1
|
Peng W, Hu Z, Shen Y, Wang X. Inhibiting the soluble epoxide hydrolase increases the EpFAs and ERK1/2 expression in the hippocampus of LiCl-pilocarpine post-status epilepticus rat model. IBRO Neurosci Rep 2024; 17:329-336. [PMID: 39492986 PMCID: PMC11528224 DOI: 10.1016/j.ibneur.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose This study aimed to investigate the enzyme activity of soluble epoxide hydrolase (sEH) and quantify its metabolic substrates, namely epoxygenated fatty acids (EpFAs), and products of sEH in the hippocampus after administering TPPU [1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea], an inhibitor of sEH. Furthermore, it explored whether the extracellular signal-activated protein kinase 1/2 (ERK1/2) is involved in the anti-seizure effects of TPPU in the lithium chloride (LiCl)-pilocarpine induced post-status epilepticus (SE) rat model. Methods The rats were intraperitoneally (I.P.) injected with LiCl and pilocarpine to induce SE and then spontaneous recurrent seizures (SRS) were observed. Rats were randomly assigned into SRS + TPPU group (intragastrically administering 0.1 mg/kg/d TPPU), SRS + Vehicle group (administering the vehicle instead), and Control group. Enzyme-linked immunosorbent assay, Western-blot analysis, and ultra-high-performance liquid chromatography/mass spectrometry (LC/MS) were performed to measure the enzyme activity of sEH, the protein level of sEH and ERK1/2, and the concentration of TPPU and polyunsaturated fatty acids (PUFAs) metabolisms in the hippocampus. Results The frequency of SRS events of Racine stage 3 or higher ranged from 0 to 19 per week in the SRS + Vehicle group, compared to 0-5 per week in the SRS + TPPU group. sEH enzyme activity and protein levels were significantly elevated in the SRS + Vehicle group compared to the Control group. After TPPU administration, the hippocampal TPPU concentration reached 10.94 ± 4.37 nmol/kg. sEH enzyme activity was significantly reduced in the LiCl-pilocarpine-induced post-SE rat model, although sEH protein levels did not decrease significantly. The regioisomers 8,9-, 11,12-, and 14,15-EETs, total EETs, the EETs/DHETs ratio, other EpFAs including 16(17)-EpDPA, and the 19(20)-EpDPA/19,20-DiHDPA ratio in the hippocampus were significantly increased. Additionally, the p-ERK1/2 to ERK1/2 ratio in the hippocampus was significantly elevated following TPPU administration. Conclusion This study demonstrates that inhibiting sEH with TPPU increases the levels of EETs, other EpFAs, and ERK1/2 expression in the hippocampus of a LiCl-pilocarpine-induced post-SE rat model. These findings suggest that the anti-seizure effect of TPPU may be mediated through the EETs-ERK1/2 pathway.
Collapse
Affiliation(s)
- Weifeng Peng
- Department of Neurology, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Neurology, Zhongshan Hospital Fudan University Xiamen Branch, Xiamen, China
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zihan Hu
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yijun Shen
- Department of Neurology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zeng ML, Xu W. A Narrative Review of the Published Pre-Clinical Evaluations: Multiple Effects of Arachidonic Acid, its Metabolic Enzymes and Metabolites in Epilepsy. Mol Neurobiol 2024:10.1007/s12035-024-04274-6. [PMID: 38842673 DOI: 10.1007/s12035-024-04274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Arachidonic acid (AA), an important polyunsaturated fatty acid in the brain, is hydrolyzed by a direct action of phospholipase A2 (PLA2) or through the combined action of phospholipase C and diacylglycerol lipase, and released into the cytoplasm. Various derivatives of AA can be synthesized mainly through the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (P450) enzyme pathways. AA and its metabolic enzymes and metabolites play important roles in a variety of neurophysiological activities. The abnormal metabolites and their catalytic enzymes in the AA cascade are related to the pathogenesis of various central nervous system (CNS) diseases, including epilepsy. Here, we systematically reviewed literatures in PubMed about the latest randomized controlled trials, animal studies and clinical studies concerning the known features of AA, its metabolic enzymes and metabolites, and their roles in epilepsy. The exclusion criteria include non-original studies and articles not in English.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Wei Xu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Akunal Türel C, Çelik H, Çetinkaya A, Türel İ. Electrophysiologic and anti-inflammatorial effects of cyclooxygenase inhibition in epileptiform activity. Physiol Rep 2023; 11:e15800. [PMID: 37688418 PMCID: PMC10492010 DOI: 10.14814/phy2.15800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of our study is to investigate the electrophysiological and anti-inflammatory effects of diclofenac potassium on epileptiform activity, which is the liquid form of diclofenac, and frequently used clinically for inflammatory process by inhibiting cyclooxygenase enzyme (COX). Wistar rats aged 2-4 months were divided into Epilepsy, Diazepam, Diclofenac potassium, and Diazepam+diclofenac potassium groups. Diazepam and diclofenac potassium were administered intraperitoneally 30 min after the epileptiform activity was created with penicillin injected intracortically under anesthesia. After the electrophysiological recording was taken in the cortex for 125 min, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated by the ELISA in the serums. No change was observed between the groups in serum IL-1β, IL-6, and TNF-α values. It was observed that the co-administration of diclofenac potassium and diazepam at 51-55, 56-60, 61-65, 111-115, and 116-120 min was more effective in reducing spike amplitude than diclofenac potassium alone (p < 0.05). Single-dose diclofenac potassium did not have an anti-inflammatory effect in epileptiform activity but both diazepam and diclofenac potassium reduced the epileptiform activity.
