1
|
Maeda N, Shimizu S, Takahashi Y, Kubota R, Uomoto S, Takesue K, Takashima K, Okano H, Ojiro R, Ozawa S, Tang Q, Jin M, Ikarashi Y, Yoshida T, Shibutani M. Oral Exposure to Lead Acetate for 28 Days Reduces the Number of Neural Progenitor Cells but Increases the Number and Synaptic Plasticity of Newborn Granule Cells in Adult Hippocampal Neurogenesis of Young-Adult Rats. Neurotox Res 2022; 40:2203-2220. [PMID: 36098941 DOI: 10.1007/s12640-022-00577-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/31/2022]
Abstract
Lead (Pb) causes developmental neurotoxicity. Developmental exposure to Pb acetate (PbAc) induces aberrant hippocampal neurogenesis by increasing or decreasing neural progenitor cell (NPC) subpopulations in the dentate gyrus (DG) of rats. To investigate whether hippocampal neurogenesis is similarly affected by PbAc exposure in a general toxicity study, 5-week-old Sprague-Dawley rats were orally administered PbAc at 0, 4000, and 8000 ppm (w/v) in drinking water for 28 days. After exposure to 4000 or 8000 ppm PbAc, Pb had accumulated in the brains. Neurogenesis was suppressed by 8000 ppm PbAc, which was related to decreased number of type-2b NPCs, although number of mature granule cells were increased by both PbAc doses. Gene expression in the 8000 ppm PbAc group suggested suppressed NPC proliferation and increased apoptosis resulting in suppressed neurogenesis. PbAc exposure increased numbers of metallothionein-I/II+ cells and GFAP+ astrocytes in the DG hilus, and upregulated Mt1, antioxidant genes (Hmox1 and Gsta5), and Il6 in the DG, suggesting the induction of oxidative stress and neuroinflammation related to Pb accumulation resulting in suppressed neurogenesis. PbAc at 8000 ppm also upregulated Ntrk2 and increased the number of CALB2+ interneurons, suggesting the activation of BDNF-TrkB signaling and CALB2+ interneuron-mediated signals to ameliorate suppressed neurogenesis resulting in increased number of newborn granule cells. PbAc at both doses increased the number of ARC+ granule cells, suggesting the facilitation of synaptic plasticity of newborn granule cells through the activation of BDNF-TrkB signaling. These results suggest that PbAc exposure during the young-adult stage disrupted hippocampal neurogenesis, which had a different pattern from developmental exposure to PbAc. However, the induction of oxidative stress/neuroinflammation and activation of identical cellular signals occurred irrespective of the life stage at PbAc exposure.
Collapse
Affiliation(s)
- Natsuno Maeda
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Reiji Kubota
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, BeiBei District, No. 2 Tiansheng Road, Chongqing, 400715, People's Republic of China
| | - Yoshiaki Ikarashi
- Division of Environmental Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan. .,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Deciphering the Genetic Crosstalk between Microglia and Oligodendrocyte Precursor Cells during Demyelination and Remyelination Using Transcriptomic Data. Int J Mol Sci 2022; 23:ijms232314868. [PMID: 36499195 PMCID: PMC9738937 DOI: 10.3390/ijms232314868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Demyelinating disorders show impaired remyelination due to failure in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature myelin-forming oligodendrocytes, a process driven by microglia-OPC crosstalk. Through conducting a transcriptomic analysis of microarray studies on the demyelination-remyelination cuprizone model and using human samples of multiple sclerosis (MS), we identified molecules involved in this crosstalk. Differentially expressed genes (DEGs) of specific regions/cell types were detected in GEO transcriptomic raw data after cuprizone treatment and in MS samples, followed by functional analysis with GO terms and WikiPathways. Additionally, microglia-OPC crosstalk between microglia ligands, OPC receptors and target genes was examined with the NicheNet model. We identified 108 and 166 DEGs in the demyelinated corpus callosum (CC) at 2 and 4 weeks of cuprizone treatment; 427 and 355 DEGs in the remyelinated (4 weeks of cuprizone treatment + 14 days of normal diet) compared to 2- and 4-week demyelinated CC; 252 DEGs in MS samples and 2730 and 12 DEGs in OPC and microglia of 4-week demyelinated CC. At this time point, we found 95 common DEGs in the CC and OPCs, and one common DEG in microglia and OPCs, mostly associated with myelin and lipid metabolism. Crosstalk analysis identified 47 microglia ligands, 43 OPC receptors and 115 OPC target genes, all differentially expressed in cuprizone-treated samples and associated with myelination. Our differential expression pipeline identified demyelination/remyelination transcriptomic biomarkers in studies using diverse platforms and cell types/tissues. Cellular crosstalk analysis yielded novel markers of microglia ligands, OPC receptors and target genes.
