, restoration of NOX-1 levels and augmentation of the antioxidant defenses e.g., GSH, SOD, GPx and total antioxidant capacity. With respect to apoptosis, CM curbed the cleavage of PARP and caspase-3, downregulated p53, Bax and Cyt C proapoptotic signals and enhanced Bcl-2 and PCNA levels. In the same context, CM activated the prosurvival PI3K/Akt/eNOS pathway via enhancing PI3K p110, phospho-Akt and phospho-eNOS levels. Equally important, CM preconditioning did not interfere with MTX cytotoxicity in TK-10 or PC-3 cancer cells. Together, the current findings demonstrate, for the first time, the renoprotective effects of CM in MTX-induced kidney injury via activation of PI3K/Akt/eNOS signaling and combating oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hany H Arab
- Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia.
| | | | | |
Collapse
|
14
|
Chen SY, Lee YR, Hsieh MC, Omar HA, Teng YN, Lin CY, Hung JH. Enhancing the Anticancer Activity of Antrodia cinnamomea in Hepatocellular Carcinoma Cells via Cocultivation With Ginger: The Impact on Cancer Cell Survival Pathways. Front Pharmacol 2018; 9:780. [PMID: 30072899 PMCID: PMC6058215 DOI: 10.3389/fphar.2018.00780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023] Open
Abstract
Antrodia cinnamomea (AC) is a medicinal fungal species that has been widely used traditionally in Taiwan for the treatment of diverse health-related conditions including cancer. It possesses potent anti-inflammatory and antioxidant properties in addition to its ability to promote cancer cell death in several human tumors. Our aim was to improve the anticancer activity of AC in hepatocellular carcinoma (HCC) through its cocultivation with ginger aiming at tuning the active ingredients. HCC cell lines, Huh-7 and HepG2 were used to study the in vitro anticancer activity of the ethanolic extracts of AC (EAC) alone or after the cocultivation in presence of ginger (EACG). The results indicated that the cocultivation of AC with ginger significantly induced the production of important triterpenoids and EACG was significantly more potent than EAC in targeting HCC cell lines. EACG effectively inhibited cancer cells growth via the induction of cell cycle arrest at G2/M phase and induction of apoptosis in Huh-7 and HepG2 cells as indicated by MTT assay, cell cycle analysis, Annexin V assay, and the activation of caspase-3. In addition, EACG modulated cyclin proteins expression and mitogen-activated protein kinase (MAPK) signaling pathways in favor of the inhibition of cancer cell survival. Taken together, the current study highlights an evidence that EACG is superior to EAC in targeting cancer cell survival and inducing apoptotic cell death in HCC. These findings support that EACG formula can serve as a potential candidate for HCC adjuvant therapy.
Collapse
Affiliation(s)
- San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ming-Chia Hsieh
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Ching-Yen Lin
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jui-Hsiang Hung
- Drug Discovery and Development Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
15
|
Tsai WC, Bai LY, Chen YJ, Chu PC, Hsu YW, Sargeant AM, Weng JR. OSU-A9 inhibits pancreatic cancer cell lines by modulating p38-JAK-STAT3 signaling. Oncotarget 2018; 8:29233-29246. [PMID: 28418923 PMCID: PMC5438726 DOI: 10.18632/oncotarget.16450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is an aggressive malignancy that is the fourth leading cause of death worldwide. Since there is a dire need for novel and effective therapies to improve the poor survival rates of advanced pancreatic cancer patients, we analyzed the antitumor effects of OSU-A9, an indole-3-carbinol derivative, on pancreatic cancer cell lines in vitro and in vivo. OSU-A9 exhibited a stronger antitumor effect than gemcitabine on two pancreatic cancer cell lines, including gemcitabine-resistant PANC-1 cells. OSU-A9 treatment induced apoptosis, the down-regulation of Akt phosphorylation, up-regulation of p38 phosphorylation and decreased phosphorylation of JAK and STAT3. Cell migration and invasiveness assays showed that OSU-A9 reduced cancer cell aggressiveness and inhibited BxPC-3 xenograft growth in nude mice. These results suggest that OSU-A9 modulates the p38-JAK-STAT3 signaling module, thereby inducing cytotoxicity in pancreatic cancer cells. Continued evaluation of OSU-A9 as a potential therapeutic agent for pancreatic cancer thus appears warrented.