Collapse
Affiliation(s)
- Canan Akunal Türel
- Department of NeurologyBolu Abant Izzet Baysal University Medical SchoolBolu Merkez/BoluTurkey
| | - Hümeyra Çelik
- Department of PhysiologyAlanya Alaaddin Keykubat University Medical SchoolAntalyaTurkey
| | - Ayhan Çetinkaya
- Department of PhysiologyBolu Abant Izzet Baysal University Medical SchoolBolu Merkez/BoluTurkey
| | - İdris Türel
- Department of PharmacologyBolu Abant Izzet Baysal University Medical SchoolBolu Merkez/BoluTurkey
| |
Collapse
|
4
|
Davis CM, Ibrahim AH, Alkayed NJ. Cytochrome P450-derived eicosanoids in brain: From basic discovery to clinical translation. ADVANCES IN PHARMACOLOGY 2023; 97:283-326. [DOI: 10.1016/bs.apha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Türel CA, Çelik H, Torun İE, Çetinkaya A, Türel İ. The antiinflammatory and electrophysiological effects of fingolimod on penicillin-induced rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:1220-1226. [PMID: 36580959 PMCID: PMC9800168 DOI: 10.1055/s-0042-1758754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The fact that inflammation triggers epileptic seizures brings to mind the antiepileptic properties of anti-inflammatory drugs. OBJECTIVE To investigate the electrophysiological and anti-inflammatory effects of fingolimod on an experimental penicillin-induced acute epileptic seizure model in rats. METHODS Thirty-two male Wistar rats were divided into four groups: control (penicillin), positive control (penicillin + diazepam [5 mg/kg]), drug (penicillin + fingolimod [0.3 mg/kg]) and synergy group (penicillin + diazepam + fingolimod). The animals were anesthetized with urethane, and epileptiform activity was induced by intracortical injection of penicillin (500,000 IU). After electrophysiological recording for 125 minutes, IL-1β, TNF-α, and IL-6 were evaluated by ELISA in the serum of sacrificed animals. RESULTS During the experiment, animal deaths occurred in the synergy group due to the synergistic negative chronotropic effect of diazepam and fingolimod. Although not statistically significant, fingolimod caused a slight decrease in spike-wave activity and spike amplitudes in the acute seizure model induced by penicillin (p > 0.05). Fingolimod decreased serum IL-1β (p < 0.05); fingolimod and diazepam together reduced IL-6 (p < 0.05), but no change was observed in serum TNF-α values. CONCLUSION Even in acute use, the spike-wave and amplitude values of fingolimod decrease with diazepam, anticonvulsant and anti-inflammatory effects of fingolimod will be more prominent in chronic applications and central tissue evaluations. In addition, concomitant use of fingolimod and diazepam is considered to be contraindicated due to the synergistic negative inotropic effect.
Collapse
Affiliation(s)
- Canan Akünal Türel
- Bolu Abant İzzet Baysal University School of Medicine, Department of Neurology, Bolu, Turkey.,Address for correspondence Canan Akünal Türel
| | - Hümeyra Çelik
- Bolu Abant İzzet Baysal University School of Medicine, Department of Physiology, Bolu, Turkey.
| | - İbrahim Ethem Torun
- Bolu Abant İzzet Baysal University School of Medicine, Department of Physiology, Bolu, Turkey.
| | - Ayhan Çetinkaya
- Bolu Abant İzzet Baysal University School of Medicine, Department of Physiology, Bolu, Turkey.
| | - İdris Türel
- Bolu Abant İzzet Baysal University School of Medicine, Department of Pharmacology, Bolu, Turkey.
| |
Collapse
|
6
|
Kuo YM, Lee YH. Epoxyeicosatrienoic acids and soluble epoxide hydrolase in physiology and diseases of the central nervous system. CHINESE J PHYSIOL 2022; 65:1-11. [PMID: 35229747 DOI: 10.4103/cjp.cjp_80_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are fatty acid signaling molecules synthesized by cytochrome P450 epoxygenases from arachidonic acid. The biological activity of EETs is terminated when being metabolized by soluble epoxide hydrolase (sEH), a process that serves as a key regulator of tissue EETs levels. EETs act through several signaling pathways to mediate various beneficial effects, including anti-inflammation, anti-apoptosis, and anti-oxidation with relieve of endoplasmic reticulum stress, thereby sEH has become a potential therapeutic target in cardiovascular disease and cancer therapy. Enzymes for EET biosynthesis and metabolism are both widely detected in both neuron and glial cells in the central nervous system (CNS). Recent studies discovered that astrocyte-derived EETs not only mediate neurovascular coupling and neuronal excitability by maintaining glutamate homeostasis but also glia-dependent neuroprotection. Genetic ablation as well as pharmacologic inhibition of sEH has greatly helped to elucidate the physiologic actions of EETs, and maintaining or elevating brain EETs level has been demonstrated beneficial effects in CNS disease models. Here, we review the literature regarding the studies on the bioactivity of EETs and their metabolic enzyme sEH with special attention paid to their action mechanisms in the CNS, including their modulation of neuronal activity, attenuation of neuroinflammation, regulation of cerebral blood flow, and improvement of neuronal and glial cells survival. We further reviewed the recent advance on the potential application of sEH inhibition for treating cerebrovascular disease, epilepsy, and pain disorder.
Collapse
Affiliation(s)
- Yi-Min Kuo
- Department of Anesthesiology, Taipei Veterans General Hospital; Department of Anesthesiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat Commun 2021; 12:6589. [PMID: 34782621 PMCID: PMC8593046 DOI: 10.1038/s41467-021-26972-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
ASH1L, a histone methyltransferase, is identified as a top-ranking risk factor for autism spectrum disorder (ASD), however, little is known about the biological mechanisms underlying the link of ASH1L haploinsufficiency to ASD. Here we show that ASH1L expression and H3K4me3 level are significantly decreased in the prefrontal cortex (PFC) of postmortem tissues from ASD patients. Knockdown of Ash1L in PFC of juvenile mice induces the downregulation of risk genes associated with ASD, intellectual disability (ID) and epilepsy. These downregulated genes are enriched in excitatory and inhibitory synaptic function and have decreased H3K4me3 occupancy at their promoters. Furthermore, Ash1L deficiency in PFC causes the diminished GABAergic inhibition, enhanced glutamatergic transmission, and elevated PFC pyramidal neuronal excitability, which is associated with severe seizures and early mortality. Chemogenetic inhibition of PFC pyramidal neuronal activity, combined with the administration of GABA enhancer diazepam, rescues PFC synaptic imbalance and seizures, but not autistic social deficits or anxiety-like behaviors. These results have revealed the critical role of ASH1L in regulating synaptic gene expression and seizures, which provides insights into treatment strategies for ASH1L-associated brain diseases.
