1
|
Shaw B, Thwin PH, Jia N, Weng H, Ma C, Zhu H, Wang L. Stress granules play a critical role in hexavalent chromium-induced malignancy in a G3BP1 dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124997. [PMID: 39306064 PMCID: PMC11563910 DOI: 10.1016/j.envpol.2024.124997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles influencing multiple cellular pathways including cell survival, proliferation, and malignancy. Hexavalent chromium [Cr(VI)] is a toxic heavy metal associated with severe environmental health risks. Low-level environmental exposure to Cr(VI) has been reported to cause cancer, but the role of SGs in Cr(VI)-induced health effects remains unclear. This study was intended to elucidate the impact of Cr(VI) exposure on SG dynamics and the role of SGs in Cr(VI)-induced malignancy. Results showed that both acute exposure to high concentration of Cr(VI) and prolonged exposure to low concentration of Cr(VI)-induced SG formation in human bronchial epithelium BEAS-2B cells. Cells pre-exposed to Cr(VI) exhibited a more robust SG response compared to cells without pre-exposure. An up-regulated SG response was associated with increased malignant properties in cells exposed to low concentration Cr(VI) for an extended period of time up to 12 months. Knocking out the SG core protein G3BP1 in Cr(VI)-transformed (CrT) cells reduced SG formation and malignant properties, including proliferation rate, sphere formation, and malignant markers. The results support a critical role for SGs in mediating Cr(VI)-induced malignancy in a G3BP1-dependent manner, representing a novel mechanism and a potential therapeutic target.
Collapse
Affiliation(s)
- Brian Shaw
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Phyo Han Thwin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nan Jia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hope Weng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; Research Service, Department of Veteran Affairs Southern Arizona Health Care, Tucson, AZ, 85723, USA.
| | - Lei Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Zheng J, Sun L, Xue Y, Ye L, Fan Q. Construction of Pillared-Layer Metal-Organic Frameworks as an All-Visible-Light Switchable Photocatalyst for Aqueous Cr(VI) Reduction. Inorg Chem 2024; 63:15841-15850. [PMID: 39136643 DOI: 10.1021/acs.inorgchem.4c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Recently, two-dimensional metal-organic frameworks that are photoactive have shown great potential for efficiently converting solar energy into chemical energy. In this work, we successfully synthesized and designed two M2-MOFs ([Cu(L1)((CH3)2NH)]n (Cu-MOF) and [Zn(L1)(CH3)2NH)]n (Zn-MOF), H2L1 = 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid). Structural analysis suggests that the five-coordinated M(II) ion is surrounded by four oxygen ions from two ligands and one nitrogen atom from one dimethylamine molecule. The ligand spacer acts as a bridge between two SBUs and forms a 2D layer with rhomboid windows. These moieties are arranged in a staggered ABAB pattern, which likely aids in exfoliation. The UV-vis diffuse reflectance spectra (DRS) test shows that when the metal center in the MOF framework is replaced with Cu(II) ions, the light absorption range covers 200-1100 nm, which is much larger than the light absorption range of Zn-MOF. Moreover, the photoelectric current, electrochemical impedance spectra (EIS), and Mott-Schottky tests all indicate that Cu-MOF has better photoelectric properties. When applied to the photocatalytic reduction of Cr(VI), Cu-MOF and Zn-MOF can completely reduce Cr(VI) within 100 min under 450 nm LED light irradiation. Under sunlight irradiation, Cu-MOF can completely reduce Cr(VI) within 40 min, achieving the removal of Cr(VI) ions, which is much faster than the rate of Cr(VI) removal by Zn-MOF.