Collapse
Affiliation(s)
- Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Yuan Bai
- College of Medicine, China Medical University, Taichung 40402, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yi-Jin Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Chen Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11574, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Wen Hsu
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan 71745, Taiwan
| | - Aaron M Sargeant
- Charles River Laboratories, Safety Assessment, Spencerville, OH 45887, USA
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
16
|
Omar HA, Tolba MF. Caffeic acid phenethyl ester guards against benign prostate hypertrophy in rats: Role of IGF-1R/protein kinase-B (Akt)/β-catenin signaling. IUBMB Life 2018; 70:519-528. [PMID: 29603556 DOI: 10.1002/iub.1743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/06/2018] [Indexed: 01/05/2023]
Abstract
Benign prostate hypertrophy (BPH) is among the most common diseases with a huge impact on the quality of life of elderly men. There is a current need for the development of well-tolerated and effective preventive strategies to improve the clinical outcome. Caffeic acid phenethyl ester (CAPE) is an important active ingredient isolated from honey-bee propolis with potent anti-proliferative, anti-inflammatory and antioxidant effects. These properties promote CAPE as a promising candidate to be tested as an alternative therapy for BPH, which is still uninvestigated. Herein, we tested the ability of CAPE to guard against testosterone-induced BPH and investigated the involvement of IGF1-R/Akt/β-catenin signaling as a protective mechanism in testosterone-induced BPH rat model. Treatment with CAPE reduced testosterone-induced increase in the prostate index and histopathological alterations. In addition, co-treatment with CAPE significantly suppressed insulin-like growth factor-1 receptor (IGF-1R)/Akt/β-catenin/cyclinD1 axis as well as tumor necrosis factor-α level and nuclear factor (NF)-kB activity. Furthermore, the treatment with CAPE replenished the antioxidant defense systems, superoxide dismutase (SOD) and reduced glutathione (GSH) with subsequent reduction in prostate tissue lipid peroxides. This study highlights the potential merit of CAPE-enriched propolis formulations to protect elderly men against the development of BPH. © 2018 IUBMB Life, 70(6):519-528, 2018.
Collapse
Affiliation(s)
- Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.,Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
17
|
Huang CH, Huang CS, Hu ML, Chuang CH. Multi-Carotenoids at Physiological Levels Inhibit VEGF-Induced Tube Formation of Endothelial Cells and the Possible Mechanisms of Action Both In Vitro and Ex Vivo. Nutr Cancer 2017; 70:116-124. [PMID: 29111778 DOI: 10.1080/01635581.2018.1380205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carotenoids have been shown to exhibit antiangiogenic activities. Several studies have indicated that carotenoids used in combination were more effective on antioxidation and anticancer actions than carotenoids used singly. However, it is unclear whether multi-carotenoids have antiangiogenic effects. We investigated the effects of multi-carotenoids at physiological plasma levels of Taiwanese (abbreviated as MCT, with a total of 1.4 μM) and Americans (abbreviated as MCA, with a total of 1.8 μM), and of post-supplemental plasma levels (abbreviated as HMC with a total of 3.55 μM) on vascular endothelial growth factor (VEGF)-induced tube formation in human umbilical vein endothelial cells (HUVECs) and rat aortic rings. MCT, MCA, and HMC inhibited VEGF-induced migration, invasion, and tube formation of HUVECs as well as new vessels formation in rat aortic rings. MCT, MCA, and HMC inhibited activities o\f matrix metalloproteinase (MMP)-2, urokinase plasminogen activator, and phosphorylation of VEGF receptor 2 induced by VEGF. Moreover, MCT, MCA, and HMC significantly upregulated protein expression of tissue inhibitors of MMP-2 and plasminogen activator inhibitor-1. These results demonstrate the antiangiogenic effect of multi-carotenoids both in vitro and ex vivo with possible mechanistic actions involving attenuation of VEGF receptor 2 phosphorylation and extracellular matrix degradation.
