1
|
Greenhalgh R, Klure DM, Orr TJ, Armstrong NM, Shapiro MD, Dearing MD. The desert woodrat (Neotoma lepida) induces a diversity of biotransformation genes in response to creosote bush resin. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109870. [PMID: 38428625 PMCID: PMC11006593 DOI: 10.1016/j.cbpc.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Liver biotransformation enzymes have long been thought to enable animals to feed on diets rich in xenobiotic compounds. However, despite decades of pharmacological research in humans and rodents, little is known about hepatic gene expression in specialized mammalian herbivores feeding on toxic diets. Leveraging a recently identified population of the desert woodrat (Neotoma lepida) found to be highly tolerant to toxic creosote bush (Larrea tridentata), we explored the expression changes of suites of biotransformation genes in response to diets enriched with varying amounts of creosote resin. Analysis of hepatic RNA-seq data indicated a dose-dependent response to these compounds, including the upregulation of several genes encoding transcription factors and numerous phase I, II, and III biotransformation families. Notably, elevated expression of five biotransformation families - carboxylesterases, cytochromes P450, aldo-keto reductases, epoxide hydrolases, and UDP-glucuronosyltransferases - corresponded to species-specific duplication events in the genome, suggesting that these genes play a prominent role in N. lepida's adaptation to creosote bush. Building on pharmaceutical studies in model rodents, we propose a hypothesis for how the differentially expressed genes are involved in the biotransformation of creosote xenobiotics. Our results provide some of the first details about how these processes likely operate in the liver of a specialized mammalian herbivore.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Dylan M Klure
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Teri J Orr
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Noah M Armstrong
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Skopec MM, Halpert JR, Dearing MD. Mammalian cytochrome P450 biodiversity: Physiological importance, function, and protein and genomic structures of cytochromes P4502B in multiple species of woodrats with different dietary preferences. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:107-129. [PMID: 35953153 DOI: 10.1016/bs.apha.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The vast diversity of cytochrome P450 enzymes in mammals has been proposed to result in large measure from plant-animal warfare, whereby evolution of chemical defenses such as phenolics and terpenoids in plants led to duplication and divergence of P450 genes in herbivores. Over evolutionary time, natural selection is predicted to have produced P450s with high affinity and enhanced metabolism of substrates that are ingested regularly by herbivores. Interestingly, however, almost all knowledge of the interactions of mammalian P450 enzymes with substrates stems from studies of the metabolism of drugs and model compounds rather than studies on wild mammalian herbivores and their respective PSMs. A question of particular interest centers on the role of individual P450 enzymes in the ability of certain herbivores to specialize on plants that are lethal to most other species, including those from the same genus as the specialists. We tackled this intricate problem using a tractable natural system (herbivorous woodrats, genus Neotoma) focusing on comparisons of the specialist N. stephensi, the facultative specialist N. lepida, and the generalist N. albigula, and employing a cross-disciplinary approach involving ecology, biochemistry, pharmacology, structural biology, and genomics. Based on multiple findings suggesting the importance of CYP2B enzymes for ingestion of juniper and a major constituent, α-pinene, we characterized the structure, function and activity of several CYP2B enzymes in woodrats with different dietary habits. Results to date suggest that differences in CYP2B gene copy number may contribute to differential tolerance of PSMs among woodrat species, although additional work is warranted to firmly link gene copy number to juniper tolerance.