Collapse
|
8
|
Calsbeek JJ, González EA, Boosalis CA, Zolkowska D, Bruun DA, Rowland DJ, Saito NH, Harvey DJ, Chaudhari AJ, Rogawski MA, Garbow JR, Lein PJ. Strain differences in the extent of brain injury in mice after tetramethylenedisulfotetramine-induced status epilepticus. Neurotoxicology 2021; 87:43-50. [PMID: 34478772 PMCID: PMC8595842 DOI: 10.1016/j.neuro.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
Acute intoxication with tetramethylenedisulfotetramine (TETS) can trigger status epilepticus (SE) in humans. Survivors often exhibit long-term neurological effects, including electrographic abnormalities and cognitive deficits, but the pathogenic mechanisms linking the acute toxic effects of TETS to chronic outcomes are not known. Here, we use advanced in vivo imaging techniques to longitudinally monitor the neuropathological consequences of TETS-induced SE in two different mouse strains. Adult male NIH Swiss and C57BL/6J mice were injected with riluzole (10 mg/kg, i.p.), followed 10 min later by an acute dose of TETS (0.2 mg/kg in NIH Swiss; 0.3 mg/kg, i.p. in C57BL/6J) or an equal volume of vehicle (10% DMSO in 0.9% sterile saline). Different TETS doses were administered to trigger comparable seizure behavior between strains. Seizure behavior began within minutes of TETS exposure and rapidly progressed to SE that was terminated after 40 min by administration of midazolam (1.8 mg/kg, i.m.). The brains of vehicle and TETS-exposed mice were imaged using in vivo magnetic resonance (MR) and translocator protein (TSPO) positron emission tomography (PET) at 1, 3, 7, and 14 days post-exposure to monitor brain injury and neuroinflammation, respectively. When the brain scans of TETS mice were compared to those of vehicle controls, subtle and transient neuropathology was observed in both mouse strains, but more extensive and persistent TETS-induced neuropathology was observed in C57BL/6J mice. In addition, one NIH Swiss TETS mouse that did not respond to the midazolam therapy, but remained in SE for more than 2 h, displayed robust neuropathology as determined by in vivo imaging and confirmed by FluoroJade C staining and IBA-1 immunohistochemistry as readouts of neurodegeneration and neuroinflammation, respectively. These findings demonstrate that the extent of injury observed in the mouse brain after TETS-induced SE varied according to strain, dose of TETS and/or the duration of SE. These observations suggest that TETS-intoxicated humans who do not respond to antiseizure medication are at increased risk for brain injury.
Collapse
Affiliation(s)
- Jonas J Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Eduardo A González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Casey A Boosalis
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Dorota Zolkowska
- Department of Neurology, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, Davis, CA, 95616, USA.
| | - Naomi H Saito
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Abhijit J Chaudhari
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, Davis, CA, 95616, USA.
| | - Michael A Rogawski
- Department of Neurology, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Joel R Garbow
- Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Zolkowska D, Dhir A, Rogawski MA. Perampanel, a potent AMPA receptor antagonist, protects against tetramethylenedisulfotetramine-induced seizures and lethality in mice: comparison with diazepam. Arch Toxicol 2021; 95:2459-2468. [PMID: 33914090 PMCID: PMC8241714 DOI: 10.1007/s00204-021-03053-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Tetramethylenedisulfotetramine (TETS), a noncompetitive GABAA receptor antagonist, is a potent, highly lethal convulsant that is considered to be a chemical threat agent. Here, we assessed the ability of the AMPA receptor antagonist perampanel to protect against TETS-induced seizures and lethality in mice when administered before or after treatment with the toxicant. For comparison, we conducted parallel testing with diazepam, which is a first-line treatment for chemically induced seizures in humans. Pre-treatment of mice with either perampanel (1–4 mg/kg, i.p.) or diazepam (1–5 mg/kg, i.p.) conferred protection in a dose-dependent fashion against tonic seizures and lethality following a dose of TETS (0.2 mg/kg, i.p.) that rapidly induces seizures and death. The ED50 values for protection against mortality were 1.6 mg/kg for perampanel and 2.1 mg/kg for diazepam. Clonic seizures were unaffected by perampanel and only prevented in a minority of animals by high-dose diazepam. Neither treatment prevented myoclonic body twitches. Perampanel and diazepam also conferred protection against tonic seizures and lethality when administered 15 min following a 0.14 mg/kg, i.p., dose of TETS and 5 min following a 0.2 mg/kg, i.p., dose of TETS. Both posttreatments were highly potent at reducing tonic seizures and lethality in animals exposed to the lower dose of TETS whereas greater doses of both treatments were required in animals exposed to the larger dose of TETS. Neither treatment was as effective suppressing clonic seizures. In an experiment where 0.4 mg/kg TETS was administered by oral gavage and the treatment drugs were administered 5 min later, perampanel only partially protected against lethality whereas diazepam produced nearly complete protection. We conclude that perampanel and diazepam protect against TETS-induced tonic seizures and lethality but have less impact on clonic seizures. Both drugs could have utility in the treatment of TETS intoxication but neither eliminates all seizure activity.
Collapse
Affiliation(s)
- Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Ashish Dhir
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA. .,Department of Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
11
|
Wan L, Li Z, Liu T, Chen X, Xu Q, Yao W, Zhang C, Zhang Y. Epoxyeicosatrienoic acids: Emerging therapeutic agents for central post-stroke pain. Pharmacol Res 2020; 159:104923. [PMID: 32461186 DOI: 10.1016/j.phrs.2020.104923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/23/2023]
Abstract
Central post-stroke pain (CPSP) is chronic neuropathic pain due to a lesion or dysfunction of the central nervous system following cerebrovascular insult. This syndrome is characterized by chronic somatosensory abnormalities including spontaneous pain, hyperalgesia and allodynia, which localize to body areas corresponding to the injured brain region. However, despite its potential to impair activities of daily life and cause mood disorders after stroke, it is probably the least recognized complication of stroke. All currently approved treatments for CPSP have limited efficacy but troublesome side effects. The detailed mechanism underlying CPSP is still under investigation; however, its diverse clinical features indicate excessive central neuronal excitability, which is attributed to loss of inhibition and excessive neuroinflammation. Recently, exogenous epoxyeicosatrienoic acids (EETs) have been used to attenuate the mechanical allodynia in CPSP rats and proven to provide a quicker onset and superior pain relief compared to the current first line drug gabapentin. This anti-nociceptive effect is mediated by reserving the normal thalamic inhibition state through neurosteroid-GABA signaling. Moreover, mounting evidence has revealed that EETs exert anti-inflammatory effects by inhibiting the expression of vascular adhesion molecules, activating NFκB, inflammatory cytokines secretion and COX-2 gene induction. The present review focuses on the extensive evidence supporting the potential of EETs to be a multi-functional therapeutic approach for CPSP. Additionally, the role of EETs in the crosstalk between anti-CPSP and the comorbid mood disorder is reviewed herein.