Collapse
Affiliation(s)
- Juan Zheng
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Luying Sun
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Yao Xue
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 712099, China
| | - Lingfeng Ye
- Shaanxi Beizhan Anhuan Engineering Technology Co., Ltd, Xi'an 712099, China
| | - Qijuan Fan
- Zhongsheng Environmental Science & Technology Development Co., LTD, Xi'an 712099, China
| |
Collapse
|
3
|
Wise JTF, Kondo K. Increased Lipogenesis Is Important for Hexavalent Chromium-Transformed Lung Cells and Xenograft Tumor Growth. Int J Mol Sci 2023; 24:17060. [PMID: 38069382 PMCID: PMC10707372 DOI: 10.3390/ijms242317060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Hexavalent chromium, Cr(VI), is a known carcinogen and environmental health concern. It has been established that reactive oxygen species, genomic instability, and DNA damage repair deficiency are important contributors to the Cr(VI)-induced carcinogenesis mechanism. However, some hallmarks of cancer remain under-researched regarding the mechanism behind Cr(VI)-induced carcinogenesis. Increased lipogenesis is important to carcinogenesis and tumorigenesis in multiple types of cancers, yet the role increased lipogenesis has in Cr(VI) carcinogenesis is unclear. We report here that Cr(VI)-induced transformation of three human lung cell lines (BEAS-2B, BEP2D, and WTHBF-6) resulted in increased lipogenesis (palmitic acid levels), and Cr(VI)-transformed cells had an increased expression of key lipogenesis proteins (ATP citrate lyase [ACLY], acetyl-CoA carboxylase [ACC1], and fatty acid synthase [FASN]). We also determined that the Cr(VI)-transformed cells did not exhibit an increase in fatty acid oxidation or lipid droplets compared to their passage-matched control cells. Additionally, we observed increases in ACLY, ACC1, and FASN in lung tumor tissue compared with normal-adjacent lung tissue (in chromate workers that died of chromate-induced tumors). Next, using a known FASN inhibitor (C75), we treated Cr(VI)-transformed BEAS-2B with this inhibitor and measured cell growth, FASN protein expression, and growth in soft agar. We observed that FASN inhibition results in a decreased protein expression, decreased cell growth, and the inhibition of colony growth in soft agar. Next, using shRNA to knock down the FASN protein in Cr(VI)-transformed BEAS-2B cells, we saw a decrease in FASN protein expression and a loss of the xenograft tumor development of Cr(VI)-transformed BEAS-2B cells. These results demonstrate that FASN is important for Cr(VI)-transformed cell growth and cancer properties. In conclusion, these data show that Cr(VI)-transformation in vitro caused an increase in lipogenesis, and that this increase is vital for Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- James T. F. Wise
- Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, 269 Knapp Hall, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, Louisiana State University Agriculture Center, Baton Rouge, LA 70803, USA
- Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| |
Collapse
|
4
|
Gao Y, Wan L, Li M, Wang B, Ma Y. NRF2/HO-1 axis, BIRC5, and TP53 expression in ESCC and its correlation with clinical pathological characteristics and prognosis. Int J Biol Markers 2023; 38:174-184. [PMID: 37312528 DOI: 10.1177/03936155231176571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Many types of cancer exhibit high nuclear factor erythroid 2-related factor 2 (NRF2), which is effective in resisting drugs and radiation. However, the role of NRF2 gene expression in predicting the prognosis of esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS The association between NRF2, heme oxygenase-1 (HO-1), baculovirus IAP repeat 5 (BIRC5), P53 gene expression levels and their relationship to immune-infiltrating cells were assessed using the Cancer Genome Atlas dataset, the Human Protein Atlas and the TISDB database. The expression of NRF2, HO-1, BIRC5, and TP53 in 118 ESCC patients was detected by immunohistochemistry, and the relationship between their expression level and clinicopathological parameters and prognosis was analyzed. RESULTS In ESCC, NRF2 overexpression was significantly associated with Han ethnicity, lymph node metastasis, and distant metastasis. HO-1 overexpression was significantly associated with differentiation, advanced clinical staging, lymph node metastasis, nerve invasion, and distant metastasis. BIRC5 overexpression was significantly associated with Han ethnicity and lymph node metastasis. TP53 overexpression was significantly associated with Han ethnicity and T staging. The NRF2/HO-1 axis expression was positively correlated with BIRC5 and TP53. Kaplan-Meier and multivariate Cox regression analysis showed that NRF2, BIRC5, and TP53 genes co-expression was an independent prognostic risk factor. TISIDB dataset analysis showed that immune-infiltrating cells were significantly negatively correlated with NRF2 and BIRC5. CONCLUSION NRF2, BIRC5, and TP53 axis gene expressions are predictors of poor prognosis for ESCC. The overexpression of the NRF2/HO-1/BIRC5 axis may not be related to immune-infiltrating cells.