Collapse
Affiliation(s)
- Chien-Hao Huang
- a Department of Food Science and Biotechnology , National Chung Hsing University , Taichung , Taiwan , ROC
| | - Chin-Shiu Huang
- b Department of Health and Nutrition Biotechnology , Asia University , Taichung , Taiwan , ROC
| | - Miao-Lin Hu
- a Department of Food Science and Biotechnology , National Chung Hsing University , Taichung , Taiwan , ROC
| | - Cheng-Hung Chuang
- c Department of Nutrition , Hungkuang University , Taichung , Taiwan , ROC
| |
Collapse
|
18
|
Abdelgawad MA, Bakr RB, Omar HA. Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. Bioorg Chem 2017; 74:82-90. [DOI: 10.1016/j.bioorg.2017.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022]
|
19
|
Abdellatif KRA, Abdelall EKA, Abdelgawad MA, Amin DME, Omar HA. Design, synthesis and biological evaluation of new 4-(4-substituted-anilino)quinoline derivatives as anticancer agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1798-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Hung JH, Chen CY, Omar HA, Huang KY, Tsao CC, Chiu CC, Chen YL, Chen PH, Teng YN. Reactive oxygen species mediate Terbufos-induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro-apoptotic proteins. ENVIRONMENTAL TOXICOLOGY 2016; 31:1888-1898. [PMID: 26370073 DOI: 10.1002/tox.22190] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 05/04/2023]
Abstract
Terbufos (S-t-butylthiomethyl-O,O-diethyl phosphorodithioate) is a highly toxic organophosphate which is extensively used as an insecticide and nematicide. Chronic exposure to terbufos causes neuronal injury and predisposes to neurodegenerative diseases. Accumulating evidence has shown that the exposure to terbufos, as an occupational risk factor, may also cause reproductive disorders. However, the exact mechanisms of reproductive toxicity remain unclear. The present study aimed to investigate the toxic effect of terbufos on testicular cells and to explore the mechanism of toxicity on a cellular level. The cytotoxic effects of terbufos on mouse immortalized spermatogonia (GC-1), spermatocytes (GC-2), Leydig (TM3), and Sertoli (TM4) cell lines were assessed by MTT assays, caspase activation, flow cytometry, TUNEL assay, Western blot, and cell cycle analysis. The exposure to different concentrations of terbufos ranging from 50 to 800 μM for 6 h caused significant death in all the used testicular cell lines. Terbufos increased reactive oxygen species (ROS) production, reduced mitochondrial membrane potential, and initiated apoptosis, which was confirmed by a dose-dependent increase in the number of TUNEL-positive apoptotic cells. Blocking ROS production by N-acetyl cysteine (NAC) protected GC-1 cells from terbufos-induced cell death. The results demonstrated that terbufos induces ROS, apoptosis, and DNA damage in testicular cell lines and it should be considered potentially hazardous to testis. Together, this study provided potential molecular mechanisms of terbufos-induced toxicity in testicular cells and suggests a possible protective measure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1888-1898, 2016.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Drug Discovery and Development Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chia-Yun Chen
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hany A Omar
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
- Department of Pharmacology, College of Pharmacy, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Che-Chia Tsao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Po-Han Chen
- Department of Cosmetic Application & Management, Far East University, Tainan, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
21
|
