1
|
Drury NL, Prueitt RL, Beck BD. Commentary: Understanding IARC's PFOA and PFOS carcinogenicity assessments. Regul Toxicol Pharmacol 2024; 154:105726. [PMID: 39433235 DOI: 10.1016/j.yrtph.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
In November 2023, the International Agency for Research on Cancer (IARC) classified PFOA as "carcinogenic to humans" (Group 1) and PFOS as "possibly carcinogenic to humans" (Group 2B). We evaluated these classifications, considering the epidemiology, experimental animal, and mechanistic evidence. It is our opinion that the IARC Working Group overstated the available evidence for the carcinogenicity of PFOA and PFOS. Epidemiology studies have shown weak and inconsistent associations across studies. Studies reporting increased incidences of tumors in experimental animals exposed to PFOA or PFOS had statistically significant results that were driven by the presence of benign adenomas. The IARC Working Group used the key characteristics of carcinogens (KCCs, which comprise 10 chemical and/or biological properties of known human carcinogens) approach to upgrade the carcinogenicity classifications for PFOA and PFOS from initially lower classifications that were based on the strength of the epidemiology and experimental animal evidence. However, this is not a robust assessment of mechanistic evidence, as it fails to consider the quality, external validity, and relevance of the evidence. Rather than use the KCCs as a checklist of potential carcinogenic mechanisms, IARC should use a rigorous method to evaluate the plausibility and human relevance of mechanistic evidence.
Collapse
|
2
|
Wolf S, Sriram K, Camassa LMA, Pathak D, Bing HL, Mohr B, Zienolddiny-Narui S, Samulin Erdem J. Systematic review of mechanistic evidence for TiO 2 nanoparticle-induced lung carcinogenicity. Nanotoxicology 2024; 18:437-463. [PMID: 39101876 DOI: 10.1080/17435390.2024.2384408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.
Collapse
Affiliation(s)
- Susann Wolf
- National Institute of Occupational Health, Oslo, Norway
| | - Krishnan Sriram
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Dhruba Pathak
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Helene L Bing
- National Institute of Occupational Health, Oslo, Norway
| | | | | | | |
Collapse
|
3
|
Prueitt RL, Drury NL, Shore RA, Boon DN, Goodman JE. Talc and human cancer: a systematic review of the experimental animal and mechanistic evidence. Crit Rev Toxicol 2024; 54:359-393. [PMID: 38979679 DOI: 10.1080/10408444.2024.2349668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 07/10/2024]
Abstract
The potential carcinogenicity of talc has been evaluated in many studies in humans and experimental animals published in the scientific literature over the last several decades, with a number of these studies reporting no associations between talc exposure and any type of cancer. In order to fully understand the current state of the science regarding the potential for talc to induce human cancers, we conducted a comprehensive and systematic review of the available experimental animal and mechanistic evidence (in conjunction with a systematic review of the epidemiology evidence in a companion analysis) to evaluate whether it supports talc as being carcinogenic to humans. We considered study quality and its impact on the interpretation of results and evaluated all types of cancer and all exposure routes. We also evaluated the evidence on the potential for talc to migrate in the body to potential tumor sites. We identified seven experimental animal carcinogenicity studies and 11 mechanistic studies of talc to systematically review. We found that several of the experimental animal carcinogenicity studies of talc have limitations that preclude their sensitivity to detect increases in tumor incidence. Regardless, the studies cover multiple exposure routes, species, and exposure durations, and none indicate that talc is a carcinogen in experimental animals except in rats under conditions of extremely high exposure that likely resulted in lung particle overload, a nonspecific effect of high exposures to poorly soluble particles, and not from any carcinogenic properties of talc. Lung particle overload leading to lung tumor formation has only been observed in rats and not in any other species, including humans. The mechanistic studies indicate that talc is not genotoxic or mutagenic, but can induce some effects that could be events on a possible pathway to carcinogenicity, mainly at high exposures or in in vitro studies with exposures of unclear relevance in vivo, but these effects are not consistent across studies and cell types. This systematic review of the experimental animal carcinogenicity and mechanistic evidence for talc indicates that an association between talc exposure and cancer is not expected in humans. Talc carcinogenicity is not plausible in any species except rats, and only when the exposure conditions are high enough to induce lung particle overload, which is not relevant to human exposures.