Collapse
Affiliation(s)
- Yongmei Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Wan
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mengyan Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuqing Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Yan G, Gao Y, Xue K, Qi Y, Fan Y, Tian X, Wang J, Zhao R, Zhang P, Liu Y, Liu J. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1131204] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chromium (Cr) is the seventh most abundant chemical element in the Earth’s crust, and Cr(III) and Cr(VI) are common stable valence states of Cr. Several Cr-containing substances, such as FeOCr2O3 and stainless-steel products, exist in nature and in life. However, Cr(VI) is toxic to soil, microorganisms, and plants and poses a serious threat to human health through direct and indirect exposure. By collecting published journal literature, we found that Cr(VI) can cause acute and chronic toxicity in organisms and has carcinogenic effects, and the mechanisms causing these toxicity include endoplasmic reticulum stress, autophagy and apoptosis. However, the relationship between these mechanisms remains unclear. Many methods have been researched to purify chromium, but each of these methods has its own advantages and disadvantages. Therefore, this review summarizes the hazards of chromium and the mechanisms of chromium toxicity after entering cells and provides a number of methods for chromium contamination management, providing a direction for the next step in chromium toxicology and contamination decontamination research.
Collapse
|
6
|
Jang WY, Kim MY, Cho JY. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int J Mol Sci 2022; 23:ijms232415482. [PMID: 36555124 PMCID: PMC9778916 DOI: 10.3390/ijms232415482] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Since chronic inflammation can be seen in severe, long-lasting diseases such as cancer, there is a high demand for effective methods to modulate inflammatory responses. Among many therapeutic candidates, lignans, absorbed from various plant sources, represent a type of phytoestrogen classified into secoisolariciresionol (Seco), pinoresinol (Pino), matairesinol (Mat), medioresinol (Med), sesamin (Ses), syringaresinol (Syr), and lariciresinol (Lari). Lignans consumed by humans can be further modified into END or ENL by the activities of gut microbiota. Lignans are known to exert antioxidant and anti-inflammatory activities, together with activity in estrogen receptor-dependent pathways. Lignans may have therapeutic potential for postmenopausal symptoms, including cardiovascular disease, osteoporosis, and psychological disorders. Moreover, the antitumor efficacy of lignans has been demonstrated in various cancer cell lines, including hormone-dependent breast cancer and prostate cancer, as well as colorectal cancer. Interestingly, the molecular mechanisms of lignans in these diseases involve the inhibition of inflammatory signals, including the nuclear factor (NF)-κB pathway. Therefore, we summarize the recent in vitro and in vivo studies evaluating the biological effects of various lignans, focusing on their values as effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
7
|
Kouokam JC, Meaza I, Wise JP. Inflammatory effects of hexavalent chromium in the lung: A comprehensive review. Toxicol Appl Pharmacol 2022; 455:116265. [PMID: 36208701 PMCID: PMC10024459 DOI: 10.1016/j.taap.2022.116265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
Besides smoking, lung cancer can be caused by other factors, including heavy metals such as cadmium, nickel, arsenic, beryllium and hexavalent chromium [Cr(VI)], which is used in multiple settings, resulting in widespread environmental and occupational exposures as well as heavy use. The mechanism by which Cr(VI) causes lung cancer is not completely understood. Currently, it is admitted chromosome instability is a key process in the mechanism of Cr(VI)-induced cancer, and previous studies have suggested Cr(VI) impacts the lung tissue in mice by triggering tissue damage and inflammation. However, the mechanism underlying Cr(VI)-induced inflammation and its exact role in lung cancer are unclear. Therefore, this review aimed to systematically examine previous studies assessing Cr(VI)-induced inflammation and to summarize the major inflammatory pathways involved in Cr(VI)-induced inflammation. In cell culture studies, COX2, VEGF, JAK-STAT, leukotriene B4 (LTB4), MAPK, NF-ҡB and Nrf2 signaling pathways were consistently upregulated by Cr(VI), clearly demonstrating that these pathways are involved in Cr(VI)-induced inflammation. In addition, Akt signaling was also shown to contribute to Cr(VI)-induced inflammation, although discrepant findings were reported. Few mechanistic studies were performed in animal models, in which Cr(VI) upregulated oxidative pathways, NF-kB signaling and the MAPK pathway in the lung tissue. Similar to cell culture studies, opposite effects of Cr(VI) on Akt signaling were reported. This work provides insights into the mechanisms by which Cr(VI) induces lung inflammation. However, discrepant findings and other major issues in study design, both in cell and animal models, suggest that further studies are required to unveil the mechanism of Cr(VI)-induced inflammation and its role in lung cancer.