Omar HA, Tolba MF, Hung JH, Al-Tel TH. OSU-2S/Sorafenib Synergistic Antitumor Combination against Hepatocellular Carcinoma: The Role of PKCδ/p53. Front Pharmacol 2016; 7:463. [PMID: 27965580 PMCID: PMC5127788 DOI: 10.3389/fphar.2016.00463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Background: Sorafenib (Nexavar®) is an FDA-approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, the low efficacy and adverse effects at high doses limit the clinical application of sorafenib and strongly recommend its combination with other agents aiming at ameliorating its drawbacks. OSU-2S, a PKCδ activator, was selected as a potential candidate anticancer agent to be combined with sorafenib to promote the anti-cancer activity through synergistic interaction. Methods: The antitumor effects of sorafenib, OSU-2S and their combination were assessed by MTT assay, caspase activation, Western blotting, migration/invasion assays in four different HCC cell lines. The synergistic interactions were determined by Calcusyn analysis. PKCδ knockdown was used to elucidate the role of PKCδ activation as a mechanism for the synergy. The knockdown/over-expression of p53 was used to explain the differential sensitivity of HCC cell lines to sorafenib and/or OSU-2S. Results: OSU-2S synergistically enhanced the anti-proliferative effects of sorafenib in the four used HCC cell lines with combination indices <1. This effect was accompanied by parallel increases in caspase 3/7 activity, PARP cleavage, PKCδ activation and inhibition of HCC cell migration/invasion. In addition, PKCδ knockdown abolished the synergy between sorafenib and OSU-2S. Furthermore, p53 restoration in Hep3B cells through the over-expression rendered them more sensitive to both agents while p53 knockdown from HepG2 cells increased their resistance to both agents. Conclusion: OSU-2S augments the anti-proliferative effect of sorafenib in HCC cell lines, in part, through the activation of PKCδ. The p53 status in HCC cells predicts their sensitivity toward both sorafenib and OSU-2S. The proposed combination represents a therapeutically relevant approach that can lead to a new HCC therapeutic protocol.
Collapse
Affiliation(s)
- Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef UniversityBeni-Suef, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams UniversityCairo, Egypt; School of Pharmacy, Chapman University, IrvineCA, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science Tainan, Taiwan
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Omar HA, Mohamed WR, Arafa ESA, Shehata BA, Sherbiny GAE, Arab HH, Elgendy ANA. Hesperidin alleviates cisplatin-induced hepatotoxicity in rats without inhibiting its antitumor activity. Pharmacol Rep 2016; 68:349-56. [DOI: 10.1016/j.pharep.2015.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 02/08/2023]
|
23
|
Abdelgawad MA, Bakr RB, Alkhoja OA, Mohamed WR. Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorg Chem 2016; 66:88-96. [PMID: 27043178 DOI: 10.1016/j.bioorg.2016.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
A novel series of 2-(3,6-dimethyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(4-substitutedbenzylidene)acetohydrazide (12a-g) was prepared and their structures were confirmed by spectral and elemental analyses. The cytotoxic activity of the newly synthesized compounds was evaluated against breast carcinoma (MCF-7), non-small cell lung cancer (A549) and human colorectal adenocarcinoma (HT-29) cell lines using MTT and colony formation assays. The tested compounds showed a marked anticancer activity against all the tested cell lines, especially compound 12g, which was the most potent anticancer agent with half maximal inhibitory concentrations (IC50) between 5.36 and 9.09μM. Docking studies into ATP binding site of EGFR protein tyrosine kinase were performed to predict their scores and mode of binding to amino acids, In addition, the inhibitory activity of the target compounds against epidermal growth factor receptor tyrosine kinase (EGFR-TK) was evaluated. Results indicated the ability of the target compounds to inhibit EGFR-TK with half maximal inhibitory concentrations (IC50) in the range of 4.18-35.88μM. Furthermore, The most active compounds 12g, 12c and 12d were assayed against Fibroblast Growth Factor Receptor (FGFR), Insulin Receptor (IR) and Vascular Endothelial Growth Factor Receptor (VEGFR). The activity of the reported compounds warrants further optimization as novel members in cancer treatment protocols.