Collapse
Affiliation(s)
- Michele M Skopec
- Department of Zoology, Weber State University, Ogden, UT, United States
| | - James R Halpert
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
3
|
Greenhalgh R, Holding ML, Orr TJ, Henderson JB, Parchman TL, Matocq MD, Shapiro MD, Dearing MD. Trio‐binned genomes of the woodrats
Neotoma bryanti
and
Neotoma lepida
reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes. Mol Ecol Resour 2022; 22:2713-2731. [DOI: 10.1111/1755-0998.13650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Robert Greenhalgh
- School of Biological SciencesUniversity of Utah257 South 1400 EastSalt Lake CityUtah84112USA
| | - Matthew L. Holding
- Department of Natural Resources & Environmental ScienceUniversity of Nevada1664 North Virginia StreetRenoNevada89775USA
- Present address: Life Sciences InstituteUniversity of Michigan210 Washtenaw AvenueAnn ArborMichigan48109USA
| | - Teri J. Orr
- School of Biological SciencesUniversity of Utah257 South 1400 EastSalt Lake CityUtah84112USA
- Department of BiologyNew Mexico State University1780 East University AvenueLas CrucesNew Mexico88003USA
| | - James B. Henderson
- Center for Comparative GenomicsCalifornia Academy of Sciences55 Music Concourse DriveSan FranciscoCalifornia94118USA
| | - Thomas L. Parchman
- Department of BiologyUniversity of NevadaReno1664 North Virginia StreetNevada89775USA
| | - Marjorie D. Matocq
- Department of Natural Resources & Environmental ScienceUniversity of Nevada1664 North Virginia StreetRenoNevada89775USA
| | - Michael D. Shapiro
- School of Biological SciencesUniversity of Utah257 South 1400 EastSalt Lake CityUtah84112USA
| | - M. Denise Dearing
- School of Biological SciencesUniversity of Utah257 South 1400 EastSalt Lake CityUtah84112USA
| |
Collapse
|
4
|
Berlow M, Phillips JN, Derryberry EP. Effects of Urbanization and Landscape on Gut Microbiomes in White-Crowned Sparrows. MICROBIAL ECOLOGY 2021; 81:253-266. [PMID: 32803364 DOI: 10.1007/s00248-020-01569-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Habitats are changing rapidly around the globe and urbanization is one of the primary drivers. Urbanization changes food availability, environmental stressors, and the prevalence of disease for many species. These changes can lead to divergence in phenotypic traits, including behavioral, physiological, and morphological features between urban and rural populations. Recent research highlights that urbanization is also changing the gut microbial communities found in a diverse group of host species. These changes have not been uniform, leaving uncertainty as to how urban habitats are shaping gut microbial communities. To better understand these effects, we investigated the gut bacterial communities of White-Crowned Sparrow (Zonotrichia leucophrys) populations along an urbanization gradient in the San Francisco Bay area. We examined how gut bacterial communities vary with the local environment and host morphological characteristics. We found direct effects of environmental factors, including urban noise levels and territory land cover, as well as indirect effects through body size and condition, on alpha and beta diversity of gut microbial communities. We also found that urban and rural birds' microbiomes differed in which variables predicted their diversity, with urban communities driven by host morphology, and rural communities driven by environmental factors. Elucidating these effects provides a better understanding of how urbanization affects wild avian physiology.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA.
| | - Jennifer N Phillips
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
5
|
Orr TJ, Kitanovic S, Schramm KM, Skopec MM, Wilderman PR, Halpert JR, Dearing MD. Strategies in herbivory by mammals revisited: The role of liver metabolism in a juniper specialist (Neotoma stephensi) and a generalist (Neotoma albigula). Mol Ecol 2020; 29:1674-1683. [PMID: 32246507 DOI: 10.1111/mec.15431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Although herbivory is widespread among mammals, few species have adopted a strategy of dietary specialization. Feeding on a single plant species often exposes herbivores to high doses of plant secondary metabolites (PSMs), which may exceed the animal's detoxification capacities. Theory predicts that specialists will have unique detoxification mechanisms to process high levels of dietary toxins. To evaluate this hypothesis, we compared liver microsomal metabolism of a juniper specialist, Neotoma stephensi (diet >85% juniper), to a generalist, N. albigula (diet ≤30% juniper). Specifically, we quantified the concentration of a key detoxification enzyme, cytochrome P450 2B (CYP2B) in liver microsomes, and the metabolism of α-pinene, the most abundant terpene in the juniper species consumed by the specialist woodrat. In both species, a 30% juniper diet increased the total CYP2B concentration (2-3×) in microsomes and microsomal α-pinene metabolism rates (4-fold). In N. stephensi, higher levels of dietary juniper (60% and 100%) further induced CYP2B and increased metabolism rates of α-pinene. Although no species-specific differences in metabolism rates were observed at 30% dietary juniper, total microsomal CYP2B concentration was 1.7× higher in N. stephensi than in N. albigula (p < .01), suggesting N. stephensi produces one or more variant of CYP2B that is less efficient at processing α-pinene. In N. stephensi, the rates of α-pinene metabolism increased with dietary juniper and were positively correlated with CYP2B concentration. The ability of N. stephensi to elevate CYP2B concentration and rate of α-pinene metabolism with increasing levels of juniper in the diet may facilitate juniper specialization in this species.