Collapse
Affiliation(s)
- J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA.
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| |
Collapse
|
8
|
Murali M, Latha J, Prakash PA, Sangeetha S, Selvakumaran B, Jaabir MSM. Characterization of [Ru(bpy)2(diamine)]2+ complexes and their DNA binding and cleavage, BSA interaction, cytotoxic, and anticancer mechanistic properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Xing C, Yang F, Lin Y, Shan J, Yi X, Ali F, Zhu Y, Wang C, Zhang C, Zhuang Y, Cao H, Hu G. Hexavalent Chromium Exposure Induces Intestinal Barrier Damage via Activation of the NF-κB Signaling Pathway and NLRP3 Inflammasome in Ducks. Front Immunol 2022; 13:952639. [PMID: 35935959 PMCID: PMC9353580 DOI: 10.3389/fimmu.2022.952639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a dangerous heavy metal which can impair the gastrointestinal system in various species; however, the processes behind Cr(VI)-induced intestinal barrier damage are unknown. Forty-eight healthy 1-day-old ducks were stochastically assigned to four groups and fed a basal ration containing various Cr(VI) dosages for 49 days. Results of the study suggested that Cr(VI) exposure could significantly increase the content of Cr(VI) in the jejunum, increase the level of diamine oxidase (DAO) in serum, affect the production performance, cause histological abnormalities (shortening of the intestinal villi, deepening of the crypt depth, reduction and fragmentation of microvilli) and significantly reduced the mRNA levels of intestinal barrier-related genes (ZO-1, occludin, claudin-1, and MUC2) and protein levels of ZO-1, occludin, cand laudin-1, resulting in intestinal barrier damage. Furthermore, Cr(VI) intake could increase the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) but decrease the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione reductase (GR), as well as up-regulate the mRNA levels of TLR4, MyD88, NF-κB, TNFα, IL-6, NLRP3, caspase-1, ASC, IL-1β, and IL-18 and protein levels of TLR4, MyD88, NF-κB, NLRP3, caspase-1, ASC, IL-1β, and IL-18 in the jejunum. In conclusion, Cr(VI) could cause intestinal oxidative damage and inflammation in duck jejunum by activating the NF-κB signaling pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yiqun Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jiyi Shan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xin Yi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Farah Ali
- Department of Theriogenology, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yibo Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Guoliang Hu, ; Huabin Cao,
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Guoliang Hu, ; Huabin Cao,
| |
Collapse
|
10
|
Zhang Z, Costa M. p62 functions as a signal hub in metal carcinogenesis. Semin Cancer Biol 2021; 76:267-278. [PMID: 33894381 PMCID: PMC9161642 DOI: 10.1016/j.semcancer.2021.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
A number of metals are toxic and carcinogenic to humans. Reactive oxygen species (ROS) play an important role in metal carcinogenesis. Oxidative stress acts as the converging point among various stressors with ROS being the main intracellular signal transducer. In metal-transformed cells, persistent expression of p62 and erythroid 2-related factor 2 (Nrf2) result in apoptosis resistance, angiogenesis, inflammatory microenvironment, and metabolic reprogramming, contributing to overall mechanism of metal carcinogenesis. Autophagy, a conserved intracellular process, maintains cellular homeostasis by facilitating the turnover of protein aggregates, cellular debris, and damaged organelles. In addition to being a substrate of autophagy, p62 is also a crucial molecule in a myriad of cellular functions and in molecular events, which include oxidative stress, inflammation, apoptosis, cell proliferation, metabolic reprogramming, that modulate cell survival and tumor growth. The multiple functions of p62 are appreciated by its ability to interact with several key components involved in various oncogenic pathways. This review summarizes the current knowledge and progress in studies of p62 and metal carcinogenesis with emphasis on oncogenic pathways related to oxidative stress, inflammation, apoptosis, and metabolic reprogramming.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA.