Collapse
|
4
|
Rusyn I, Wright FA. Ten years of using key characteristics of human carcinogens to organize and evaluate mechanistic evidence in IARC Monographs on the identification of carcinogenic hazards to humans: Patterns and associations. Toxicol Sci 2024; 198:141-154. [PMID: 38141214 PMCID: PMC10901152 DOI: 10.1093/toxsci/kfad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
Systematic review and evaluation of mechanistic evidence using the Key Characteristics approach was proposed by the International Agency for Research on Cancer (IARC) in 2012 and used by the IARC Monographs Working Groups since 2015. Key Characteristics are 10 features of agents known to cause cancer in humans. From 2015 to 2022, a total of 19 Monographs (73 agents combined) used Key Characteristics for cancer hazard classification. We hypothesized that a retrospective analysis of applications of the Key Characteristics approach to cancer hazard classification using heterogenous mechanistic data on diverse agents would be informative for systematic reviews in decision-making. We extracted information on the conclusions, data types, and the role mechanistic data played in the cancer hazard classification from each Monograph. Statistical analyses identified patterns in the use of Key Characteristics, as well as trends and correlations among Key Characteristics, data types, and ultimate decisions. Despite gaps in data for many agents and Key Characteristics, several significant results emerged. Mechanistic data from in vivo animal, in vitro animal, and in vitro human studies were most impactful in concluding that an agent could cause cancer via a Key Characteristic. To exclude the involvement of a Key Characteristic, data from large-scale systematic in vitro testing programs such as ToxCast, were most informative. Overall, increased availability of systemized data streams, such as human in vitro data, would provide the basis for more confident and informed conclusions about both positive and negative associations and inform expert judgments on cancer hazard.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Pharmacology and Physiology, Texas A&M University, College Station, Texas 77843, USA
| | - Fred A Wright
- Department of Statistics, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27606, USA
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27606, USA
| |
Collapse
|
5
|
Yazdan M, Naghib SM, Mozafari MR. Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses. Anticancer Agents Med Chem 2024; 24:896-915. [PMID: 38529608 DOI: 10.2174/0118715206293653240322041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Rusyn I, Wright FA. Ten Years of Using Key Characteristics of Human Carcinogens to Organize and Evaluate Mechanistic Evidence in IARC Monographs on the Identification of Carcinogenic Hazards to Humans: Patterns and Associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548354. [PMID: 37503163 PMCID: PMC10369858 DOI: 10.1101/2023.07.11.548354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Systematic review and evaluation of the mechanistic evidence only recently been instituted in cancer hazard identification step of decision-making. One example of organizing and evaluating mechanistic evidence is the Key Characteristics approach of the International Agency for Research on Cancer (IARC) Monographs on the Identification of Carcinogenic Hazards to Humans. The Key Characteristics of Human Carcinogens were proposed almost 10 years ago and have been used in every IARC Monograph since 2015. We investigated the patterns and associations in the use of Key Characteristics by the independent expert Working Groups. We examined 19 Monographs (2015-2022) that evaluated 73 agents. We extracted information on the conclusions by each Working Group on the strength of evidence for agent-Key Characteristic combinations, data types that were available for decisions, and the role mechanistic data played in the final cancer hazard classification. We conducted both descriptive and association analyses within and across data types. We found that IARC Working Groups were cautious when evaluating mechanistic evidence: for only ∼13% of the agents was strong evidence assigned for any Key Characteristic. Genotoxicity and cell proliferation were most data-rich, while little evidence was available for DNA repair and immortalization Key Characteristics. Analysis of the associations among Key Characteristics revealed that only chemical's metabolic activation was significantly co-occurring with genotoxicity and cell proliferation/death. Evidence from exposed humans was limited, while mechanistic evidence from rodent studies in vivo was often available. Only genotoxicity and cell proliferation/death were strongly associated with decisions on whether mechanistic data was impactful on the final cancer hazard classification. The practice of using the Key Characteristics approach is now well-established at IARC Monographs and other government agencies and the analyses presented herein will inform the future use of mechanistic evidence in regulatory decision-making.