Collapse
Affiliation(s)
- Teri J Orr
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Smiljka Kitanovic
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Katharina M Schramm
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.,Department of Botany, Weber State University, Ogden, UT, USA
| | | | | | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Halpert JR. So many roads traveled: A career in science and administration. J Biol Chem 2020; 295:822-832. [PMID: 31953248 DOI: 10.1074/jbc.x119.012206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
I have traveled many roads during my career. After spending my first 19 years in Los Angeles, I became somewhat of an academic nomad, studying and/or working in six universities in the United States and three in Sweden. In chronological order, I have a B.A. in Scandinavian languages and literature from UCLA, a Ph.D. in biochemistry from Uppsala University, and an M.S. in toxicology from the Karolinska Institute. I have been in schools of natural science, pharmacy, and medicine and have worked in multiple basic science departments and one clinical department. I have served as a research-track and tenured faculty member, department chair, associate dean, and dean. My research has spanned toxinology, biochemistry, toxicology, and pharmacology. Through all the moves, I have gained much and lost some. For the past 40 years, my interest has been cytochrome P450 structure-function and structure-activity relationships. My lab has focused on CYP2B enzymes using X-ray crystallography, site-directed mutagenesis, deuterium-exchange MS, isothermal titration calorimetry, and computational methods in conjunction with a variety of functional assays. This comprehensive approach has enabled detailed understanding of the structural basis of the remarkable substrate promiscuity of CYP2B enzymes. We also have investigated the mechanisms of CYP3A4 allostery using biophysical and advanced spectroscopic techniques, and discovered a pivotal role of P450-P450 interactions and of multiple-ligand binding. A major goal of this article is to provide lessons that may be useful to scientists in the early and middle stages of their careers and those more senior scientists contemplating an administrative move.
Collapse
Affiliation(s)
- James R Halpert
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
7
|
Halpert JR. So many roads traveled: A career in science and administration. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Kitanovic S, Marks-Fife CA, Parkes QA, Wilderman PR, Halpert JR, Dearing MD. Cytochrome P450 2B diversity in a dietary specialist—the red tree vole (Arborimus longicaudus). J Mammal 2018. [DOI: 10.1093/jmammal/gyy039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractAlthough herbivores rely on liver enzymes to biotransform plant secondary metabolites ingested in plant-based diets, only a few enzymes from a handful of species have been characterized at the genomic level. In this study, we examined cytochrome P450 2B (CYP2B) sequence diversity and gene copy number in a conifer specialist, the red tree vole (Arborimus longicaudus). We fed captive individuals exclusively Douglas-fir (Pseudotsuga menziesii) foliage, cloned and sequenced their liver CYP2B cDNA, and estimated CYP2B gene copy number. We identified 21 unique CYP2B nucleotide sequences, and 20 unique CYP2B amino acid sequences. Gene copy number of CYP2B was estimated at 7.7 copies per haploid genome. We compared red tree vole CYP2B with CYP2B sequences of a generalist, the prairie vole (Microtus ochrogaster), found in GenBank. Our study revealed that the CYP2B enzymes of red tree voles possess unique sequences compared to CYP2B enzymes of other herbivorous species. The unique combination of amino acid residues at key substrate recognition sites of CYP2B enzymes may underlie the ability of the red tree vole to specialize on a highly toxic diet of Douglas-fir.
Collapse
Affiliation(s)
| | - Chad A Marks-Fife
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Quincy A Parkes
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - M Denise Dearing
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Crystal Structure of CYP2B6 in Complex with an Efavirenz Analog. Int J Mol Sci 2018; 19:ijms19041025. [PMID: 29596329 PMCID: PMC5979536 DOI: 10.3390/ijms19041025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
The over two dozen CYP2B structures of human, rabbit, and woodrat enzymes solved in the last decade have significantly enhanced our understanding of the structure-function relationships of drug metabolizing enzymes. More recently, an important role has emerged for halogen-π interactions in the CYP2B6 active site in substrate selectivity, explaining in part the preference for halogenated ligands as substrates. The mechanism by which such ligands interact with CYP2B enzymes involves conserved phenylalanine side chains, in particular F108, F115, or F297, in the active site, which form π bonds with halogens. To illustrate such halogen-π interactions using drugs that are major substrates of CYP2B6, we present here a crystal structure of CYP2B6 in complex with an analog of the widely used anti-HIV drug efavirenz, which contains a methyl group in place of the carbonyl oxygen. The chlorine of the efavirenz analog forms a π bond with the aromatic ring of F108, whereas the putative metabolism site on the distal end of the molecule is oriented towards the heme iron. The crystal structure showcases how CYP2B6 accommodates this important drug analog of considerable size in the active site by movement of various side chains without substantially increasing the active site volume. Furthermore, the CYP2B6-efavirenz analog complex provides a useful platform to investigate computationally as well as biophysically the effect of genetic polymorphisms on binding of the widely studied efavirenz.