Collapse
Affiliation(s)
- Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Al Jouf University, Sakaka, Al Jouf 2014, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faulty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Rania B Bakr
- Department of Pharmaceutical Organic Chemistry, Faulty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Olla A Alkhoja
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa R Mohamed
- Department of Pharmacology, Faulty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
24
|
Davis PJ, Sudha T, Lin HY, Mousa SA. Thyroid Hormone, Hormone Analogs, and Angiogenesis. Compr Physiol 2015; 6:353-62. [PMID: 26756636 DOI: 10.1002/cphy.c150011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation by thyroid hormone and hormone analogs of angiogenesis in the heart after experimental infarction, and in other organs, has been appreciated for decades. Description of a plasma membrane receptor for thyroid hormone on the extracellular domain of integrin αvβ3 on endothelial cells has revealed the complexity of the nongenomic regulation of angiogenesis by the hormone. From αvβ3, the hormone directs transcription of specific vascular growth factor genes, regulates growth factor receptor/growth factor interactions and stimulates endothelial cell migration to a vitronectin cue; these actions are implicated experimentally in tumor-relevant angiogenesis and angioproliferative pulmonary hypertension. Derived from L-thyroxine (T4), tetraiodothyroacetic acid (tetrac) can be covalently bound to a polymer and as Nanotetrac acts exclusively at the hormone receptor on αvβ3 to block actions of T4 and 3,5,3'-triiodo-L-thyronine (T3) on angiogenesis. Other antiangiogenic actions of Nanotetrac include disruption of crosstalk between integrin αvβ3 and adjacent cell surface vascular growth factor receptors, resulting in disordered vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF; FGF2) actions at their respective plasma membrane receptors. From αvβ3, Nanotetrac also downregulates expression of VEGFA and epidermal growth factor receptor (EGFR) genes, upregulates transcription of the angiogenesis suppressor gene, thrombospondin 1 (THBS1; TSP1) and decreases cellular abundance of Ang-2 protein and matrix metalloproteinase-9. Existence of this receptor provides new insights into the multiple mechanisms by which thyroid hormone and hormone analogs may regulate angiogenesis at the molecular level. The receptor also offers pharmacological opportunities for interruption of pathological angiogenesis via integrin αvβ3.
Collapse
Affiliation(s)
- Paul J Davis
- Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA.,Institute of Cancer Biology and Drug Discovery, School of Medical Technology, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
25
|
6-Shogaol induces cell cycle arrest and apoptosis in human hepatoma cells through pleiotropic mechanisms. Eur J Pharmacol 2015; 762:449-58. [DOI: 10.1016/j.ejphar.2015.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/29/2023]
|
26
|
Lee MM, Chen YY, Liu PY, Hsu S, Sheu MJ. Pipoxolan inhibits CL1–5 lung cancer cells migration and invasion through inhibition of MMP-9 and MMP-2. Chem Biol Interact 2015; 236:19-30. [DOI: 10.1016/j.cbi.2015.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/12/2015] [Accepted: 04/12/2015] [Indexed: 11/26/2022]
|
27
|
Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One 2015; 10:e0124362. [PMID: 25884837 PMCID: PMC4401453 DOI: 10.1371/journal.pone.0124362] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) integrity occurring during the early onset of stroke is not only a consequence of, but also contributes to the further progression of stroke. Although it has been well documented that brain microvascular endothelial cells and astrocytes play a critical role in the maintenance of BBB integrity, pericytes, sandwiched between endothelial cells and astrocytes, remain poorly studied in the pathogenesis of stroke. Our findings demonstrated that treatment of human brain microvascular pericytes with sodium cyanide (NaCN) and glucose deprivation resulted in increased expression of vascular endothelial growth factor (VEGF) via the activation of tyrosine kinase Src, with downstream activation of mitogen activated protein kinase and PI3K/Akt pathways and subsequent translocation of NF-κB into the nucleus. Conditioned medium from NaCN-treated pericytes led to increased permeability of endothelial cells, and this effect was significantly inhibited by VEGF-neutralizing antibody. The in vivo relevance of these findings was further corroborated in the stroke model of mice wherein the mice, demonstrated disruption of the BBB integrity and concomitant increase in the expression of VEGF in the brain tissue as well as in the isolated microvessel. These findings thus suggest the role of pericyte-derived VEGF in modulating increased permeability of BBB during stroke. Understanding the regulation of VEGF expression could open new avenues for the development of potential therapeutic targets for stroke and other neurological disease.