Collapse
Affiliation(s)
- Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zuofan Li
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuhui Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiaoqiao Xu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Otoki Y, Metherel AH, Pedersen T, Yang J, Hammock BD, Bazinet RP, Newman JW, Taha AY. Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids. Lipids 2020; 55:7-22. [PMID: 31691988 PMCID: PMC7220815 DOI: 10.1002/lipd.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2 -induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2 -induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2 -asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic-lipophilic-balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2 -asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Adam H. Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - Theresa Pedersen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California–Davis, Davis, CA 95616, USA
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Bandara SB, Carty DR, Singh V, Harvey DJ, Vasylieva N, Pressly B, Wulff H, Lein PJ. Susceptibility of larval zebrafish to the seizurogenic activity of GABA type A receptor antagonists. Neurotoxicology 2019; 76:220-234. [PMID: 31811871 DOI: 10.1016/j.neuro.2019.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
Previous studies demonstrated that pentylenetetrazole (PTZ), a GABA type A receptor (GABAAR) antagonist, elicits seizure-like phenotypes in larval zebrafish (Danio rerio). Here, we determined whether the GABAAR antagonists, tetramethylenedisulfotetramine (TETS) and picrotoxin (PTX), both listed as credible chemical threat agents, similarly trigger seizures in zebrafish larvae. Larvae of three, routinely used laboratory zebrafish lines, Tropical 5D, NHGRI and Tupfel long fin, were exposed to varying concentrations of PTZ (used as a positive control), PTX or TETS for 20 min at 5 days post fertilization (dpf). Acute exposure to PTZ, PTX or TETS triggered seizure behavior in the absence of morbidity or mortality. While the concentration-effect relationship for seizure behavior was similar across zebrafish lines for each GABAAR antagonist, significantly less TETS was required to trigger seizures relative to PTX or PTZ. Recordings of extracellular field potentials in the optic tectum of 5 dpf Tropical 5D zebrafish confirmed that all three GABAAR antagonists elicited extracellular spiking patterns consistent with seizure activity, although the pattern varied between chemicals. Post-exposure treatment with the GABAAR positive allosteric modulators (PAMs), diazepam, midazolam or allopregnanolone, attenuated seizure behavior and activity but did not completely normalize electrical field recordings in the optic tectum. These data are consistent with observations of seizure responses in mammalian models exposed to these same GABAAR antagonists and PAMs, further validating larval zebrafish as a higher throughput-screening platform for antiseizure therapeutics, and demonstrating its appropriateness for identifying improved countermeasures for TETS and other convulsant chemical threat agents that trigger seizures via GABAAR antagonism.
Collapse
Affiliation(s)
- Suren B Bandara
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Dennis R Carty
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Vikrant Singh
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, CA 95616, United States.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, United States.
| | - Natalia Vasylieva
- Department of Entomology, University of California, Davis, College of Agricultural and Environmental Sciences, Davis, CA 95616, United States.
| | - Brandon Pressly
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, CA 95616, United States.
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
14
|
Shen Y, Peng W, Chen Q, Hammock BD, Liu J, Li D, Yang J, Ding J, Wang X. Anti-inflammatory treatment with a soluble epoxide hydrolase inhibitor attenuates seizures and epilepsy-associated depression in the LiCl-pilocarpine post-status epilepticus rat model. Brain Behav Immun 2019; 81:535-544. [PMID: 31306773 PMCID: PMC6873816 DOI: 10.1016/j.bbi.2019.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 01/06/2023] Open
Abstract
PURPOSE This study aimed to investigate whether 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), a soluble epoxide hydrolase inhibitor with anti-inflammatory effects, could alleviate spontaneous recurrent seizures (SRS) and epilepsy-associated depressive behaviours in the lithium chloride (LiCl)-pilocarpine-induced post-status epilepticus (SE) rat model. METHODS The rats were intraperitoneally (IP) injected with LiCl (127 mg/kg) and pilocarpine (40 mg/kg) to induce SE. A video surveillance system was used to monitor SRS in the post-SE model for 6 weeks (from the onset of the 2nd week to the end of the 7th week after SE induction). TPPU (0.1 mg/kg/d) was intragastrically given for 4 weeks from the 21st day after SE induction in the SRS + 0.1 TPPU group. The SRS + PEG 400 group was given the vehicle (40% polyethylene glycol 400) instead, and the control group was given LiCl and PEG 400 but not pilocarpine. The sucrose preference test (SPT) and forced swim test (FST) were conducted to evaluate the depression-like behaviours of rats. Immunofluorescent staining, enzyme-linked immunosorbent assay, and western blot analysis were performed to measure astrocytic and microglial gliosis, neuronal loss, and levels of soluble epoxide hydrolase (sEH), cytokines [tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6], and cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB). RESULTS The frequency of SRS was significantly decreased at 6 weeks and 7 weeks after SE induction in the 0.1TPP U group compared with the SRS + PEG 400 group. The immobility time (IMT) evaluated by FST was significantly decreased, whereas the climbing time (CMT) was increased, and the sucrose preference rate (SPR) evaluated by SPT was in an increasing trend. The levels of sEH, TNF-α, IL-1β, and IL-6 in the hippocampus (Hip) and prefrontal cortex (PFC) were all significantly increased in the SRS + PEG 400 group compared with the control group; neuronal loss, astrogliosis, and microglial activation were also observed. The astrocytic and microglial activation and levels of the pro-inflammatory cytokines in the Hip and PFC were significantly attenuated in the TPPU group compared with the SRS + PEG 400 group; moreover, neuronal loss and the decreased CREB expression were significantly alleviated as well. CONCLUSION TPPU treatment after SE attenuates SRS and epilepsy-associated depressive behaviours in the LiCl-pilocarpine induced post-SE rat model, and it also exerts anti-inflammatory effects in the brain. Our findings suggest a new therapeutic approach for epilepsy and its comorbidities, especially depression.