Collapse
|
7
|
Prueitt RL, Hixon ML, Fan T, Olgun NS, Piatos P, Zhou J, Goodman JE. Systematic review of the potential carcinogenicity of bisphenol A in humans. Regul Toxicol Pharmacol 2023:105414. [PMID: 37263405 DOI: 10.1016/j.yrtph.2023.105414] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical to which humans are exposed through a variety of environmental sources. We have conducted a comprehensive, systematic review of 29 epidemiology studies and 27 experimental animal studies, published through May 2022, evaluating the potential carcinogenicity of BPA to contribute to the understanding of whether BPA is carcinogenic in humans. We conducted this review according to best practices for systematic reviews and incorporating established frameworks for study quality evaluation and evidence integration. The epidemiology studies have many limitations that increase the risk of biased results, but overall, the studies do not provide clear and consistent evidence for an association between BPA exposure and the development of any type of cancer. The experimental animal studies also do not provide strong and consistent evidence that BPA is associated with the induction of any malignant tumor type. Some of the proposed mechanisms for BPA carcinogenicity are biologically plausible, but the relevance to human exposures is not clear. We conclude that there is inadequate evidence to support a causal relationship between BPA exposure and human carcinogenicity, based on inadequate evidence in humans, as well as evidence from experimental animal studies that suggests a causal relationship is not likely.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Mary L Hixon
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Nicole S Olgun
- Gradient, 103 East Water Street, 3rd Floor, Charlottesville, VA, 22902, USA
| | - Perry Piatos
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | | |
Collapse
|
8
|
Crofton KM, Bassan A, Behl M, Chushak YG, Fritsche E, Gearhart JM, Marty MS, Mumtaz M, Pavan M, Ruiz P, Sachana M, Selvam R, Shafer TJ, Stavitskaya L, Szabo DT, Szabo ST, Tice RR, Wilson D, Woolley D, Myatt GJ. Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 22:100223. [PMID: 35844258 PMCID: PMC9281386 DOI: 10.1016/j.comtox.2022.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.
Collapse
Affiliation(s)
| | - Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Mamta Behl
- Division of the National Toxicology Program, National
Institutes of Environmental Health Sciences, Durham, NC 27709, USA
| | - Yaroslav G. Chushak
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | - Ellen Fritsche
- IUF – Leibniz Research Institute for Environmental
Medicine & Medical Faculty Heinrich-Heine-University, Düsseldorf,
Germany
| | - Jeffery M. Gearhart
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | | | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment
Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775
Paris Cedex 16, France
| | - Rajamani Selvam
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | - Timothy J. Shafer
- Biomolecular and Computational Toxicology Division, Center
for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC,
USA
| | - Lidiya Stavitskaya
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | | | | | | | - Dan Wilson
- The Dow Chemical Company, Midland, MI 48667, USA
| | | | - Glenn J. Myatt
- Instem, Columbus, OH 43215, USA
- Corresponding author.
(G.J. Myatt)
| |
Collapse
|
9
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
10
|
Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, Benigni R, Birmingham J, Brigo A, Bringezu F, Ceriani L, Crooks I, Cross K, Elespuru R, Faulkner DM, Fortin MC, Fowler P, Frericks M, Gerets HHJ, Jahnke GD, Jones DR, Kruhlak NL, Lo Piparo E, Lopez-Belmonte J, Luniwal A, Luu A, Madia F, Manganelli S, Manickam B, Mestres J, Mihalchik-Burhans AL, Neilson L, Pandiri A, Pavan M, Rider CV, Rooney JP, Trejo-Martin A, Watanabe-Sailor KH, White AT, Woolley D, Myatt GJ. In Silico Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20. [PMID: 35368437 DOI: 10.1016/j.comtox.2021.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.