| |
Collapse
|
11
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
12
|
Wang Y, Wang X, Wang L, Cheng G, Zhang M, Xing Y, Zhao X, Liu Y, Liu J. Mitophagy Induced by Mitochondrial Function Damage in Chicken Kidney Exposed to Cr(VI). Biol Trace Elem Res 2021; 199:703-711. [PMID: 32440992 DOI: 10.1007/s12011-020-02176-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Cr(VI) is a heavy metal environmental pollutant and carcinogen. Excessive Cr(VI) exposure injures kidneys. This study aimed to investigate mitophagy induced by mitochondrial function damage in chicken kidney exposed to Cr(VI). To explore the mechanism involved, we randomly divided 40 one-day-old Hy-line Brown cockerels into four groups, with each group exposed to different concentrations of Cr(VI), i.e., 0, 10, 30 and 50 mg kg-1, which were orally administered daily for 45 days. Excessive Cr(VI) increased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and chemokine (C-X-C motif) ligand 1(CXCL1) expression and decreased Ca2+-adenosine triphosphatase (Ca2+-ATPase), Mg2+-ATPase and Na+/k+-ATPase activities in chicken kidney. Furthermore, Cr(VI) significantly increased reactive oxygen species (ROS) production and induced mitochondrial membrane potential (MMP) collapse and typical autophagosome formation. With the increase of Cr(VI) concentration, the Parkin translocation, value of LC3-II increased and decreased the content of p62/SQSTM1 and the translocase of outer mitochondrial membrane 20 (TOMM20). In summary, our findings explicated that mitochondrial function damage and mitophagy-related indicators were related to Cr(VI) concentration in chicken kidney.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taiàn, 271018, Shandong, China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taiàn, 271018, Shandong, China
| | - Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taiàn, 271018, Shandong, China
| | - Guodong Cheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taiàn, 271018, Shandong, China
| | - Meihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taiàn, 271018, Shandong, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Taiàn, 271018, Shandong, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taiàn, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taiàn, 271018, Shandong, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taiàn, 271018, Shandong, China.
| |
Collapse
|
13
|
Pathaw L, Khamrang T, Selvakumaran B, Murali M, Arul Prakash P, Mohamed Jaabir MS, Velusamy M. Synthesis, structure, characterization and biological evaluation of 3‐substituted 1‐pyridin‐2‐ylimidazo[1,5‐
a
]pyridine‐based copper(I)–phosphine complexes for anticancer drug screening. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Larica Pathaw
- Department of Chemistry North‐Eastern Hill University Shillong India
| | | | - Balasubramaniam Selvakumaran
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry National College (Autonomous) Tiruchirappalli India
| | - Mariappan Murali
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry National College (Autonomous) Tiruchirappalli India
| | - Pitchan Arul Prakash
- Department of Biotechnology and Microbiology National College (Autonomous) Tiruchirappalli India
| | | | - Marappan Velusamy
- Department of Chemistry North‐Eastern Hill University Shillong India
| |
Collapse
|
14
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 274] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
15
|
Jindal R, Handa K. Hexavalent chromium-induced toxic effects on the antioxidant levels, histopathological alterations and expression of Nrf2 and MT2 genes in the branchial tissue of Ctenopharyngodon idellus. CHEMOSPHERE 2019; 230:144-156. [PMID: 31103860 DOI: 10.1016/j.chemosphere.2019.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Ability of hexavalent chromium to accumulate and induce oxidative stress has been studied in the gills of Ctenopharyngodon idellus, with the resulting damage in the form of altered endogenous antioxidant enzyme activity and, histopathology in the tissue. The fish were exposed to 5.3 (C1) and 10.63 mg/L (C2) of hexavalent chromium and were scrutinised on 15th, 30th and 45th day of toxicant exposure. Oxidative stress studied in terms of lipid peroxidation and glutathione levels and the antioxidant enzymes activity also exhibited alterations. The histopathological modifications in gills announced lesions in the form of hyperplasia, aneurysm, lamellar fusion, focal proliferation, epithelial degeneration and necrosis with loss of lamellae, bringing irreversible damage on 45th day with mean degree of tissue change value of 100.35 ± 10.69. Bioaccumulation of chromium, and increased anomalies in branchial tissue exhibited damage in concentration and time-dependent manner. The ultrastructural anomalies in the cellular morphology in the epithelial cells of filaments and lamellae, exhibited pleomorphic nuclei, swollen mitochondria, extensive vacuolation and loss of microridges in pavement cells. The tissue also displayed altered regulation of Nrf2 and Mt2 following Cr(VI) exposure with maximum downregulation on 45th day by 61 and 53%, respectively. PCA generated two principal components, PC1 (GSH, GST, CAT and SOD) and PC2 (DTC, MDA and Cr(VI) concentration). Thus, it can be concluded that accumulation of Cr(VI) induces alteration in the gene expression of Nrf2 and Mt2 leading to the development of oxidative stress, ensuing various pathological changes creating hindrance in fish survival.