Collapse
|
3
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
4
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
5
|
Shimizu S, Maeda N, Takahashi Y, Uomoto S, Takesue K, Ojiro R, Tang Q, Ozawa S, Okano H, Takashima K, Woo GH, Yoshida T, Shibutani M. Oral exposure to aluminum chloride for 28 days suppresses neural stem cell proliferation and increases mature granule cells in adult hippocampal neurogenesis of young-adult rats. J Appl Toxicol 2022; 42:1337-1353. [PMID: 35146777 DOI: 10.1002/jat.4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
Aluminum (Al), a common light metal, affects the developing nervous system. Developmental exposure to Al chloride (AlCl3 ) induces aberrant neurogenesis by targeting neural stem cells (NSCs) and/or neural progenitor cells (NPCs) in the dentate gyrus (DG) of rats and mice. To investigate whether hippocampal neurogenesis is similarly affected by AlCl3 exposure in a general toxicity study, AlCl3 was orally administered to 5-week-old Sprague Dawley rats at dosages of 0, 4000, or 8000 ppm in drinking water for 28 days. AlCl3 downregulated Sox2 transcript levels in the DG at the highest dosage and produced a dose-dependent decrease of SOX2+ cells without altering numbers of GFAP+ or TBR2+ cells in the subgranular zone, suggesting that AlCl3 decreases Type 2a NPCs. High-dose exposure downregulated Pcna, upregulated Pvalb, and altered expression of genes suggestive of oxidative stress induction (upregulation of Nos2 and downregulation of antioxidant enzyme genes), indicating suppressed proliferation and differentiation of Type 1 NSCs. AlCl3 doses also increased mature granule cells in the DG. Upregulation of Reln may have contributed to an increase of granule cells to compensate for the decrease of Type 2a NPCs. Moreover, upregulation of Calb2, Gria2, Mapk3, and Tgfb3, as well as increased numbers of activated astrocytes in the DG hilus, may represent ameliorating responses against suppressed neurogenesis. These results suggest that 28-day exposure of young-adult rats to AlCl3 differentially targeted NPCs and mature granule cells in hippocampal neurogenesis, yielding a different pattern of disrupted neurogenesis from developmental exposure.