Collapse
Affiliation(s)
- Raymond R Tice
- RTice Consulting, Hillsborough, North Carolina, 27278, USA
| | | | - Alexander Amberg
- Sanofi Preclinical Safety, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Lennart T Anger
- Genentech, Inc., South San Francisco, California, 94080, USA
| | - Marc A Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | | - Jeffrey Birmingham
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Lidia Ceriani
- Humane Society International, 1000 Brussels, Belgium
| | - Ian Crooks
- British American Tobacco (Investments) Ltd, GR&D Centre, Southampton, SO15 8TL, United Kingdom
| | | | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, 20993, USA
| | - David M Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08855, USA
| | - Paul Fowler
- FSTox Consulting (Genetic Toxicology), Northamptonshire, United Kingdom
| | | | | | - Gloria D Jahnke
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Naomi L Kruhlak
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland, 20993, USA
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Juan Lopez-Belmonte
- Cuts Ice Ltd Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Amarjit Luniwal
- North American Science Associates (NAMSA) Inc., Minneapolis, Minnesota, 55426, USA
| | - Alice Luu
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Serena Manganelli
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | | | - Jordi Mestres
- IMIM Institut Hospital Del Mar d'Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain; and Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, Earby, Lancashire, BB18 6JZ United Kingdom
| | - Arun Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - John P Rooney
- Integrated Laboratory Systems, LLC., Morrisville, North Carolina, 27560, USA
| | | | - Karen H Watanabe-Sailor
- School of Mathematical and Natural Sciences, Arizona State University, West Campus, Glendale, Arizona, 85306, USA
| | - Angela T White
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | | |
Collapse
|
11
|
Ali I, Dreij K, Baker S, Högberg J, Korhonen A, Stenius U. Application of Text Mining in Risk Assessment of Chemical Mixtures: A Case Study of Polycyclic Aromatic Hydrocarbons (PAHs). ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67008. [PMID: 34165340 PMCID: PMC8318069 DOI: 10.1289/ehp6702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cancer risk assessment of complex exposures, such as exposure to mixtures of polycyclic aromatic hydrocarbons (PAHs), is challenging due to the diverse biological activities of these compounds. With the help of text mining (TM), we have developed TM tools-the latest iteration of the Cancer Risk Assessment using Biomedical literature tool (CRAB3) and a Cancer Hallmarks Analytics Tool (CHAT)-that could be useful for automatic literature analyses in cancer risk assessment and research. Although CRAB3 analyses are based on carcinogenic modes of action (MOAs) and cover almost all the key characteristics of carcinogens, CHAT evaluates literature according to the hallmarks of cancer referring to the alterations in cellular behavior that characterize the cancer cell. OBJECTIVES The objective was to evaluate the usefulness of these tools to support cancer risk assessment by performing a case study of 22 European Union and U.S. Environmental Protection Agency priority PAHs and diesel exhaust and a case study of PAH interactions with silica. METHODS We analyzed PubMed literature, comprising 57,498 references concerning priority PAHs and complex PAH mixtures, using CRAB3 and CHAT. RESULTS CRAB3 analyses correctly identified similarities and differences in genotoxic and nongenotoxic MOAs of the 22 priority PAHs and grouped them according to their known carcinogenic potential. CHAT had the same capacity and complemented the CRAB output when comparing, for example, benzo[a]pyrene and dibenzo[a,l]pyrene. Both CRAB3 and CHAT analyses highlighted potentially interacting mechanisms within and across complex PAH mixtures and mechanisms of possible importance for interactions with silica. CONCLUSION These data suggest that our TM approach can be useful in the hazard identification of PAHs and mixtures including PAHs. The tools can assist in grouping chemicals and identifying similarities and differences in carcinogenic MOAs and their interactions. https://doi.org/10.1289/EHP6702.
Collapse
Affiliation(s)
- Imran Ali
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simon Baker
- Department of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, UK
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Korhonen
- Department of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, UK
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Zhang H, Yang Z, Du G, Cao L, Tan B. CD155-Prognostic and Immunotherapeutic Implications Based on Multiple Analyses of Databases Across 33 Human Cancers. Technol Cancer Res Treat 2021; 20:1533033820980088. [PMID: 33576304 PMCID: PMC7887689 DOI: 10.1177/1533033820980088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growing evidence has suggested that CD155 participates in the regulation of many biological processes ranging cell growth, invasion, and migration from regulation of immune responses in most malignances. However, the impact of prognostic value and CD115-related immune response on the survival in multiple cancers remains incompletely clear. In our study, we assessed the prognostic significance and immune-associated mechanism of CD155 based on data from multiple databases and methods, including UCSC Xena, Oncomine, PrognoScan. We identified that CD155 was commonly upregulated in most human cancers, and High expression of CD155 was closely correlated with unfavorable clinical outcomes in 10/33 of human cancers, while CD155 at low level was responsible for better survival in KICH and PAAD. More intriguingly, CD155 expression had a significant interaction with immune function in several tumors by analyzing Tumor mutational burden and microsatellite in stability, immune score and stromal score. The correlation between immune infiltration and CD155 expression also indicated that CD155 expression positively correlated with CD4+ T cells in Head and Neck squamous cell carcinoma, Lung adenocarcinoma and Colon adenocarcinoma, while had inversely interaction with CD8+ T in Kidney renal clear cell carcinoma and Head and Neck squamous cell carcinoma as well as Tregs in Skin Cutaneous Melanoma, Head and Neck squamous cell carcinoma and Bladder Urothelial Carcinoma. These findings indicate CD155 correlates with cancer immunotherapy function. In conclusions, our observations revealed CD155 might function as immune-associated system in the development of human cancers, and acted as a promising prognostic and therapeutic target against human cancers.