Collapse
Affiliation(s)
- Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160 014, India
| | - Kriti Handa
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
16
|
Howard N, Clementino M, Kim D, Wang L, Verma A, Shi X, Zhang Z, DiPaola RS. New developments in mechanisms of prostate cancer progression. Semin Cancer Biol 2019; 57:111-116. [DOI: 10.1016/j.semcancer.2018.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
|
17
|
Chen QY, Murphy A, Sun H, Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol 2019; 377:114636. [PMID: 31228494 DOI: 10.1016/j.taap.2019.114636] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Chromium (Cr) is a naturally occurring metallic element found in the Earth's crust. While trivalent chromium ([Cr(III)] is considered non-carcinogenic, hexavalent chromium [Cr(VI)] has long been established as an IARC class I human carcinogen, known to induce cancers of the lung. Current literature suggests that Cr(VI) is capable of inducing carcinogenesis through both genetic and epigenetic mechanisms. Although much has been learned about the molecular etiology of Cr(VI)-induced lung carcinogenesis, more remains to be explored. In particular, the explicit epigenetic alterations induced by Cr(VI) in lung cancer including histone modifications and miRNAs, remain understudied. Through comprehensive review of available literature found between 1973 and 2019, this article provides a summary of updated understanding of the molecular mechanisms of Cr(VI)-carcinogenesis. In addition, this review identifies potential research gaps in the areas of histone modifications and miRNAs, which may prompt new niches for future research.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| |
Collapse
|
18
|
Shaw P, Mondal P, Bandyopadhyay A, Chattopadhyay A. Environmentally relevant concentration of chromium activates Nrf2 and alters transcription of related XME genes in liver of zebrafish. CHEMOSPHERE 2019; 214:35-46. [PMID: 30253254 DOI: 10.1016/j.chemosphere.2018.09.104] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Fish is an excellent model to decipher the mechanism of toxicity of aquatic contaminants such as hexavalent chromium (Cr [VI]). The present study looked into the manifestation of stress in liver of zebrafish exposed to an environmentally relevant concentration (2 mgL-1), and the functioning of the cytoprotective machinery that pacifies the formed stress. The results lead us to hypothesize that oxidative stress plays a key role in chromium-induced toxicity resulting in lipid peroxidation and extensive changes in tissue ultrastructure. In treated fish, production of reactive oxygen species, increase in reduced glutathione content and increase in malondialdehyde content along with enhanced catalase activity were evident. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was found to increase both at transcriptional and translational level and its translocation into the nucleus was confirmed by fluorescence-based immunohistochemical studies. The mRNA levels of genes like Nqo1, Cyp1a and Cu/Zn Sod were found to increase whereas Ho1, Hsp70 and Ucp2 were down-regulated. The sensitivity of these genes towards Cr [VI] validates their candidature as important biomarkers of Cr [VI] exposure in zebrafish.
Collapse
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | | | | |
Collapse
|
19
|
Wang L, Kim D, Wise JTF, Shi X, Zhang Z, DiPaola RS. p62 as a therapeutic target for inhibition of autophagy in prostate cancer. Prostate 2018; 78:390-400. [PMID: 29368435 DOI: 10.1002/pros.23483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. METHODS Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. RESULTS Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. CONCLUSIONS p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition.