Collapse
|
28
|
Omar HA, Tolba MF, Saber-Ayad MM. Potential targets of energy restriction mimetic agents in cancer cells. Future Oncol 2014; 10:2547-50. [DOI: 10.2217/fon.14.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Hany A Omar
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Egypt
- Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Mai F Tolba
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Biology Department, School of Science & Engineering, American University in Cairo, New Cairo, Egypt
| | - Maha M Saber-Ayad
- Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Department of Pharmacology, Faculty of Medicine, Cairo University, Kasr Al Ainy, Egypt
| |
Collapse
|
29
|
Chuang CH, Liu CH, Lu TJ, Hu ML. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells. Toxicol Appl Pharmacol 2014; 281:310-6. [DOI: 10.1016/j.taap.2014.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/16/2022]
|
30
|
Abdelazeem AH, Gouda AM, Omar HA, Tolba MF. Design, synthesis and biological evaluation of novel diphenylthiazole-based cyclooxygenase inhibitors as potential anticancer agents. Bioorg Chem 2014; 57:132-141. [PMID: 25462989 DOI: 10.1016/j.bioorg.2014.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications as analgesics and antipyretics. Currently, there is a growing interest in their antitumor activity and their ability to reduce the risk and mortality of several cancers. While several studies revealed the ability of NSAIDs to induce apoptosis and inhibit angiogenesis in cancer cells, their exact anticancer mechanism is not fully understood. However, both cyclooxygenase (COX)-dependent and -independent pathways were reported to have a role. In an attempt to develop new anticancer agents, a series of diphenylthiazole substituted thiazolidinone derivatives was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. Additionally, the inhibitory activity of the synthesized derivatives against COX enzymes was investigated as a potential mechanism for the anticancer activity. Cytotoxicity assay results showed that compounds 15b and 16b were the most potent anticancer agents with half maximal inhibitory concentrations (IC50) between 8.88 and 19.25μM against five different human cancer cell lines. Interestingly, COX inhibition assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good COX-2 inhibition comparable to that of celecoxib. Further support to our results were gained by the docking studies which suggested the ability of compound 15b to bind into COX-2 enzyme with low energy scores. Collectively, these results demonstrated the promising activity of the newly designed compounds as leads for subsequent development into potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed H Abdelazeem
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany A Omar
- Department of Pharmacology, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
31
|
Basavarajappa HD, Lee B, Fei X, Lim D, Callaghan B, Mund JA, Case J, Rajashekhar G, Seo SY, Corson TW. Synthesis and mechanistic studies of a novel homoisoflavanone inhibitor of endothelial cell growth. PLoS One 2014; 9:e95694. [PMID: 24752613 PMCID: PMC3994091 DOI: 10.1371/journal.pone.0095694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/30/2014] [Indexed: 12/13/2022] Open
Abstract
Preventing pathological ocular angiogenesis is key to treating retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. At present there is no small molecule drug on the market to target this process and hence there is a pressing need for developing novel small molecules that can replace or complement the present surgical and biologic therapies for these neovascular eye diseases. Previously, an antiangiogenic homoisoflavanone was isolated from the bulb of a medicinal orchid, Cremastra appendiculata. In this study, we present the synthesis of a novel homoisoflavanone isomer of this compound. Our compound, SH-11052, has antiproliferative activity against human umbilical vein endothelial cells, and also against more ocular disease-relevant human retinal microvascular endothelial cells (HRECs). Tube formation and cell cycle progression of HRECs were inhibited by SH-11052, but the compound did not induce apoptosis at effective concentrations. SH-11052 also decreased TNF-α induced p38 MAPK phosphorylation in these cells. Intriguingly, SH-11052 blocked TNF-α induced IκB-α degradation, and therefore decreased NF-κB nuclear translocation. It decreased the expression of NF-κB target genes and the pro-angiogenic or pro-inflammatory markers VCAM-1, CCL2, IL8, and PTGS2. In addition SH-11052 inhibited VEGF induced activation of Akt but not VEGF receptor autophosphorylation. Based on these results we propose that SH-11052 inhibits inflammation induced angiogenesis by blocking both TNF-α and VEGF mediated pathways, two major pathways involved in pathological angiogenesis. Synthesis of this novel homoisoflavanone opens the door to structure-activity relationship studies of this class of compound and further evaluation of its mechanism and potential to complement existing antiangiogenic drugs.