Collapse
Affiliation(s)
- Hongpan Zhang
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhihao Yang
- BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, People's Republic of China
| | - Guobo Du
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Lu Cao
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - BangXian Tan
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Jaeschke H, Murray FJ, Monnot AD, Jacobson-Kram D, Cohen SM, Hardisty JF, Atillasoy E, Hermanowski-Vosatka A, Kuffner E, Wikoff D, Chappell GA, Bandara SB, Deore M, Pitchaiyan SK, Eichenbaum G. Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 120:104859. [PMID: 33388367 DOI: 10.1016/j.yrtph.2020.104859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
In 2019 California's Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. In parallel with this review, herein we evaluated the mechanistic data related to the steps and timing of cellular events following therapeutic recommended (≤4 g/day) and higher doses of acetaminophen that may cause hepatotoxicity to evaluate whether these changes indicate that acetaminophen is a carcinogenic hazard. At therapeutic recommended doses, acetaminophen forms limited amounts of N-acetyl-p-benzoquinone-imine (NAPQI) without adverse cellular effects. Following overdoses of acetaminophen, there is potential for more extensive formation of NAPQI and depletion of glutathione, which may result in mitochondrial dysfunction and DNA damage, but only at doses that result in cell death - thus making it implausible for acetaminophen to induce the kind of stable, genetic damage in the nucleus indicative of a genotoxic or carcinogenic hazard in humans. The collective data demonstrate a lack of a plausible mechanism related to carcinogenicity and are consistent with rodent cancer bioassays, epidemiological results reviewed in companion manuscripts in this issue, as well as conclusions of multiple international health authorities.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- University of Kansas Medical Center, Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, USA
| | | | | | | | - Samuel M Cohen
- University of Nebraska Medical Center, Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, Omaha, NE, USA
| | - Jerry F Hardisty
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | | | | | - Edwin Kuffner
- Johnson & Johnson Consumer Health, Fort Washington, PA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Prueitt RL, Li W, Chang YC, Boffetta P, Goodman JE. Systematic review of the potential respiratory carcinogenicity of metallic nickel in humans. Crit Rev Toxicol 2020; 50:605-639. [DOI: 10.1080/10408444.2020.1803792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Paolo Boffetta
- Stony Brook Cancer Center and Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
15
|
Goodman JE, Kerper LE, Prueitt RL, Marsh CM. A critical review of talc and ovarian cancer. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:183-213. [PMID: 32401187 DOI: 10.1080/10937404.2020.1755402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The association between perineal talc use and ovarian cancer has been evaluated in several epidemiology studies. Some case-control studies reported weak positive associations, while other case-control and three large prospective cohort investigations found this association to be null. A weight-of-evidence evaluation was conducted of the epidemiology, toxicity, exposure, transport, in vitro, and mechanistic evidence to determine whether, collectively, these data support a causal association. Our review of the literature indicated that, while both case-control and cohort studies may be impacted by bias, the possibility of recall and other biases from the low participation rates and retrospective self-reporting of talc exposure cannot be ruled out for any of the case-control studies. The hypothesis that talc exposure induces ovarian cancer is only supported if one discounts the null results of the cohort studies and the fact that significant bias and/or confounding are likely reasons for the associations reported in some case-control investigations. In addition, one would need to ignore the evidence from animal experiments that show no marked association with cancer, in vitro and genotoxicity studies that did not indicate a carcinogenic mechanism of action for talc, and mechanistic and transport investigations that did not support the retrograde transport of talc to the ovaries. An alternative hypothesis that talc does not produce ovarian cancer, and that bias and confounding contribute the reported positive associations in case-control studies, is better supported by the evidence across all scientific disciplines. It is concluded that the evidence does not support a causal association between perineal talc use and ovarian cancer.