Collapse
Affiliation(s)
- Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - James T F Wise
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Robert S DiPaola
- College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
20
|
Reduction of the Oxidative Stress Status Using Steviol Glycosides in a Fish Model (Cyprinus carpio). BIOMED RESEARCH INTERNATIONAL 2018; 2017:2352594. [PMID: 28691017 PMCID: PMC5485310 DOI: 10.1155/2017/2352594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
Steviol glycosides are sweetening compounds from the Stevia rebaudiana Bertoni plant. This product is considered safe for human consumption and was approved as a food additive by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA). Its effects on the ecosystem have not been studied in depth; therefore, it is necessary to carry out ecotoxicological studies in organisms such as Cyprinus carpio. The present study aimed to evaluate the antioxidant activity by SGs on diverse tissues in C. carpio using oxidative stress (OS) biomarkers. To test the antioxidant activity, carps were exposed to four systems: (1) SGs free control, (2) CCl4 0.5 mL/kg, (3) SGs 1 g/L, and (4) CCl4 0.5 mL/kg + SGs 1 g/L at 96 h. The following biomarkers were analyzed: lipoperoxidation (LPX), hydroperoxide content (HPC), and protein carbonyl content (PCC), as well as antioxidant activity of superoxide dismutase (SOD) and catalase (CAT). It was found that both (3 and 4) systems' exposure decreases LPX, CHP, PCC, SOD, and CAT with respect to the CCl4 system. The results of this study demonstrate that the concentrations of SGs used are not capable of generating oxidative stress and, on the contrary, would appear to induce an antioxidant effect.
Collapse
|
21
|
Xu J, Wise JTF, Wang L, Schumann K, Zhang Z, Shi X. Dual Roles of Oxidative Stress in Metal Carcinogenesis. J Environ Pathol Toxicol Oncol 2018; 36:345-376. [PMID: 29431065 DOI: 10.1615/jenvironpatholtoxicoloncol.2017025229] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been well established that environmental and occupational exposure to heavy metal causes cancer in several organs. Although the exact mechanism of heavy metal carcinogenesis remains elusive, metal-generated reactive oxygen species (ROS) are essential. ROS can play two roles in metal carcinogenesis; two stages in the process of metal carcinogenesis differ in the amounts of ROS activating a dual redox-mediated mechanism. In the early stage of metal carcinogenesis, ROS acts in an oncogenic role. However, in the late stage of metal carcinogenesis, ROS plays an antioncogenic role. Similarly, NF-E2-related factor 2 (Nrf2) also has two different roles, which makes it a key molecule for separating metal carcinogenesis into two different stages. In the early stage, inducible Nrf2 fights against elevated ROS to decrease cell transformation by its antioxidant protection property. In the late stage, constitutively activated Nrf2 manipulates reduced ROS to perform a comfortable environment for apoptosis resistance through an oncogenic role. Interestingly, a cunning carcinogenic mechanism takes advantage of the dual role of Nrf2 to implement the dual role of ROS through a series of redox adaption mechanisms. In this review, we discuss the paradox in the rationales behind the two opposite ROS roles and focus on their potential pharmacological application. The dual role of ROS represents a 'double-edged sword' with many possible novel ROS-mediated strategies in cancer therapy in metal carcinogenesis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Anesthesiology, Beijing Chao Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kortney Schumann
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Yuan Y, Liu Y, Liu M, Chen Q, Jiao Y, Liu Y, Meng Z. Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa. Saudi Pharm J 2017; 25:523-530. [PMID: 28579887 PMCID: PMC5447442 DOI: 10.1016/j.jsps.2017.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The extraction conditions and biological activities of polysaccharides from wild Russula griseocarnosa (PRG) were investigated. Response Surface Methodology (RSM) with a Box-Behnken Design (BBD) was used to optimize extraction conditions. The optimal extraction parameters of PRG were as follows: extracting time 4 h, extraction temperature 77.3 °C and liquid-solid ratio 42.5 g/L. Furthermore, the data demonstrated that PRG exhibited antioxidant activities evidenced by reducing power to scavenge the DPPH, ABTS, hydroxyl radical and superoxide radical. PRG showed the activity of anti-cervical carcinoma cells Hela and Siha. In conclusion this study offered an efficient extraction method of wild Russula griseocarnosa polysaccharide, and the results suggested PRG had good antioxidant and inhibitory activities against cervical carcinoma cells, and PRG could be developed as a novel natural functional food.
Collapse
Affiliation(s)
- Ye Yuan
- The Department of Medicine Laboratory, The First Hospital, Jilin University, Changchun 130061, China
| | - Yang Liu
- The Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130018, China
| | - Mengdi Liu
- The Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130018, China
| | - Qian Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130061, China
| | - Yuanyuan Jiao
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130061, China
| | - Yan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhaoli Meng
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130061, China
| |
Collapse
|