Collapse
Affiliation(s)
- Saori Shimizu
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Natsuno Maeda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon-si, Chungbuk, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
6
|
Takahashi Y, Okano H, Takashima K, Ojiro R, Tang Q, Ozawa S, Ogawa B, Woo GH, Yoshida T, Shibutani M. Oral exposure to high-dose ethanol for 28 days in rats reduces neural stem cells and immediate nascent neural progenitor cells as well as FOS-expressing newborn granule cells in adult hippocampal neurogenesis. Toxicol Lett 2022; 360:20-32. [DOI: 10.1016/j.toxlet.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
7
|
Comparison of the Effects of Cuprizone on Demyelination in the Corpus Callosum and Hippocampal Progenitors in Young Adult and Aged Mice. Neurochem Res 2022; 47:1073-1082. [DOI: 10.1007/s11064-021-03506-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
|
8
|
Ogawa B, Nakanishi Y, Wakamatsu M, Takahashi Y, Shibutani M. Repeated administration of acrylamide for 28 days reduces late-stage progenitor cells and immature granule cells accompanying impaired neurite outgrowth in the adult hippocampal neurogenesis in young-adult rats. J Toxicol Sci 2022; 47:467-482. [DOI: 10.2131/jts.47.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bunichiro Ogawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yutaka Nakanishi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Masaki Wakamatsu
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
9
|
Ojiro R, Watanabe Y, Okano H, Takahashi Y, Takashima K, Tang Q, Ozawa S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Gene expression profiles of multiple brain regions in rats differ between developmental and postpubertal exposure to valproic acid. J Appl Toxicol 2021; 42:864-882. [PMID: 34779009 DOI: 10.1002/jat.4263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 11/05/2022]
Abstract
We have previously reported that the valproic acid (VPA)-induced disruption pattern of hippocampal adult neurogenesis differs between developmental and 28-day postpubertal exposure. In the present study, we performed brain region-specific global gene expression profiling to compare the profiles of VPA-induced neurotoxicity between developmental and postpubertal exposure. Offspring exposed to VPA at 0, 667, and 2000 parts per million (ppm) via maternal drinking water from gestational day 6 until weaning (postnatal day 21) were examined, along with male rats orally administered VPA at 0, 200, and 900 mg/kg body weight for 28 days starting at 5 weeks old. Four brain regions-the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis-were subjected to expression microarray analysis. Profiled data suggested a region-specific pattern of effects after developmental VPA exposure, and a common pattern of effects among brain regions after postpubertal VPA exposure. Developmental VPA exposure typically led to the altered expression of genes related to nervous system development (Msx1, Xcl1, Foxj1, Prdm16, C3, and Kif11) in the hippocampus, and those related to nervous system development (Neurod1) and gliogenesis (Notch1 and Sox9) in the corpus callosum. Postpubertal VPA exposure led to the altered expression of genes related to neuronal differentiation and projection (Cd47, Cyr61, Dbi, Adamts1, and Btg2) in multiple brain regions. These findings suggested that neurotoxic patterns of VPA might be different between developmental and postpubertal exposure, which was consistent with our previous study. Of note, the hippocampal dentate gyrus might be a sensitive target of developmental neurotoxicants after puberty.
Collapse
Affiliation(s)
- Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Fumiyo Saito
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan, Bunkyo-ku, Tokyo, Japan.,Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| | - Yumi Akahori
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan, Bunkyo-ku, Tokyo, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
10
|
Ohgomori T, Jinno S. Signal Transducer and Activator of Transcription 3 Activation in Hippocampal Neural Stem Cells and Cognitive Deficits in Mice Following Short-term Cuprizone Exposure. Neuroscience 2021; 472:90-102. [PMID: 34358632 DOI: 10.1016/j.neuroscience.2021.