Collapse
|
16
|
Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101662] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Goodman JE, Mayfield DB, Becker RA, Hartigan SB, Erraguntla NK. Recommendations for further revisions to improve the International Agency for Research on Cancer (IARC) Monograph program. Regul Toxicol Pharmacol 2020; 113:104639. [PMID: 32147291 DOI: 10.1016/j.yrtph.2020.104639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
In 2019, the International Agency for Research on Cancer (IARC) "Preamble to the IARC Monographs" expanded guidance regarding the scientific approaches that should be employed in its monographs. These amendments to the monograph development process are an improvement but still fall short in several areas. While the revised Preamble lays out broad methods and approaches to evaluate scientific evidence, there is a lack of specificity with regard to how IARC Working Groups will conduct consistent evaluations in a standardized, objective, and transparent manner; document systematic review and evidence integration actions, and substantiate how these actions and decisions inform the ultimate classifications. Furthermore, no guidance is provided to ensure Working Groups consistently incorporate mechanistic evidence in a robust manner using a defined approach in the context of 21st century knowledge of modes of action. Nor are the conclusions of the working groups subjected to outside, independent scientific peer review. Continued improvements and modernization of the procedures for evaluating, presenting, and communicating study quality, and in the methods used to conduct and peer-review evidence-based decision making will benefit the Working Group members, the IARC Monographs Programme overall, and the international regulatory community and public who rely upon the monographs.
Collapse
Affiliation(s)
- Julie E Goodman
- Gradient, One Beacon Street, 17th Floor, Boston, MA, 02108, USA.
| | - David B Mayfield
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Richard A Becker
- American Chemistry Council, 700 2nd Street NE, Washington, DC, 20002, USA.
| | - Suzanne B Hartigan
- American Chemistry Council, 700 2nd Street NE, Washington, DC, 20002, USA.
| | | |
Collapse
|
18
|
Editorial overview: The environment and man: A Study in mechanistic toxicology. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Fuentes-Hernández S, Alarcón-Sánchez BR, Guerrero-Escalera D, Montes-Aparicio AV, Castro-Gil MP, Idelfonso-García OG, Rosas-Madrigal S, Aparicio-Bautista DI, Pérez-Hernández JL, Reyes-Gordillo K, Lakshman MR, Vásquez-Garzón VR, Baltiérrez-Hoyos R, López-González MDL, Sierra-Santoyo A, Villa-Treviño S, Pérez-Carreón JI, Arellanes-Robledo J. Chronic administration of diethylnitrosamine to induce hepatocarcinogenesis and to evaluate its synergistic effect with other hepatotoxins in mice. Toxicol Appl Pharmacol 2019; 378:114611. [DOI: 10.1016/j.taap.2019.114611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
|
20
|
School Green Space and Its Impact on Academic Performance: A Systematic Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030429. [PMID: 30717301 PMCID: PMC6388261 DOI: 10.3390/ijerph16030429] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Background: Scholars and policymakers have criticized public education in developed countries for perpetuating health and income disparities. Several studies have examined the ties between green space and academic performance, hypothesizing that green space can foster performance, and, over time, help reduce such disparities. Although numerous reviews have analyzed the link between nature and child health, none have focused on academic achievement. Methods: We identified 13 peer-reviewed articles that examined associations between academic outcomes, types of green spaces, and distances in which green spaces were measured around schools. Results: Of the 122 findings reported in the 13 articles, 64% were non-significant, 8% were significant and negative, and 28% were significant and positive. Positive findings were limited to greenness, tree cover, and green land cover at distances up to 2000 m around schools. End-of-semester grades and college preparatory exams showed greater shares of positive associations than math or reading test scores. Most findings regarding writing test scores were non-significant, and moderation effects of socioeconomic status, gender, and urbanization showed mixed results. Conclusions: The extant literature on green space and academic performance is small, shows mixed results, and mostly includes articles using observational, school-level research designs. Regardless, there is sufficient evidence to warrant further research on this topic, including effect moderation and mechanistic pathways.