Collapse
|
10
|
Kitanovic S, Orr TJ, Spalink D, Cocke GB, Schramm K, Wilderman PR, Halpert JR, Dearing MD. Role of cytochrome P450 2B sequence variation and gene copy number in facilitating dietary specialization in mammalian herbivores. Mol Ecol 2018; 27:723-736. [DOI: 10.1111/mec.14480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | - Teri J. Orr
- Department of Biology University of Utah Salt Lake City UT USA
| | - Daniel Spalink
- Department of Biology University of Utah Salt Lake City UT USA
| | | | | | | | | | | |
Collapse
|
11
|
Huo L, Liu J, Dearing MD, Szklarz GD, Halpert JR, Wilderman PR. Rational Re-Engineering of the O-Dealkylation of 7-Alkoxycoumarin Derivatives by Cytochromes P450 2B from the Desert Woodrat Neotoma lepida. Biochemistry 2017; 56:2238-2246. [DOI: 10.1021/acs.biochem.7b00097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lu Huo
- Department
of Pharmaceutical Science, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269-3092, United States
| | - Jingbao Liu
- Department
of Pharmaceutical Science, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269-3092, United States
| | - M. Denise Dearing
- Department
of Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Grazyna D. Szklarz
- Department
of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia 26506, United States
| | - James R. Halpert
- Department
of Pharmaceutical Science, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269-3092, United States
| | - P. Ross Wilderman
- Department
of Pharmaceutical Science, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269-3092, United States
| |
Collapse
|
12
|
Chai T, Cui F, Mu X, Yang Y, Wang C, Qiu J. Exploration of Stereoselectivity in Embryo-Larvae (Danio rerio) Induced by Chiral PCB149 at the Bioconcentration and Gene Expression Levels. PLoS One 2016; 11:e0155263. [PMID: 27158819 PMCID: PMC4861327 DOI: 10.1371/journal.pone.0155263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 11/19/2022] Open
Abstract
This paper was designed to study stereoselective enrichment and changes in gene expression when zebrafish (Danio rerio) embryo-larvae were exposed to racemic, (-)- or (+)- PCB149 (2,2’,3,4’,5’,6- hexachlorobiphenyl). Based on bioconcentration analysis, non-racemic enrichment was significantly observed after racemic exposure. No isomerization between the two isomers was found after (-)/(+)-PCB149 exposure. Furthermore, based on gene expression-data mining, CYPs genes (cyp2k6, cyp19a1b, and cyp2aa4) were differential genes after (+)-PCB149 exposure. No obvious differences of dysregulation of gene expression caused by racemic and (-)-PCB149, were observed in embryo-larvae. The above results suggested that (-)-PCB149 could be considered as the main factor causing the dysregulation of gene expression in embryo-larvae after racemic exposure; and (+)-PCB149 should be pursued apart from the racemate, when considering the toxicity of chiral PCB149. Thus, the information in our study could provide new insights to assess the environmental risk of chiral PCBs in aquatic systems.
