1
|
Wheat W, Chow L, Still-Brooks K, Moore-Foster R, Herman J, Hunter R, Garry F, Dow S. Immune modulatory effects of tulathromycin, gamithromycin, and oxytetracycline in cattle. BMC Vet Res 2024; 20:456. [PMID: 39385141 PMCID: PMC11462805 DOI: 10.1186/s12917-024-04254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 10/11/2024] Open
Abstract
Certain classes of antibiotics, including tetracyclines and macrolides, are known to exert immune suppressive effects in other species but the immune modulatory effects of these antibiotics have not been previously studied in cattle. To address this question, we investigated the effects of oxytetracycline, gamithromycin, and tulathromycin on T cell and macrophage responses to activation, using in vitro assays. In addition, we assessed the impact of these antibiotics on T cell responses in vivo following treatment of healthy cattle with currently recommended doses of each of the three antibiotics. We found that all 3 antibiotics markedly suppressed T cell proliferation in vitro at relevant therapeutic drug concentrations and significantly suppressed macrophage activation responses to LPS. In cattle treated with a single dose of each antibiotic, we observed significant suppression of T cell proliferation and cytokine production beginning as early as 6 h after administration, with increasing immune suppression observed at 48 h. Taken together, these results indicate that commonly used antibiotics in cattle exert significant immune modulatory activity, in addition to their antimicrobial activity. These off-target effects should be considered when using antibiotics for prophylaxis or metaphylaxis in high-risk dairy or beef cattle (192 words).
Collapse
Affiliation(s)
- W Wheat
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| | - L Chow
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - K Still-Brooks
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - R Moore-Foster
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J Herman
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - R Hunter
- Hunter Cattle Co, Wheatland, WY, USA
| | - F Garry
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - S Dow
- Center for Immune Regenerative Medicine, Department of Clinical Sciences, and, Microbiology, College of Veterinary Medicine and Biomedical Sciences, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Wang H, Wang W, Jin F, Marchant-Forde JN, Mi J, Ding L, Liao X, Wu Y, Wang Y. Pentachlorophenol affects doxycycline and tetracycline resistance genes in soil by altering microbial structure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115918. [PMID: 38232521 DOI: 10.1016/j.ecoenv.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Tetracycline antibiotics play a vital role in animal husbandry, primarily employed to uphold the health of livestock and poultry. Consequently, when manure is reintegrated into farmland, tetracycline antibiotics can persist in the soil. Simultaneously, to ensure optimal crop production, organochlorine pesticides (OCPs) are frequently applied to farmland. The coexistence of tetracycline antibiotics and OCPs in soil may lead to an increased risk of transmission of tetracycline resistance genes (TRGs). Nevertheless, the precise mechanism underlying the effects of OCPs on tetracycline antibiotics and TRGs remains elusive. In this study, we aimed to investigate the effects of OCPs on soil tetracycline antibiotics and TRGs using different concentrations of doxycycline (DOX) and pentachlorophenol (PCP). The findings indicate that PCP and DOX mutually impede their degradation in soil. Furthermore, our investigation identifies Sphingomonas and Bacillus as potential pivotal microorganisms influencing the reciprocal inhibition of PCP and DOX. Additionally, it is observed that the concurrent presence of PCP and DOX could impede each other's degradation by elevating soil conductivity. Furthermore, we observed that a high concentration of PCP (10.7 mg/kg) reduced the content of efflux pump tetA, ribosome protective protein tetM, tetQ, and passivating enzyme tetX. In contrast, a low PCP concentration (6.4 mg/kg) only reduced the content of ribosome protective protein tetQ. This suggests that PCP may reduce the relative abundance of TRGs by altering the soil microbial community structure and inhibiting the potential host bacteria of TRGs. These findings have significant implications in understanding the combined pollution of veterinary antibiotics and OCPs. By shedding light on the interactions between these compounds and their impact on microbial communities, this study provides a theoretical basis for developing strategies to manage and mitigate their environmental impact, and may give some information regarding the sustainable use of antibiotics and pesticides to ensure the long-term health and productivity of agricultural systems.
Collapse
Affiliation(s)
- Haoliang Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fenhua Jin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
| | | | - Jiandui Mi
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lipeng Ding
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Vaccination Failures in Pigs-The Impact of Chosen Factors on the Immunisation Efficacy. Vaccines (Basel) 2023; 11:vaccines11020230. [PMID: 36851108 PMCID: PMC9964700 DOI: 10.3390/vaccines11020230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Infectious diseases that often lead to economic losses still pose a severe problem in the pig production sector. Because of increasing restrictions on antibiotic usage, vaccines may become one of the major approaches to controlling infectious diseases; much research has proved that they could be very efficient. Nevertheless, during their life, pigs are exposed to various factors that can interfere with vaccination efficacy. Therefore, in the present paper, we reviewed the influence of chosen factors on the pig immunisation process, such as stress, faecal microbiota, host genetics, the presence of MDAs, infections with immunosuppressive pathogens, and treatment with antibiotics and mycotoxins. Many of them turned out to have an adverse impact on vaccine efficacy.