Collapse
|
21
|
Wikoff DS, Rager JE, Chappell GA, Fitch S, Haws L, Borghoff SJ. A Framework for Systematic Evaluation and Quantitative Integration of Mechanistic Data in Assessments of Potential Human Carcinogens. Toxicol Sci 2018; 167:322-335. [DOI: 10.1093/toxsci/kfy279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
22
|
Goodman JE, Lynch HN, Rhomberg LR. Letter to the editor re: Guyton et al. (2018), ‘Application of the key characteristics of carcinogens in cancer hazard identification’. Carcinogenesis 2018; 39:1089-1090. [DOI: 10.1093/carcin/bgy066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
|
23
|
Zeller A, Pfuhler S, Albertini S, Bringezu F, Czich A, Dietz Y, Fautz R, Hewitt NJ, Kirst A, Kasper P. A critical appraisal of the sensitivity of in vivo genotoxicity assays in detecting human carcinogens. Mutagenesis 2018; 33:179-193. [DOI: 10.1093/mutage/gey005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, Basel, Switzerland
| | - Stefan Pfuhler
- Procter & Gamble, Global Product Stewardship, Human Safety, Mason Business Centre, Mason, OH, USA
| | - Silvio Albertini
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, Basel, Switzerland
| | | | - Andreas Czich
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | | | | | | | - Peter Kasper
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee, Bonn, Germany
| |
Collapse
|
24
|
Modernizing Human Cancer Risk Assessment of Therapeutics. Trends Pharmacol Sci 2017; 39:232-247. [PMID: 29242029 DOI: 10.1016/j.tips.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Cancer risk assessment of therapeutics is plagued by poor translatability of rodent models of carcinogenesis. In order to overcome this fundamental limitation, new approaches are needed that enable us to evaluate cancer risk directly in humans and human-based cellular models. Our enhanced understanding of the mechanisms of carcinogenesis and the influence of human genome sequence variation on cancer risk motivates us to re-evaluate how we assess the carcinogenic risk of therapeutics. This review will highlight new opportunities for applying this knowledge to the development of a battery of human-based in vitro models and biomarkers for assessing cancer risk of novel therapeutics.
Collapse
|
25
|
Kriech AJ, Schreiner CA, Osborn LV, Riley AJ. Assessing cancer hazards of bitumen emissions – a case study for complex petroleum substances. Crit Rev Toxicol 2017; 48:121-142. [DOI: 10.1080/10408444.2017.1391170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Silano V, Bolognesi C, Castle L, Chipman K, Cravedi JP, Engel KH, Fowler P, Franz R, Grob K, Gürtler R, Husøy T, Kärenlampi S, Milana MR, Pfaff K, Riviere G, Srinivasan J, Tavares Poças MDF, Tlustos C, Wölfle D, Zorn H, Benigni R, Binderup ML, Brimer L, Marcon F, Marzin D, Mosesso P, Mulder G, Oskarsson A, Svendsen C, Anastassiadou M, Carfì M, Saarma S, Mennes W. Safety of ethyl acrylate to be used as flavouring. EFSA J 2017; 15:e05012. [PMID: 32625331 PMCID: PMC7010172 DOI: 10.2903/j.efsa.2017.5012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) was requested by the European Commission according to Art. 29 1(a) of the Regulation (EC) No 178/2002 to carry out a review of existing literature on the safety of ethyl acrylate [FL-no: 09.037] when used as a flavouring substance. Ethyl acrylate [FL-no: 09.037] was evaluated in 2010 by EFSA in FGE.71 as a flavouring substance, based on the 2006 JECFA evaluation. The Panel concluded that ethyl acrylate was of no safety concern at estimated level of intake as flavouring substance based on the Maximised Survey-Derived Daily Intake (MSDI) approach. The Panel has evaluated the new literature available and any previous assessments performed by JECFA (2006) and EFSA (2010). Moreover, new data on the use levels of ethyl acrylate as flavouring substance have been provided. For use as flavouring substance, the chronic dietary exposure estimated using the added portions exposure technique (APET), is calculated to be 3,545 μg/person per day for a 60-kg adult and 2,233 μg/person per day for a 15-kg 3-year-old child. Exposure from food contact materials may be up to 6,000 μg/person per day. The Panel considered that based on the available data, which covers all relevant genetic endpoints (i.e. gene mutations, structural and numerical chromosomal aberrations) there is no concern with respect to genotoxicity of ethyl acrylate. The Panel evaluated the available carcinogenicity studies conducted in rats and mice and agreed with the NTP evaluation (1998) concluding that the forestomach squamous cell papilloma and carcinoma observed in rodents were not relevant to humans. Additionally, there was no evidence of systemic toxicity in short-term and subchronic toxicity studies. Therefore, the Panel concluded that there is no safety concern for the use of ethyl acrylate as a flavouring substance, under the intended conditions of use.