Collapse
Affiliation(s)
- Halesha D. Basavarajappa
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bit Lee
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Xiang Fei
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Daesung Lim
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Breedge Callaghan
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Julie A. Mund
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States Of America
| | - Jamie Case
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States Of America
| | - Gangaraju Rajashekhar
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
- * E-mail: (S-YS); (TWC)
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States Of America
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (S-YS); (TWC)
| |
Collapse
|
32
|
OSU-CG5, a novel energy restriction mimetic agent, targets human colorectal cancer cells in vitro. Acta Pharmacol Sin 2014; 35:394-400. [PMID: 24464048 DOI: 10.1038/aps.2013.183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022] Open
Abstract
AIM Energy-restriction mimetic agents (ERMAs) are small-molecule agents that target various aspects of energy metabolism, which has emerged as a promising approach in cancer therapy. In the current study, we tested the ability of OSU-CG5, a novel ERMA, to target human colorectal cancer (CRC) in vitro. METHODS Two human CRC cell lines (HCT-116 and Caco-2) were tested. Cell viability was assessed using MTT assay. Caspase-3/7 activities were measured using Caspase-Glo 3/7 assay kit. Western blot analysis was used to measure the expression of relevant proteins in the cells. Glucose consumption of the cells was detected using glucose uptake cell-based assay kit. RESULTS OSU-CG5 dose-dependently inhibited HCT-116 and Caco-2 cell proliferation with the IC₅₀ values of 3.9 and 4.6 μmol/L, respectively, which were 20-25-fold lower than those of resveratrol, a reference ERMA. Both OSU-CG5 (5, 10, and 20 μmol/L) and resveratrol (50, 100, and 200 μmol/L) dose-dependently increased caspase-3/7 activity and PARP level in the cells. Furthermore, both OSU-CG5 and resveratrol induced dose-dependent energy restriction in the cells: they suppressed glucose uptake and Akt phosphorylation, decreased the levels of p-mTOR and p-p70S6K, increased the levels of ER stress response proteins GRP78 and GADD153, and increased the level of β-TrCP, which led to the downregulation of cyclin D1 and Sp1. CONCLUSION OSU-CG5 exhibits promising anti-cancer activity against human CRC cells in vitro, which was, at least in part, due to energy restriction and the consequent induction of ER stress and apoptosis.
Collapse
|
33
|
Omar HA, Arafa ESA, Maghrabi IA, Weng JR. Sensitization of Hepatocellular Carcinoma Cells to Apo2L/TRAIL by a Novel Akt/NF-κB Signalling Inhibitor. Basic Clin Pharmacol Toxicol 2014; 114:464-71. [DOI: 10.1111/bcpt.12190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/30/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Hany A. Omar
- Division of Medicinal Chemistry; College of Pharmacy; The Ohio State University; Columbus OH USA
- Department of Pharmacology; Faculty of Pharmacy; Beni-Suef University; Beni-Suef Egypt
- Department of Pharmacology; College of Pharmacy; University of Sharjah; Sharjah United Arab Emirates
| | - El-Shaimaa A. Arafa
- Department of Pharmacology; Faculty of Pharmacy; Beni-Suef University; Beni-Suef Egypt
| | - Ibrahim A. Maghrabi
- Department of Clinical Pharmacy; College of Pharmacy; Taif University; Taif Saudi Arabia
| | - Jing-Ru Weng
- Department of Biological Science and Technology; China Medical University; Taichung Taiwan
| |
Collapse
|
34
|
Modulation of cyclins, p53 and mitogen-activated protein kinases signaling in breast cancer cell lines by 4-(3,4,5-trimethoxyphenoxy)benzoic acid. Int J Mol Sci 2014; 15:743-57. [PMID: 24406729 PMCID: PMC3907835 DOI: 10.3390/ijms15010743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 12/20/2022] Open
Abstract
Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxy)benzoic acid (TMPBA) and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 μM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4′,6-diamidino-2-phenylindole (DAPI) nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP) kinases, 5′ adenosine monophosphate-activated protein kinase (AMPK), and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK) signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.