Collapse
Affiliation(s)
- Tingting Chai
- College of Science, China Agricultural University, Beijing, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing, China
| | - Xiyan Mu
- College of Science, China Agricultural University, Beijing, China
- Center of Fishery Resources and Ecology Environment Research, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing, China
- * E-mail: (CW); (JQ)
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing, China
- * E-mail: (CW); (JQ)
| |
Collapse
|
13
|
Shah MB, Liu J, Huo L, Zhang Q, Dearing MD, Wilderman PR, Szklarz GD, Stout CD, Halpert JR. Structure-Function Analysis of Mammalian CYP2B Enzymes Using 7-Substituted Coumarin Derivatives as Probes: Utility of Crystal Structures and Molecular Modeling in Understanding Xenobiotic Metabolism. Mol Pharmacol 2016; 89:435-45. [PMID: 26826176 DOI: 10.1124/mol.115.102111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/20/2016] [Indexed: 01/09/2023] Open
Abstract
Crystal structures of CYP2B35 and CYP2B37 from the desert woodrat were solved in complex with 4-(4-chlorophenyl)imidazole (4-CPI). The closed conformation of CYP2B35 contained two molecules of 4-CPI within the active site, whereas the CYP2B37 structure demonstrated an open conformation with three 4-CPI molecules, one within the active site and the other two in the substrate access channel. To probe structure-function relationships of CYP2B35, CYP2B37, and the related CYP2B36, we tested the O-dealkylation of three series of related substrates-namely, 7-alkoxycoumarins, 7-alkoxy-4-(trifluoromethyl)coumarins, and 7-alkoxy-4-methylcoumarins-with a C1-C7 side chain. CYP2B35 showed the highest catalytic efficiency (kcat/KM) with 7-heptoxycoumarin as a substrate, followed by 7-hexoxycoumarin. In contrast, CYP2B37 showed the highest catalytic efficiency with 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), followed by 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC). CYP2B35 had no dealkylation activity with 7-MFC or 7-EFC. Furthermore, the new CYP2B-4-CPI-bound structures were used as templates for docking the 7-substituted coumarin derivatives, which revealed orientations consistent with the functional studies. In addition, the observation of multiple -Cl and -NH-π interactions of 4-CPI with the aromatic side chains in the CYP2B35 and CYP2B37 structures provides insight into the influence of such functional groups on CYP2B ligand binding affinity and specificity. To conclude, structural, computational, and functional analysis revealed striking differences between the active sites of CYP2B35 and CYP2B37 that will aid in the elucidation of new structure-activity relationships.
Collapse
Affiliation(s)
- Manish B Shah
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - Jingbao Liu
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - Lu Huo
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - Qinghai Zhang
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - M Denise Dearing
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - P Ross Wilderman
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - Grazyna D Szklarz
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - C David Stout
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| |
Collapse
|
14
|
Skopec MM, Kohl KD, Schramm K, Halpert JR, Dearing MD. Using the Specialization Framework to Determine Degree of Dietary Specialization in a Herbivorous Woodrat. J Chem Ecol 2015; 41:1059-68. [PMID: 26631406 DOI: 10.1007/s10886-015-0654-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/09/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022]
Abstract
To be considered a dietary specialist, mammalian herbivores must consume large quantities of a plant species considered "difficult" with respect to nutrient or toxin content, and possess specialized adaptations to deal with plant defensive compounds or low nutritional content. Populations of Neotoma lepida in the Great Basin consume Juniperus osteosperma, a plant heavily defended by terpenes, but a detailed dietary analysis of this population is lacking. Therefore, we investigated the extent of dietary specialization in this species in comparison with the better-studied specialist species, N. stephensi. Microhistological analysis of feces from N. lepida revealed that greater than 90% of their diet in nature was comprised of juniper. In laboratory tolerance trials, N. lepida tolerated a diet of 80% J. osteosperma, similar to that observed for N. stephensi. There was no difference in the abilities of N. lepida and N. stephensi to metabolize hexobarbital, a proxy compound for terpene metabolism. In preference tests of native and non-native juniper species, N. lepida did not exhibit a preference for its native or co-occurring juniper, J. osteosperma, over the non-native species, J. monosperma, whereas N. stephensi preferred its native or co-occurring juniper J. monosperma over non-native J. osteosperma. Behavioral and habitat differences between these woodrat species lead to the categorization of N. stephensi as an obligate juniper specialist with a small range that overlaps that of its preferred food, J. monosperma, and N. lepida as a facultative juniper specialist with a large range, and only a portion of its distribution containing populations that feed extensively on J. osteosperma.
Collapse
Affiliation(s)
- Michele M Skopec
- Department of Zoology, Weber State University, 1415 Edvalson Dr., Ogden, UT, 84408, USA.
| | - Kevin D Kohl
- Department of Biology, University of Utah, Salt Lake City, 84112, UT, USA
| | - Katharina Schramm
- Department of Zoology, Weber State University, 1415 Edvalson Dr., Ogden, UT, 84408, USA
- Department of Biology, University of Utah, Salt Lake City, 84112, UT, USA
| | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - M Denise Dearing
- Department of Biology, University of Utah, Salt Lake City, 84112, UT, USA
| |
Collapse
|