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have emphasized that adult hippocampal neurogenesis impairment may be associated with cognitive problems. Because cuprizone (CPZ), a copper-chelating reagent, was shown to decrease the production of new neurons, we aimed to further understand the involvement of adult hippocampal neurogenesis impairment in cognitive function by using a short-term (2-week) CPZ exposure paradigm. The CPZ-fed mice showed cognitive deficits, i.e., impaired sensorimotor gating and reduced social novelty preference, compared to normal-fed mice. Although a long-term (e.g., 5-week) CPZ exposure paradigm was found to cause demyelination, we encountered that the labeling for myelin in the hippocampus was unaffected by 2-week CPZ exposure. The densities of neuronal progenitor cells (NPCs) and newborn granule cells (NGCs) were lower in CPZ-fed mice than in normal-fed mice, while those of neural stem cells (NSCs) were comparable between groups. We then examined whether short-term CPZ exposure might induce activation of signal transducer and activator of transcription 3 (STAT3), which plays a major role in cytokine receptor signaling. The densities of phosphorylated STAT3-positive (pSTAT3+) NSCs were higher in CPZ-fed mice than in normal-fed mice, while those of pSTAT3+ NPCs/NGCs were very low in both groups. Interestingly, the densities of bromodeoxyuridine-positive (BrdU+) NSCs were higher in CPZ-fed mice than in normal-fed mice 2 weeks after BrdU injection, while those of BrdU+ NPCs/NGCs were lower in CPZ-fed mice than in normal-fed mice. These findings suggest that short-term CPZ exposure inhibits differentiation of NSCs into NPCs via activation of STAT3, which may in part underlie cognitive deficits.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
11
|
DCX + neuronal progenitors contribute to new oligodendrocytes during remyelination in the hippocampus. Sci Rep 2020; 10:20095. [PMID: 33208869 PMCID: PMC7674453 DOI: 10.1038/s41598-020-77115-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
A pool of different types of neural progenitor cells resides in the adult hippocampus. Apart from doublecortin-expressing (DCX+) neuronal progenitor cells (NPCs), the hippocampal parenchyma also contains oligodendrocyte precursor cells (OPCs), which can differentiate into myelinating oligodendrocytes. It is not clear yet to what extent the functions of these different progenitor cell types overlap and how plastic these cells are in response to pathological processes. The aim of this study was to investigate whether hippocampal DCX+ NPCs can generate new oligodendrocytes under conditions in which myelin repair is required. For this, the cell fate of DCX-expressing NPCs was analyzed during cuprizone-induced demyelination and subsequent remyelination in two regions of the hippocampal dentate gyrus of DCX-CreERT2/Flox-EGFP transgenic mice. In this DCX reporter model, the number of GFP+ NPCs co-expressing Olig2 and CC1, a combination of markers typically found in mature oligodendrocytes, was significantly increased in the hippocampal DG during remyelination. In contrast, the numbers of GFP+PDGFRα+ cells, as well as their proliferation, were unaffected by de- or remyelination. During remyelination, a higher portion of newly generated BrdU-labeled cells were GFP+ NPCs and there was an increase in new oligodendrocytes derived from these proliferating cells (GFP+Olig2+BrdU+). These results suggest that DCX-expressing NPCs were able to contribute to the generation of mature oligodendrocytes during remyelination in the adult hippocampus.
Collapse
|
12
|
Cuprizone Affects Hypothermia-Induced Neuroprotection and Enhanced Neuroblast Differentiation in the Gerbil Hippocampus after Ischemia. Cells 2020; 9:cells9061438. [PMID: 32531881 PMCID: PMC7349804 DOI: 10.3390/cells9061438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we investigated the effects of cuprizone on cell death, glial activation, and neuronal plasticity induced by hypothermia after ischemia in gerbils. Food was supplemented with cuprizone at 0.2% ad libitum for eight weeks. At six weeks after diet feeing, gerbils received transient forebrain ischemia with or without hypothermic preconditioning. Cuprizone treatment for 8 weeks increased the number of astrocytes, microglia, and pro-inflammatory cytokine levels in the hippocampus. In addition, cuprizone treatment significantly decreased the number of proliferating cells and neuroblasts in the dentate gyrus. Brain ischemia caused cell death, disruption of myelin basic proteins, and reactive gliosis in CA1. In addition, ischemia significantly increased pro-inflammatory cytokines and the number of proliferating cells and differentiating neuroblasts in the dentate gyrus. In contrast, hypothermic conditioning attenuated these changes in CA1 and the dentate gyrus. However, cuprizone treatment decreased cell survival induced by hypothermic preconditioning after ischemia and increased the number of reactive microglia and astrocytes in CA1 as well as that of macrophages in the subcallosal zone. These changes occurred because the protective effect of hypothermia in ischemic damage was disrupted by cuprizone administration. Furthermore, cuprizone decreased ischemia-induced proliferating cells and neuroblasts in the dentate gyrus.