Collapse
Affiliation(s)
- Yijun Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China,Shanghai Medical College of Fudan University, Dongan Road, Shanghai 200032, China
| | - Weifeng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Qinglan Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Junyan Liu
- Department of Nephrology and Metabolomics & Division of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine
| | - Dongyang Li
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China; The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Scienceand the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Moffett MC, Rauscher NA, Rice NC, Myers TM. Survey of drug therapies against acute oral tetramethylenedisulfotetramine poisoning in a rat voluntary consumption model. Neurotoxicology 2019; 74:264-271. [DOI: 10.1016/j.neuro.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
|
16
|
Lauková M, Velíšková J, Velíšek L, Shakarjian MP. Tetramethylenedisulfotetramine neurotoxicity: What have we learned in the past 70 years? Neurobiol Dis 2019; 133:104491. [PMID: 31176716 DOI: 10.1016/j.nbd.2019.104491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Tetramethylenedisulfotetramine (tetramine, TETS, TMDT) is a seizure-producing neurotoxic chemical formed by the condensation of sulfamide and formaldehyde. Serendipitously discovered through an occupational exposure in 1949, it was promoted as a rodenticide but later banned worldwide due to its danger to human health. However, exceptional activity of the agent against rodent pests resulted in its clandestine manufacture with large numbers of inadvertent, intentional, and mass poisonings, which continue to this day. Facile synthesis, extreme potency, persistence, lack of odor, color, and taste identify it as an effective food adulterant and potential chemical agent of terror. No known antidote or targeted treatment is currently available. In this review we examine the origins of tetramethylenedisulfotetramine, from its identification as a neurotoxicant 70 years ago, through early research, to the most recent findings including the risk it poses in the post-911 world. Included is the information known regarding its in vitro pharmacology as a GABAA receptor channel antagonist, the toxic syndrome it produces in vivo, and its effect upon vulnerable populations. We also summarize the available information about potential therapeutic countermeasures and treatment strategies as well as the contribution of clinical development of TMDT poisoning to our understanding of epileptogenesis. Finally we identify gaps in our knowledge and suggest potentially fruitful directions for continued research on this dangerous, yet intriguing compound.
Collapse
Affiliation(s)
- Marcela Lauková
- Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Pediatrics, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Obstetrics and Gynecology, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Neurology, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Neurology, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Pediatrics, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA
| | - Michael P Shakarjian
- Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Cell Biology and Anatomy, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Ln W, Piscataway, NJ 08854, USA.
| |
Collapse
|
17
|
Kodani SD, Morisseau C. Role of epoxy-fatty acids and epoxide hydrolases in the pathology of neuro-inflammation. Biochimie 2019; 159:59-65. [PMID: 30716359 DOI: 10.1016/j.biochi.2019.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Abstract
Neuroinflammation is a physiologic response aimed at protecting the central nervous system during injury. However, unresolved and chronic neuroinflammation can lead to long term damage and eventually neurologic disease including Parkinson's disease, Alzheimer's disease and dementia. Recently, enhancing the concentration of epoxyeicosatrienoic acids (EETs) through blocking their hydrolytic degradation by soluble epoxide hydrolase (sEH) has been applied towards reducing the long-term damage associated with central neurologic insults. Evidence suggests this protective effect is mediated, at least in part, through polarization of microglia to an anti-inflammatory phenotype that blocks the inflammatory actions of prostaglandins and promotes wound repair. This mini-review overviews the epidemiologic basis for using sEH inhibition towards neuroinflammatory disease and pharmacologic studies testing sEH inhibition in several neurologic diseases. Additionally, the combination of sEH inhibition with other eicosanoid signaling pathways is considered as an enhanced approach for developing potent neuroprotectants.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
18
|
Zarriello S, Tuazon JP, Corey S, Schimmel S, Rajani M, Gorsky A, Incontri D, Hammock BD, Borlongan CV. Humble beginnings with big goals: Small molecule soluble epoxide hydrolase inhibitors for treating CNS disorders. Prog Neurobiol 2018; 172:23-39. [PMID: 30447256 DOI: 10.1016/j.pneurobio.2018.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
Soluble epoxide hydrolase (sEH) degrades epoxides of fatty acids including epoxyeicosatrienoic acid isomers (EETs), which are produced as metabolites of the cytochrome P450 branch of the arachidonic acid pathway. EETs exert a variety of largely beneficial effects in the context of inflammation and vascular regulation. sEH inhibition is shown to be therapeutic in several cardiovascular and renal disorders, as well as in peripheral analgesia, via the increased availability of anti-inflammatory EETs. The success of sEH inhibitors in peripheral systems suggests their potential in targeting inflammation in the central nervous system (CNS) disorders. Here, we describe the current roles of sEH in the pathology and treatment of CNS disorders such as stroke, traumatic brain injury, Parkinson's disease, epilepsy, cognitive impairment, dementia and depression. In view of the robust anti-inflammatory effects of stem cells, we also outlined the potency of stem cell treatment and sEH inhibitors as a combination therapy for these CNS disorders. This review highlights the gaps in current knowledge about the pathologic and therapeutic roles of sEH in CNS disorders, which should guide future basic science research towards translational and clinical applications of sEH inhibitors for treatment of neurological diseases.
Collapse
Affiliation(s)
- Sydney Zarriello
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Sydney Corey
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Samantha Schimmel
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Mira Rajani
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Anna Gorsky
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Diego Incontri
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, NIEHS-UCD Superfund Research Program, University of California - Davis, United States.