Collapse
|
27
|
Framework for the quantitative weight-of-evidence analysis of 'omics data for regulatory purposes. Regul Toxicol Pharmacol 2017; 91 Suppl 1:S46-S60. [PMID: 29037774 DOI: 10.1016/j.yrtph.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
A framework for the quantitative weight-of-evidence (QWoE) analysis of 'omics data for regulatory purposes is presented. The QWoE framework encompasses seven steps to evaluate 'omics data (also together with non-'omics data): (1) Hypothesis formulation, identification and weighting of lines of evidence (LoEs). LoEs conjoin different (types of) studies that are used to critically test the hypothesis. As an essential component of the QWoE framework, step 1 includes the development of templates for scoring sheets that predefine scoring criteria with scores of 0-4 to enable a quantitative determination of study quality and data relevance; (2) literature searches and categorisation of studies into the pre-defined LoEs; (3) and (4) quantitative assessment of study quality and data relevance using the respective pre-defined scoring sheets for each study; (5) evaluation of LoE-specific strength of evidence based upon the study quality and study relevance scores of the studies conjoined in the respective LoE; (6) integration of the strength of evidence from the individual LoEs to determine the overall strength of evidence; (7) characterisation of uncertainties and conclusion on the QWoE. To put the QWoE framework in practice, case studies are recommended to confirm the relevance of its different steps, or to adapt them as necessary.
Collapse
|
28
|
Becker RA, Dreier DA, Manibusan MK, Cox LAT, Simon TW, Bus JS. How well can carcinogenicity be predicted by high throughput "characteristics of carcinogens" mechanistic data? Regul Toxicol Pharmacol 2017; 90:185-196. [PMID: 28866267 DOI: 10.1016/j.yrtph.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/16/2022]
Abstract
IARC has begun using ToxCast/Tox21 data in efforts to represent key characteristics of carcinogens to organize and weigh mechanistic evidence in cancer hazard determinations and this implicit inference approach also is being considered by USEPA. To determine how well ToxCast/Tox21 data can explicitly predict cancer hazard, this approach was evaluated with statistical analyses and machine learning prediction algorithms. Substances USEPA previously classified as having cancer hazard potential were designated as positives and substances not posing a carcinogenic hazard were designated as negatives. Then ToxCast/Tox21 data were analyzed both with and without adjusting for the cytotoxicity burst effect commonly observed in such assays. Using the same assignments as IARC of ToxCast/Tox21 assays to the seven key characteristics of carcinogens, the ability to predict cancer hazard for each key characteristic, alone or in combination, was found to be no better than chance. Hence, we have little scientific confidence in IARC's inference models derived from current ToxCast/Tox21 assays for key characteristics to predict cancer. This finding supports the need for a more rigorous mode-of-action pathway-based framework to organize, evaluate, and integrate mechanistic evidence with animal toxicity, epidemiological investigations, and knowledge of exposure and dosimetry to evaluate potential carcinogenic hazards and risks to humans.
Collapse
Affiliation(s)
- Richard A Becker
- American Chemistry Council, 700 Second St., NE, Washington DC 20002, USA.
| | - David A Dreier
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
29
|
Bus JS. IARC use of oxidative stress as key mode of action characteristic for facilitating cancer classification: Glyphosate case example illustrating a lack of robustness in interpretative implementation. Regul Toxicol Pharmacol 2017; 86:157-166. [PMID: 28274811 DOI: 10.1016/j.yrtph.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/27/2022]
Abstract
The International Agency for Research on Cancer (IARC) has formulated 10 key characteristics of human carcinogens to incorporate mechanistic data into cancer hazard classifications. The analysis used glyphosate as a case example to examine the robustness of IARC's determination of oxidative stress as "strong" evidence supporting a plausible cancer mechanism in humans. The IARC analysis primarily relied on 14 human/mammalian studies; 19 non-mammalian studies were uninformative of human cancer given the broad spectrum of test species and extensive use of formulations and aquatic testing. The mammalian studies had substantial experimental limitations for informing cancer mechanism including use of: single doses and time points; cytotoxic/toxic test doses; tissues not identified as potential cancer targets; glyphosate formulations or mixtures; technically limited oxidative stress biomarkers. The doses were many orders of magnitude higher than human exposures determined in human biomonitoring studies. The glyphosate case example reveals that the IARC evaluation fell substantially short of "strong" supporting evidence of oxidative stress as a plausible human cancer mechanism, and suggests that other IARC monographs relying on the 10 key characteristics approach should be similarly examined for a lack of robust data integration fundamental to reasonable mode of action evaluations.
Collapse
Affiliation(s)
- James S Bus
- Exponent, Inc., 1800 Diagonal Road, Suite 500, Alexandria, VA 22314, United States.
| |
Collapse
|