Collapse
|
13
|
Ganji R, Razavi S, Ghasemi N, Mardani M. Improvement of Remyelination in Demyelinated Corpus Callosum Using Human Adipose-Derived Stem Cells (hADSCs) and Pregnenolone in the Cuprizone Rat Model of Multiple Sclerosis. J Mol Neurosci 2020; 70:1088-1099. [PMID: 32314194 DOI: 10.1007/s12031-020-01515-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Adipose-derived stem cells (ASCs) have neuroprotective effects, and their repair ability has been approved in neurodegenerative studies. Pregnenolone as a neurosteroid plays significant roles in neurogenesis. We aimed to consider the effect of ADSCs and pregnenolone injection on the multiple sclerosis (MS) model created by cuprizone. Male Wistar rats (n = 36) were fed with an ordinary diet or a diet with cuprizone (0.6%) for 3 weeks. H-ADSCs were taken from patients with lipoaspirate surgery. The rats were divided into six groups (n = 6): healthy, MS, sham, pregnenolone injection, ADSCs injection, pregnenolone and ADSCs injection. Behavioral test, histological examination and TEM were conducted. The specific markers for myelin and cell differentiation were assessed using immunohistochemistry staining. Additionally, the measure of MBP and MOG gene expression and the amount of related proteins were determined using real-time RT-PCR and ELISA techniques, respectively. Histologic results showed that induced demyelination in corpus callosum fibers. TEM revealed an increased thickness of myelin in fibers in the treated groups (P < 0.05). Injection of hADSC and pregnenolone significantly increased the expression levels of MBP and MOG (P < 0.001). The mean percentage of MOG and MBP markers were significantly increased in the treated groups compared to MS and sham groups (P < 0.05). Moreover, the OD level of MBP and MOG proteins showed that their values in the ADSCs/pregnenolone group were close to those of the control group without a significant difference. Our data indicated the remyelination potency and cell differentiation can improve with ADSCs and pregnenolone treatments in the multiple sclerosis model which created by cuprizone in rats.
Collapse
Affiliation(s)
- Rasoul Ganji
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran.
| | - Nazem Ghasemi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744-176, Iran.
| |
Collapse
|
14
|
Luo F, Zhang Z, Barnett A, Bellinger TJ, Turcato F, Schmidt K, Luo Y. Cuprizone-induced demyelination under physiological and post-stroke condition leads to decreased neurogenesis response in adult mouse brain. Exp Neurol 2020; 326:113168. [PMID: 31904386 DOI: 10.1016/j.expneurol.2019.113168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
Due to the limitation in treatment window of the rtPA (recombinant tissue plasminogen activator), the development of delayed treatment for stroke is needed. We previously reported that there is a difference in neurogenesis and neuroblast migration patterns in different mouse stroke models (proximal and distal middle cerebral artery occlusion models, pMCAo or dMCAo). Specifically, compared to robust neurogenesis and substantial migration of newly born neuroblasts in pMCAo model, dMCAo only illicit limited neurogenesis and migration of neuroblasts towards ischemic area. One potential reason for this difference is the relative location of ischemic area to white matter and the neurogenic niche (subventricular zone, SVZ). Specifically, white matter could serve as a physical barrier or inhibitory factor to neurogenesis and migration in the dMCAo model. Given that a major difference in human and rodent brains is the content of white matter in the brain, in this study, we further characterize these two models and test the important hypothesis that white matter is an important contributing inhibitory factor for the limited neurogenesis in the dMCAo model. We utilized a genetically inducible NSC-specific reporter mouse line (nestin-CreERT2-R26R-YFP) to label and track NSC proliferation, survival and differentiation in ischemic brain. To test whether myelin is inhibitory to neurogenesis in dMCAo model, we demyelinated mouse brains using cuprizone treatment after stroke and examined whether there is enhanced neurogenesis or migration of neuroblasts cells in stroke mice treated with cuprizone. Our data suggests that demyelination of the brain does not result in enhanced neurogenesis or migration of neuroblasts, supporting that myelin is not a major inhibitory factor for stroke-induced neurogenesis. In addition, our results suggest that in non-stroke mice, demyelination causes decreased neurogenesis in adult brain, indicating a potential positive role of myelin in maintenance of adult neural stem cell niche.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, USA
| | - Zhen Zhang
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, USA
| | - Austin Barnett
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Tania J Bellinger
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, USA
| | - Flavia Turcato
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, USA
| | - Kelly Schmidt
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, USA.