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, United States.
| |
Collapse
|
19
|
Lauková M, Velíšková J, Velíšek L, Shakarjian MP. Developmental and sex differences in tetramethylenedisulfotetramine (TMDT)-induced syndrome in rats. Dev Neurobiol 2018; 78:403-416. [PMID: 29411537 DOI: 10.1002/dneu.22582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
Abstract
Tetramethylenedisulfotetramine (TMDT) is a synthetic neurotoxic rodenticide considered a chemical threat agent. Symptoms of intoxication include seizures leading to status epilepticus and death. While children and women have been often the victims, no studies exist investigating the neurotoxic effects of TMDT in developing individuals or females. Thus, we performed such an investigation in developing Sprague-Dawley rats of both sexes in order to identify potential age- or sex-dependent vulnerability to TMDT exposure. Subcutaneous injection was chosen as the preferred route of TMDT exposure. EEG recordings confirmed the seizure activity observed in both postnatal day 15 (P15) and adult rats. Additionally, P15 rats displayed greater sensitivity to TMDT than postnanatal day 25 or adult animals. Seizures were generally more severe in females compared to males. Barrel rotations accompanied convulsions in P25 and adult, but sparsely in P15 rats. Adults developed barrel rolling less frequently than P25 population. Neuronal cell death was not present in 24-h TMDT survivors at any age or sex tested. A seizure rechallenge with flurothyl 7 days following TMDT exposure demonstrated longer latencies to the first clonic seizure but a faster progression into the tonic-clonic seizure in P15 and adult survivors as compared to their vehicle-injected counterparts. In conclusion, the youngest age group represents the most vulnerable population to the TMDT-induced toxidrome. Females appear to be more vulnerable than males. TMDT exposure promotes seizure spread and progression in survivors. These findings will help to establish sex- and age-specific treatment strategies for TMDT-exposed individuals. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 403-416, 2018.
Collapse
Affiliation(s)
- Marcela Lauková
- Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, New York.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York.,Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Michael P Shakarjian
- Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, New York.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey
| |
Collapse
|
20
|
Swardfager W, Hennebelle M, Yu D, Hammock BD, Levitt AJ, Hashimoto K, Taha AY. Metabolic/inflammatory/vascular comorbidity in psychiatric disorders; soluble epoxide hydrolase (sEH) as a possible new target. Neurosci Biobehav Rev 2018; 87:56-66. [PMID: 29407524 DOI: 10.1016/j.neubiorev.2018.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
The common and severe psychiatric disorders, including major depressive disorder (MDD) and bipolar disorder (BD), are associated with inflammation, oxidative stress and changes in peripheral and brain lipid metabolism. Those pathways are implicated in the premature development of vascular and metabolic comorbidities, which account for considerable morbidity and mortality, including increased dementia risk. During endoplasmic reticulum stress, the soluble epoxide hydrolase (sEH) enzyme converts anti-inflammatory fatty acid epoxides generated by cytochrome p450 enzymes into their corresponding and generally less anti-inflammatory, or even pro-inflammatory, diols, slowing the resolution of inflammation. The sEH enzyme and its oxylipin products are elevated post-mortem in MDD, BD and schizophrenia. Preliminary clinical data suggest that oxylipins increase with symptoms in seasonal MDD and anorexia nervosa, requiring confirmation in larger studies and other cohorts. In rats, a soluble sEH inhibitor mitigated the development of depressive-like behaviors. We discuss sEH inhibitors under development for cardiovascular diseases, post-ischemic brain injury, neuropathic pain and diabetes, suggesting new possibilities to address the mood and cognitive symptoms of psychiatric disorders, and their most common comorbidities.
Collapse
Affiliation(s)
- W Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; University Health Network Toronto Rehabilitation Institute, Toronto, Canada.
| | - M Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - D Yu
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
| | - B D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center UCDMC, University of California, Davis, CA, USA
| | - A J Levitt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - K Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - A Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
21
|
Rice NC, Rauscher NA, Langston JL, Myers TM. Behavioral intoxication following voluntary oral ingestion of tetramethylenedisulfotetramine: Dose-dependent onset, severity, survival, and recovery. Neurotoxicology 2017; 63:21-32. [PMID: 28855111 DOI: 10.1016/j.neuro.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/13/2023]
Abstract
Tetramethylenedisulfotetramine (tetramine, or TETS) is a highly toxic rodenticide that has been responsible for over 14,000 accidental and intentional poisonings worldwide. Although the vast majority of TETS poisonings involved tainted food or drink, the laboratory in vivo studies of TETS intoxication used intraperitoneal injection or gavage for TETS exposure. Seeking to develop and characterize a more realistic model of TETS intoxication in the present study, rats were trained to rapidly and voluntarily consume a poisoned food morsel. Initially, the overt toxic effects of TETS consumption across a large range of doses were characterized, then a focused range of doses was selected for more intensive behavioral evaluation (in operant test chambers providing a variable-interval schedule of food reinforcement). The onset of intoxication following voluntary oral consumption of TETS was rapid, and clear dose-dependent response-rate suppression was observed across multiple performance measures within the operant-chamber environment. At most doses, recovery of operant performance did not occur within 30h. Food consumption and body weight changes were also dose dependent and corroborated the behavioral measures of intoxication. This voluntary oral-poisoning method with concomitant operant-behavioral assessment shows promise for future studies of TETS (and other toxic chemicals of interest) and may be extremely valuable in characterizing treatment outcomes.
Collapse
Affiliation(s)
- Nathaniel C Rice
- United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, USA
| | - Noah A Rauscher
- United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, USA
| | - Jeffrey L Langston
- United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, USA
| | - Todd M Myers
- United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, USA.
| |
Collapse
|
22
|
Mule NK, Orjuela Leon AC, Falck JR, Arand M, Marowsky A. 11,12 -Epoxyeicosatrienoic acid (11,12 EET) reduces excitability and excitatory transmission in the hippocampus. Neuropharmacology 2017; 123:310-321. [DOI: 10.1016/j.neuropharm.2017.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/25/2017] [Accepted: 05/13/2017] [Indexed: 12/19/2022]
|
23
|
Ahmedov ML, Kemerdere R, Baran O, Inal BB, Gumus A, Coskun C, Yeni SN, Eren B, Uzan M, Tanriverdi T. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy. World Neurosurg 2017; 106:46-50. [PMID: 28669871 DOI: 10.1016/j.wneu.2017.06.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. METHODS A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. RESULTS The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r2 = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r2 = 0.7, P = 0.00001 and r2 = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r2 = 0.06, P = 0.00001). CONCLUSIONS Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature.