Collapse
|
4
|
Antibiotic Therapy Does Not Alter the Humoral Response to Vaccination for Porcine Circovirus 2 in Weaned Pigs. Vet Sci 2019; 6:vetsci6020051. [PMID: 31151211 PMCID: PMC6631623 DOI: 10.3390/vetsci6020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022] Open
Abstract
Recent reports suggest that antibiotic therapy may either reduce or enhance the immune response to various porcine vaccines. Based upon these findings, we asked if antibiotic therapy alters immune cell populations, as measured by flow cytometry and/or vaccine-specific humoral immunity, as measured by sample to positive (S/P) antibody ratios. Here, we investigated the immuno-modulatory effects of enrofloxacin, ceftiofur, and tulathromycin on the immune response to a Mycoplasma hyopneumoniae (M. hyopneumoniae) and porcine circovirus type 2 (PCV-2) combination vaccine in weaned pigs. Maternal antibody likely interfered with the induction of immunity to M. hyopneumoniae. Antibiotic administration did not affect immune cell populations, as assessed by flow cytometry and did not affect the induction of humoral immunity to PCV-2.
Collapse
|
5
|
Pomorska-Mól M, Czyżewska-Dors E, Kwit K, Pejsak Z. Enrofloxacin in therapeutic doses alters cytokine production by porcine PBMCs induced by lipopolysaccharide. Drug Chem Toxicol 2017; 40:295-299. [PMID: 28122461 DOI: 10.1080/01480545.2016.1223093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The effect of enrofloxacin on cytokine secretion by porcine peripheral blood mononuclear cells (PBMCs) was studied. Twenty 8-20-week-old pigs were randomly divided into two groups: control (C, n = 10) and experimental (E, n = 10) were used. Pigs from group E received enrofloxacin at therapeutic dose for 5 consecutive days. Blood samples were collected at 0 (before antibiotic administration), 2, 4 (during antibiotic therapy) 6, 9, 14 21, 35, 49, and 63 d of study (after treatment). PBMCs of pigs from both groups were incubated with or without lipopolysaccharide (LPS). Ex vivo production on interleukin (IL)-4, IL-6, IL-10, INF-γ, and TNF-α were analyzed using ELISA assay. Intramuscular administration of enrofloxacin to healthy pigs for 5 consecutive days induced a transitory reduction of the ex vivo response of PBMCs to LPS in terms of IL-6 and TNF-α secretion. The level of IL-6 returned to day 0 level shortly after end of treatment, while the TNF-α production remained reduced 10 d after the end of treatment. Our results indicate that enrofloxacin given in vivo in therapeutic doses has an immunomodulatory effect through its capacity to inhibit ex vivo secretion of IL-6 and TNF-α by porcine PBMC after LPS stimulation.
Collapse
Affiliation(s)
| | - Ewelina Czyżewska-Dors
- a Department of Swine Diseases , National Veterinary Research Institute , Pulawy , Poland
| | - Krzysztof Kwit
- a Department of Swine Diseases , National Veterinary Research Institute , Pulawy , Poland
| | - Zygmunt Pejsak
- a Department of Swine Diseases , National Veterinary Research Institute , Pulawy , Poland
| |
Collapse
|
6
|
Pomorska-Mól M, Kwit K, Wierzchosławski K, Dors A, Pejsak Z. Effects of amoxicillin, ceftiofur, doxycycline, tiamulin and tulathromycin on pig humoral immune responses induced by erysipelas vaccination. Vet Rec 2016; 178:559. [DOI: 10.1136/vr.103533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2016] [Indexed: 11/04/2022]
Affiliation(s)
- M. Pomorska-Mól
- Department of Swine Diseases; National Veterinary Research Institute; Pulawy Poland
| | - K. Kwit
- Department of Swine Diseases; National Veterinary Research Institute; Pulawy Poland
| | | | - A. Dors
- Department of Swine Diseases; National Veterinary Research Institute; Pulawy Poland
| | - Z. Pejsak
- Department of Swine Diseases; National Veterinary Research Institute; Pulawy Poland
| |
Collapse
|
7
|
Pomorska-Mól M, Czyżewska-Dors E, Kwit K, Rachubik J, Lipowski A, Pejsak Z. Immune response in pigs treated with therapeutic doses of enrofloxacin at the time of vaccination against Aujeszky's disease. Res Vet Sci 2015; 100:68-74. [DOI: 10.1016/j.rvsc.2015.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 11/25/2022]
|