| |
Collapse
|
15
|
Hippocampal Neurogenesis and Neural Circuit Formation in a Cuprizone-Induced Multiple Sclerosis Mouse Model. J Neurosci 2019; 40:447-458. [PMID: 31719166 DOI: 10.1523/jneurosci.0866-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Cognitive impairments are key features in multiple sclerosis (MS), a progressive disorder characterized by neuroinflammation-induced demyelination in the central nervous system. To understand the neural substrates that link demyelination to cognitive deficits in MS, we investigated hippocampal neurogenesis and synaptic connectivity of adult-born neurons, which play an essential role in cognitive function. The administration and withdrawal of the combination of cuprizone and rapamycin (Cup/Rap) in C57BL/6J male mice efficiently demyelinated and remyelinated the hippocampus, respectively. In the demyelinated hippocampus, neurogenesis was nearly absent in the dentate gyrus, which was due to inhibited proliferation of neural stem cells (NSCs). Specifically, radial glia-like type 1 NSCs were shifted from a proliferative state to a mitotically-quiescent state in the demyelinated hippocampus. In addition, dendritic spine densities of adult-born neurons were significantly decreased, indicating a reduction in synaptic connections between hippocampal newborn neurons and excitatory input neurons. Concomitant with hippocampal remyelination induced by withdrawal of Cup/Rap, proliferation of type 1 NSCs and dendritic spine densities of adult-born neurons reverted to normal in the hippocampus. Our study shows that proliferation of hippocampal NSCs and synaptic connectivity of adult-born neurons are inversely correlated with the level of demyelination, providing critical insight into hippocampal neurogenesis as a potential therapeutic target to treat cognitive deficits associated with MS.SIGNIFICANCE STATEMENT To identify the neural substrates that mediate cognitive dysfunctions associated with a majority of MS patients, we investigated hippocampal neurogenesis and structural development of adult-born neurons using a Cup/Rap model, which recapitulates the hippocampal demyelination that occurs in MS patients. A shift of NSCs from a proliferatively-active state to mitotically-quiescent state dramatically decreased neurogenesis in the demyelinated hippocampus. Formation of dendritic spines on newborn neurons was also impaired following demyelination. Interestingly, the altered neurogenesis and synaptic connectivity of newborn neurons were reversed to normal levels during remyelination. Thus, our study revealed reversible genesis and synaptic connectivity of adult-born neurons between the demyelinated and remyelinated hippocampus, suggesting hippocampal neurogenesis as a potential target to normalize cognitive impairments in MS patients.
Collapse
|
16
|
Kim W, Hahn KR, Jung HY, Kwon HJ, Nam SM, Kim JW, Park JH, Yoo DY, Kim DW, Won MH, Yoon YS, Hwang IK. Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation of cyclic AMP response element-binding protein in the mouse dentate gyrus. Brain Behav 2019; 9:e01388. [PMID: 31429533 PMCID: PMC6749490 DOI: 10.1002/brb3.1388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/01/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION The aim of this study was to investigate the effects of cuprizone on adult hippocampal neurogenesis in naïve mice. Additionally, we also studied how melatonin affects the neuronal degeneration induced by cuprizone. METHODS Eight-week-old male C57BL/6J mice were randomly divided into three groups: (a) the control group, (b) the group treated with cuprizone only, and (c) the group treated with both cuprizone and melatonin. Cuprizone was administered with food at 0.2% ad libitum for 6 weeks. Melatonin was also administered with tap water at 6 g/L ad libitum for 6 weeks; the animals were then euthanized for immunohistochemistry with Ki67, doublecortin (DCX), glucose transporter 3 (GLUT3), and phosphorylation of cyclic adenosine monophosphate (AMP) response element binding (pCREB); double immunofluorescence of neuronal nuclei (NeuN) and myelin basic protein (MBP); and Western blot analysis of brain-derived neurotrophic factor (BDNF) expression to reveal the effects of cuprizone and melatonin on cell damage and hippocampal neurogenesis. RESULTS Administration of cuprizone significantly decreased the number of differentiating (DCX-positive) neuroblasts and proliferating (Ki67-positive) cells in the dentate gyrus. Moreover, cuprizone administration decreased glucose utilization (GLUT3-positive cells) and cell transcription (pCREB-positive cells and BDNF protein expression) in the dentate gyrus. Administration of melatonin ameliorated the cuprizone-induced reduction of differentiating neuroblasts and proliferating cells, glucose utilization, and cell transcription. CONCLUSION The results of the study suggest that cuprizone treatment disrupts hippocampal neurogenesis in the dentate gyrus by reducing BDNF levels and decreasing the phosphorylation of CREB. These effects were ameliorated by melatonin treatment.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, College of Dentistry, Research Institute of Oral Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, Research Institute of Oral Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