Collapse
Affiliation(s)
- Merdin Lyutviev Ahmedov
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Rahsan Kemerdere
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Oguz Baran
- Department of Neurosurgery, Ministry of Health Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Berrin Bercik Inal
- Clinical Biochemistry Laboratory, Ministry of Health Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Alper Gumus
- Clinical Biochemistry Laboratory, Ministry of Health Haseki Research and Training Hospital, Istanbul, Turkey
| | - Cihan Coskun
- Clinical Biochemistry Laboratory, Ministry of Health Haseki Research and Training Hospital, Istanbul, Turkey
| | - Seher Naz Yeni
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Bulent Eren
- Bursa Morgue Department, Counsil of Forensic Medicine, Bursa, Turkey
| | - Mustafa Uzan
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
24
|
Cao Z, Xu J, Hulsizer S, Cui Y, Dong Y, Pessah IN. Influence of tetramethylenedisulfotetramine on synchronous calcium oscillations at distinct developmental stages of hippocampal neuronal cultures. Neurotoxicology 2016; 58:11-22. [PMID: 27984050 DOI: 10.1016/j.neuro.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
The spatial and temporal patterns of spontaneous synchronous Ca2+ oscillations (SCOs) regulate physiological pathways that influence neuronal development, excitability, and health. Hippocampal neuronal cultures (HN) and neuron/glia co-cultures (HNG) produced from neonatal mice were loaded with Fluo-4/AM and SCOs recorded in real-time using a Fluorescence Imaging Plate Reader at different developmental stages in vitro. HNG showed an earlier onset of SCOs, with low amplitude and low frequency SCOs at 4days in vitro (DIV), whereas HN were quiescent at this point. SCO amplitude peaked at 9 DIV for both cultures. SCO network frequency peaked at 12 DIV in HN, whereas in HNG the frequency peaked at 6 DIV. SCO patterns were associated with the temporal development of neuronal networks and their ratio of glutamatergic to GABAergic markers of excitatory/inhibitory balance. HN and HNG exhibited differential responses to the convulsant tetramethylenedisulfotetramine (TETS) and were highly dependent on DIV. In HN, TETS triggered an acute rise of intracellular Ca2+ (Phase I response) only in 14 DIV and a sustained decrease of SCO frequency with increased amplitude (Phase II response) at all developmental stages. In HNG, TETS decreased the SCO frequency and increased the amplitude at 6 and 14 but not 9 DIV. There was no acute Ca2+ rise (Phase I response) in any age of HNG tested with TETS. These data demonstrated the importance of glia and developmental stage in modulating neuronal responses to TETS. Our results illustrate the applicability of the model for investigating how caged convulsants elicit abnormal network activity during the development of HN and HNG cultures in vitro.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| | - Jian Xu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yanjun Cui
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| |
Collapse
|
25
|
Pessah IN, Rogawski MA, Tancredi DJ, Wulff H, Zolkowska D, Bruun DA, Hammock BD, Lein PJ. Models to identify treatments for the acute and persistent effects of seizure-inducing chemical threat agents. Ann N Y Acad Sci 2016; 1378:124-136. [PMID: 27467073 DOI: 10.1111/nyas.13137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/27/2022]
Abstract
Exposures to seizure-inducing chemical threat agents are a major public health concern. Of particular need is improved treatment to terminate convulsions and to prevent the long-term neurological sequelae in survivors. We are studying the organophosphorus cholinesterase inhibitor diisopropyl fluorophosphate (DFP) and the GABA receptor inhibitor tetramethylenedisulfotetramine (TETS), which arguably encompass the mechanistic spectrum of seizure-inducing chemical threats, with the goal of identifying therapeutic approaches with broad-spectrum efficacy. Research efforts have focused on developing translational models and translational diagnostic approaches, including (1) in vivo models of DFP- and TETS-induced seizures for studying neuropathological mechanisms and identifying treatment approaches; (2) in vivo imaging modalities for noninvasive longitudinal monitoring of neurological damage and response to therapeutic candidates; and (3) higher-throughput in vitro platforms for rapid screening of compounds to identify potential antiseizure and neuroprotective agents, as well as mechanistically relevant novel drug targets. This review summarizes our progress toward realizing these goals and discusses best practices and mechanistic insights derived from our modeling efforts.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine
| | | | | | - Heike Wulff
- Department of Pharmacology, School of Medicine
| | | | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Bruce D Hammock
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine.
| |
Collapse
|
26
|
Shakarjian MP, Laukova M, Velíšková J, Stanton PK, Heck DE, Velíšek L. Tetramethylenedisulfotetramine: pest control gone awry. Ann N Y Acad Sci 2016; 1378:68-79. [PMID: 27384716 DOI: 10.1111/nyas.13120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023]
Abstract
Incidences of pesticide poisonings are a significant cause of morbidity and mortality worldwide. The seizure-inducing rodenticide tetramethylenedisulfotetramine is one of the most toxic of these agents. Although banned, it has been responsible for thousands of accidental, intentional, and mass poisonings in mainland China and elsewhere. An optimal regimen for treatment of poisoning has not been established. Its facile synthesis from easily obtained starting materials, extreme potency, and lack of odor, color, or taste make it a potential chemical threat agent. This review describes the toxicologic properties of this agent, more recent advances in our understanding of its properties, and recommendations for future research.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York. .,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York. .,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey.
| | - Marcela Laukova
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York
| | - Diane E Heck
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York.,Department of Pediatrics, New York Medical College, Valhalla, New York
| |
Collapse
|
27
|
Bruun DA, Cao Z, Inceoglu B, Vito ST, Austin AT, Hulsizer S, Hammock BD, Tancredi DJ, Rogawski MA, Pessah IN, Lein PJ. Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology 2015; 95:332-42. [PMID: 25882826 DOI: 10.1016/j.neuropharm.2015.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
Abstract
Tetramethylenedisulfotetramine (TETS) is a potent convulsant GABAA receptor blocker. Mice receiving a lethal dose of TETS (0.15 mg/kg i.p.) are rescued from death by a high dose of diazepam (5 mg/kg i.p.) administered shortly after the second clonic seizure (∼20 min post-TETS). However, this high dose of diazepam significantly impairs blood pressure and mobility, and does not prevent TETS-induced neuroinflammation in the brain. We previously demonstrated that TETS alters synchronous Ca(2+) oscillations in primary mouse hippocampal neuronal cell cultures and that pretreatment with the combination of diazepam and allopregnanolone at concentrations having negligible effects individually prevents TETS effects on intracellular Ca(2+) dynamics. Here, we show that treatment with diazepam and allopregnanolone (0.1 μM) 20 min after TETS challenge normalizes synchronous Ca(2+) oscillations when added in combination but not when added singly. Similarly, doses (0.03-0.1 mg/kg i.p.) of diazepam and allopregnanolone that provide minimal protection when administered singly to TETS intoxicated mice increase survival from 10% to 90% when given in combination either 10 min prior to TETS or following the second clonic seizure. This therapeutic combination has negligible effects on blood pressure or mobility. Combined treatment with diazepam and allopregnanolone also decreases TETS-induced microglial activation. Diazepam and allopregnanolone have distinct actions as positive allosteric modulators of GABAA receptors that in combination enhance survival and mitigate neuropathology following TETS intoxication without the adverse side effects associated with high dose benzodiazepines. Combination therapy with a benzodiazepine and neurosteroid represents a novel neurotherapeutic strategy with potentially broad application.