Collapse
|
35
|
Gouda AM, Abdelazeem AH, Arafa ESA, Abdellatif KRA. Design, synthesis and pharmacological evaluation of novel pyrrolizine derivatives as potential anticancer agents. Bioorg Chem 2014; 53:1-7. [PMID: 24462996 DOI: 10.1016/j.bioorg.2014.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/16/2013] [Accepted: 01/01/2014] [Indexed: 12/22/2022]
Abstract
A new series of novel pyrrolizine derivatives has been synthesized and biologically evaluated as potential anticancer agents. The starting compounds, 6-amino-7-cyano-N-(3,5-disubstitutedphenyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamides 11a-b, were reacted with different acid chlorides, aldehydes and isocyanates to give the target compounds 12-14. Structural characterizations of the new compounds were performed using spectral and elemental analysis. All compounds were tested for their anticancer activity against human breast cancer and prostate cancer cell lines, MCF-7 and PC-3 respectively. With exception of compounds 11a and 13a, results revealed that all the tested compounds showed half maximal inhibitory concentration (IC50) values less than 40μM. Compound 12b and the three urea derivatives 14b-d showed the most potent anticancer activity with IC50 values less than 2.73μM. The anticancer activity of these compounds was mediated, at least in part, via the induction of apoptosis as indicated by its ability to activate caspase-3/7. In light of the high potency of our novel compounds in targeting both breast and prostate cancers, these compounds warrant continued preclinical development as potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Mekkah 21955, Saudi Arabia
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - El-Shaimaa A Arafa
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khaled R A Abdellatif
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
36
|
Davis PJ, Glinsky GV, Lin HY, Leith JT, Hercbergs A, Tang HY, Ashur-Fabian O, Incerpi S, Mousa SA. Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac. Front Endocrinol (Lausanne) 2014; 5:240. [PMID: 25628605 PMCID: PMC4290672 DOI: 10.3389/fendo.2014.00240] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
Integrin αvβ3 is generously expressed by cancer cells and rapidly dividing endothelial cells. The principal ligands of the integrin are extracellular matrix proteins, but we have described a cell surface small molecule receptor on αvβ3 that specifically binds thyroid hormone and thyroid hormone analogs. From this receptor, thyroid hormone (l-thyroxine, T4; 3,5,3'-triiodo-l-thyronine, T3) and tetraiodothyroacetic acid (tetrac) regulate expression of specific genes by a mechanism that is initiated non-genomically. At the integrin, T4 and T3 at physiological concentrations are pro-angiogenic by multiple mechanisms that include gene expression, and T4 supports tumor cell proliferation. Tetrac blocks the transcriptional activities directed by T4 and T3 at αvβ3, but, independently of T4 and T3, tetrac modulates transcription of cancer cell genes that are important to cell survival pathways, control of the cell cycle, angiogenesis, apoptosis, cell export of chemotherapeutic agents, and repair of double-strand DNA breaks. We have covalently bound tetrac to a 200 nm biodegradable nanoparticle that prohibits cell entry of tetrac and limits its action to the hormone receptor on the extracellular domain of plasma membrane αvβ3. This reformulation has greater potency than unmodified tetrac at the integrin and affects a broader range of cancer-relevant genes. In addition to these actions on intra-cellular kinase-mediated regulation of gene expression, hormone analogs at αvβ3 have additional effects on intra-cellular protein-trafficking (cytosol compartment to nucleus), nucleoprotein phosphorylation, and generation of nuclear coactivator complexes that are relevant to traditional genomic actions of T3. Thus, previously unrecognized cell surface-initiated actions of thyroid hormone and tetrac formulations at αvβ3 offer opportunities to regulate angiogenesis and multiple aspects of cancer cell behavior.
Collapse
Affiliation(s)
- Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- *Correspondence: Paul J. Davis, Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA e-mail:
| | | | | | - John T. Leith
- Rhode Island Nuclear Science Center, Narragansett, RI, USA
| | | | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Osnat Ashur-Fabian
- Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel
- Department of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|