18
|
Watanabe Y, Nakajima K, Ito Y, Akahori Y, Saito F, Woo GH, Yoshida T, Shibutani M. Twenty-eight-day repeated oral doses of sodium valproic acid increases neural stem cells and suppresses differentiation of granule cell lineages in adult hippocampal neurogenesis of postpubertal rats. Toxicol Lett 2019; 312:195-203. [PMID: 31085223 DOI: 10.1016/j.toxlet.2019.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Developmental exposure to valproic acid (VPA), a model compound for experimental autism, has shown to primarily target GABAergic interneuron subpopulations in hippocampal neurogenesis of rat offspring. The VPA-exposed animals had revealed late effects on granule cell lineages, involving progenitor cell proliferation and synaptic plasticity. To investigate the possibility whether hippocampal neurogenesis in postpubertal rats in a protocol of 28-day repeated exposure is affected in relation with the property of a developmental neurotoxicant by developmental exposure, VPA was orally administered to 5-week-old male rats at 0, 200, 800 and 900 mg/kg body weight/day for 28 days. At 900 mg/kg, GFAP+ cells increased in number, but DCX+ cells decreased in number in the granule cell lineages. Moreover, CHRNB2+ cells and NeuN+ postmitotic neurons decreased in number in the hilus of the dentate gyrus. Transcript level examined at 900 mg/kg in the dentate gyrus was increased with Kit, but decreased with Dpsyl3, Btg2, Pvalb and Chrnb2. These results suggest that VPA increased type-1 stem cells in relation to the activation of SCF-KIT signaling and suppression of BTG2-mediated antiproliferative effect on stem cells. VPA also decreased type-3 progenitor cells and immature granule cells probably in relation with PVALB+ interneuron hypofunction and reduced CHRNB2+ interneuron subpopulation in the hilus, as well as with suppression of BTG2-mediated terminal differentiation of progenitor cells. Thus, the disruption pattern of VPA by postpubertal exposure was different from developmental exposure. However, disruption itself can be detected, suggesting availability of hippocampal neurogenesis in detecting developmental neurotoxicants in a 28-day toxicity study.
Collapse
Affiliation(s)
- Yousuke Watanabe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yuko Ito
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan.
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan.
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 27136, Republic of Korea.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
19
|
Khodanovich MY, Pishchelko AO, Glazacheva VY, Pan ES, Krutenkova EP, Trusov VB, Yarnykh VL. Plant polyprenols reduce demyelination and recover impaired oligodendrogenesis and neurogenesis in the cuprizone murine model of multiple sclerosis. Phytother Res 2019; 33:1363-1373. [PMID: 30864249 PMCID: PMC6594192 DOI: 10.1002/ptr.6327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 02/09/2019] [Indexed: 11/07/2022]
Abstract
Recent studies showed hepatoprotective, neuroprotective, and immunomodulatory properties of polyprenols isolated from the green verdure of Picea abies (L.) Karst. This study aimed to investigate effects of polyprenols on oligodendrogenesis, neurogenesis, and myelin content in the cuprizone demyelination model. Demyelination was induced by 0.5% cuprizone in CD-1 mice during 10 weeks. Nine cuprizone-treated animals received daily injections of polyprenols intraperitoneally at a dose of 12-mg/kg body weight during Weeks 6-10. Nine control animals and other nine cuprizone-treated received sham oil injections. At Week 10, brain sections were stained for myelin basic protein, neuro-glial antigen-2, and doublecortin to evaluate demyelination, oligodendrogenesis, and neurogenesis. Cuprizone administration caused a decrease in myelin basic protein in the corpus callosum, cortex, hippocampus, and the caudate putamen compared with the controls. Oligodendrogenesis was increased, and neurogenesis in the subventricular zone and the dentate gyrus of the hippocampus was decreased in the cuprizone-treated group compared with the controls. Mice treated with cuprizone and polyprenols did not show significant demyelination and differences in oligodendrogenesis and neurogenesis as compared with the controls. Our results suggest that polyprenols can halt demyelination, restore impaired neurogenesis, and mitigate reactive overproduction of oligodendrocytes caused by cuprizone neurotoxicity.