Collapse
Affiliation(s)
- Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bora Inceoglu
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Stephen T Vito
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | | | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Cao Z, Zou X, Cui Y, Hulsizer S, Lein PJ, Wulff H, Pessah IN. Rapid throughput analysis demonstrates that chemicals with distinct seizurogenic mechanisms differentially alter Ca2+ dynamics in networks formed by hippocampal neurons in culture. Mol Pharmacol 2015; 87:595-605. [PMID: 25583085 DOI: 10.1124/mol.114.096701] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Primary cultured hippocampal neurons (HN) form functional networks displaying synchronous Ca(2+) oscillations (SCOs) whose patterns influence plasticity. Whether chemicals with distinct seizurogenic mechanisms differentially alter SCO patterns was investigated using mouse HN loaded with the Ca(2+) indicator fluo-4-AM. Intracellular Ca(2+) dynamics were recorded from 96 wells simultaneously in real-time using fluorescent imaging plate reader. Although quiescent at 4 days in vitro (DIV), HN acquired distinctive SCO patterns as they matured to form extensive dendritic networks by 16 DIV. Challenge with kainate, a kainate receptor (KAR) agonist, 4-aminopyridine (4-AP), a K(+) channel blocker, or pilocarpine, a muscarinic acetylcholine receptor agonist, caused distinct changes in SCO dynamics. Kainate at <1 µM produced a rapid rise in baseline Ca(2+) (Phase I response) associated with high-frequency and low-amplitude SCOs (Phase II response), whereas SCOs were completely repressed with >1 µM kainate. KAR competitive antagonist CNQX [6-cyano-7-nitroquinoxaline-2,3-dione] (1-10 µM) normalized Ca(2+) dynamics to the prekainate pattern. Pilocarpine lacked Phase I activity but caused a sevenfold prolongation of Phase II SCOs without altering either their frequency or amplitude, an effect normalized by atropine (0.3-1 µM). 4-AP (1-30 µM) elicited a delayed Phase I response associated with persistent high-frequency, low-amplitude SCOs, and these disturbances were mitigated by pretreatment with the KCa activator SKA-31 [naphtho[1,2-d]thiazol-2-ylamine]. Consistent with its antiepileptic and neuroprotective activities, nonselective voltage-gated Na(+) and Ca(2+) channel blocker lamotrigine partially resolved kainate- and pilocarpine-induced Ca(2+) dysregulation. This rapid throughput approach can discriminate among distinct seizurogenic mechanisms that alter Ca(2+) dynamics in neuronal networks and may be useful in screening antiepileptic drug candidates.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Yanjun Cui
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Susan Hulsizer
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Pamela J Lein
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Heike Wulff
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Isaac N Pessah
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| |
Collapse
|
29
|
Flannery BM, Silverman JL, Bruun DA, Puhger KR, McCoy MR, Hammock BD, Crawley JN, Lein PJ. Behavioral assessment of NIH Swiss mice acutely intoxicated with tetramethylenedisulfotetramine. Neurotoxicol Teratol 2014; 47:36-45. [PMID: 25446016 DOI: 10.1016/j.ntt.2014.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/30/2014] [Accepted: 10/30/2014] [Indexed: 12/09/2022]
Abstract
Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison that is thought to trigger seizures by inhibiting the function of the type A gamma-aminobutyric acid receptor (GABAAR). Acute intoxication with TETS can cause vomiting, convulsions, status epilepticus (SE) and even death. Clinical case reports indicate that individuals who survive poisoning may exhibit long-term neuropsychological issues and cognitive deficits. Therefore, the objective of this research was to determine whether a recently described mouse model of acute TETS intoxication exhibits persistent behavioral deficits. Young adult male NIH Swiss mice received a seizure-inducing dose of TETS (0.15mg/kg, ip) and then were rescued from lethality by administration of diazepam (5mg/kg, ip) approximately 20min post-TETS-exposure. TETS-intoxicated mice typically exhibited 2 clonic seizures prior to administration of diazepam with no subsequent seizures post-diazepam injection as assessed using behavioral criteria. Seizures lasted an average of 72s. Locomotor activity, anxiety-like and depression-relevant behaviors and cognition were assessed at 1week, 1month and 2months post-TETS exposure using open field, elevated-plus maze, light↔dark transitions, tail suspension, forced swim and novel object recognition tasks. Interestingly, preliminary validation tests indicated that NIH Swiss mice do not respond to the shock in fear conditioning tasks. Subsequent evaluation of hot plate and tail flick nociception tasks revealed that this strain exhibits significantly decreased pain sensitivity relative to age- and sex-matched C57BL/6J mice, which displayed normal contextual fear conditioning. NIH Swiss mice acutely intoxicated with TETS exhibited no significant anxiety-related, depression-relevant, learning or memory deficits relative to vehicle controls at any of the time points assessed with the exception of significantly increased locomotor activity at 2months post-TETS intoxication. The general absence of long-term behavioral deficits in TETS-intoxicated mice on these six assays suggests that the neurobehavioral consequences of TETS exposure described in human survivors of acute TETS intoxication are likely due to sustained seizure activity, rather than a direct effect of the chemical itself. Future research efforts are directed toward developing an animal model that better recapitulates the SE and seizure duration reported in humans acutely intoxicated with TETS.
Collapse
Affiliation(s)
- Brenna M Flannery
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Kyle R Puhger
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Mark R McCoy
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA.
| | - Bruce D Hammock
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA; UCDMC Comprehensive Cancer Center, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Jacqueline N Crawley
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA; MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|