Collapse
Affiliation(s)
| | | | | | - Edgar S. Pan
- Laboratory of NeurobiologyTomsk State UniversityTomskRussian Federation
| | | | - Vladimir B. Trusov
- Prenolica Limited (formerly Solagran Limited), Biotechnology CompanyMelbourneVictoriaAustralia
| | - Vasily L. Yarnykh
- Laboratory of NeurobiologyTomsk State UniversityTomskRussian Federation
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
20
|
Ma W, Tang C, Hu H, Zhang F, Wang X, Wu X, Zhang W, Wang X, Ma H, Li Z, Dong Y, Yang Z, Feng S, Tian L, Gao Y. Advance in Tissue Differentiation and its Regulatory Mechanisms by Master Proteins of Nervous System during Weaning. Curr Protein Pept Sci 2019; 20:683-689. [PMID: 30678621 DOI: 10.2174/1389203720666190125101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/13/2019] [Indexed: 11/22/2022]
Abstract
Weaning is a critical period for the growth and development of mammals, in which various physiological and biochemical indicators of the body have undergone great changes. The development, differentiation, and maturation of the nervous system are regulated by many proteins. Changes in related proteins affect the physiological functions of the nervous system. However, the regulation of selfrenewal and differentiation of the nervous system at this stage is still poorly understood. The mechanism of differentiation and regulation of the major proteins in the nervous system during this special period of weaning remains to be investigated. Therefore, this paper aims to summarize the alteration of the nervous system during weaning and provide the basis for subsequent research.
Collapse
Affiliation(s)
- Wenyu Ma
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,College of Pharmacy, Shihezi University, Shihezi, 832001, China
| | - Chengfang Tang
- College of Pharmacy, Shihezi University, Shihezi, 832001, China
| | - Huiling Hu
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fenglian Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, 256610, China
| | - Xuanying Wang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, 256610, China
| | - Xiaoting Wu
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, 256610, China
| | - Wenjian Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, 256610, China
| | - Xiaoxia Wang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, 256610, China
| | - Huazhi Ma
- Department of Rheumatology, Binzhou People's Hospital, Binzhou, 256610, China
| | - Zhihao Li
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanbin Dong
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zehong Yang
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shixiu Feng
- Key Laboratory of Southern Subtropical Plant Diversity, Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Liping Tian
- College of Pharmacy, Shihezi University, Shihezi, 832001, China
| | - Yong Gao
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
21
|
Watanabe Y, Nakajima K, Mizukami S, Akahori Y, Imatanaka N, Woo GH, Yoshida T, Shibutani M. Differential effects between developmental and postpubertal exposure to N-methyl-N-nitrosourea on progenitor cell proliferation of rat hippocampal neurogenesis in relation to COX2 expression in granule cells. Toxicology 2017; 389:55-66. [DOI: 10.1016/j.tox.2017.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022]
|
22
|
Abe H, Saito F, Tanaka T, Mizukami S, Watanabe Y, Imatanaka N, Akahori Y, Yoshida T, Shibutani M. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats. Toxicol Appl Pharmacol 2016; 310:20-31. [DOI: 10.1016/j.taap.2016.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|
23
|
Immunohistochemistry of aberrant neuronal development induced by 6-propyl-2-thiouracil in rats. Toxicol Lett 2016; 261:59-71. [DOI: 10.1016/j.toxlet.2016.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/03/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022]
|
24
|
Maternal Exposure to Valproic Acid Primarily Targets Interneurons Followed by Late Effects on Neurogenesis in the Hippocampal Dentate Gyrus in Rat Offspring. Neurotox Res 2016; 31:46-62. [DOI: 10.1007/s12640-016-9660-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/21/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022]
|