1
|
Chen Y, Xia W, Lu F, Chen Z, Liu Y, Cao M, He N. Cell-free synthesis system: An accessible platform from biosensing to biomanufacturing. Microbiol Res 2025; 293:128079. [PMID: 39908944 DOI: 10.1016/j.micres.2025.128079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
The fundamental aspect of cell-free synthesis systems is the in vitro transcription-translation process. By artificially providing the components required for protein expression, in vitro protein production alleviates various limitations tied to in vivo production, such as oxygen supply and nutrient constraints, thus showcasing substantial potential in engineering applications. This article presents a comprehensive review of cell-free synthesis systems, with a primary focus on biosensing and biomanufacturing. In terms of biosensing, it summarizes the recognition-response mechanisms and key advantages of cell-free biosensors. Moreover, it examines the strategies for the cell-free production of intricate proteins, including membrane proteins and glycoproteins. Additionally, the integration of cell-free metabolic engineering approaches with cell-free synthesis systems in biomanufacturing is thoroughly discussed, with the expectation that biotechnology will embrace greater prosperity.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| |
Collapse
|
2
|
Min YH, Hong Y, Kim CH, Lee KH, Shin YB, Byun JY. Split Probe-Induced Protein Translational Amplification for Nucleic Acid Detection. ACS APPLIED BIO MATERIALS 2024; 7:8389-8397. [PMID: 39546461 DOI: 10.1021/acsabm.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Nucleic acid detection is important in a wide range of applications, including disease diagnosis, genetic testing, biotechnological research, environmental monitoring, and forensic science. However, the application of nucleic acid detection in various fields is hindered by the lack of sensitive, accurate, and inexpensive methods. This study introduces a simple approach to enhance the sensitivity for the accurate detection of nucleic acids. Our approach combined a split-probe strategy with in vitro translational amplification of reporter protein for signal generation to detect nucleic acids with high sensitivity and selectivity. This approach enables target-mediated translational amplification of reporter proteins by linking split probes in the presence of a target microRNA (miRNA). In particular, the fluorescence split-probe sensor adopts a reporter protein with various fluorescence wavelength regions, enabling the simultaneous detection of multiple target miRNAs. Moreover, luminescence detection by merely altering the reporter protein sequence can substantially enhance the sensitivity of detection of target miRNAs. Using this system, we analyzed and quantified target miRNAs in the total RNA extracted from cell lines and cell-derived extracellular vesicles with high specificity and accuracy. This split-probe sensor has potential as a powerful tool for the simple, sensitive, and specific detection of various target nucleic acids.
Collapse
Affiliation(s)
- Yoo-Hong Min
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Yoonseo Hong
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Kyung-Ho Lee
- Apteasy MJ Inc., 333 Cheomdangwagi-ro, Technopark, Gwangju 61008, Korea
| | - Yong-Beom Shin
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34109, Korea
| | - Ju-Young Byun
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Kim D, Kim J, Han J, Shin J, Park KS. Split T7 switch-mediated cell-free protein synthesis system for detecting target nucleic acids. Biosens Bioelectron 2024; 261:116517. [PMID: 38924814 DOI: 10.1016/j.bios.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Cell-free protein synthesis (CFPS) reactions can be used to detect nucleic acids. However, most CFPS systems rely on a toehold switch and exhibit the following critical limitations: (i) off-target signals due to leaky translation in the absence of target nucleic acids, (ii) a suboptimal detection limit of approximately 30 nM without pre-amplification, and (iii) labor-intensive screening processes due to sequence constraints for the target nucleic acids. To overcome these shortcomings, we developed a new split T7 switch-mediated CFPS system in which the split T7 promoter was applied to a three-way junction structure to selectively initiate transcription-translation only in the presence of target nucleic acids. Both fluorescence and colorimetric detection systems were constructed by employing different reporter proteins. Notably, we introduced the self-complementation of split fluorescent proteins to streamline preparation of the proposed system, enabling versatile applications. Operation of this one-pot approach under isothermal conditions enabled the detection of target nucleic acids at concentrations as low as 10 pM, representing more than a thousand times improvement over previous toehold switch-based approaches. Furthermore, the proposed system demonstrated high specificity in detecting target nucleic acids and compatibility with various reporter proteins encoded in the expression region. By eliminating issues associated with the previous toehold switch system, our split T7 switch-mediated CFPS system could become a core platform for detecting various target nucleic acids.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Junhyeong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jinjoo Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Free TJ, Talley JP, Hyer CD, Miller CJ, Griffitts JS, Bundy BC. Engineering the Signal Resolution of a Paper-Based Cell-Free Glutamine Biosensor with Genetic Engineering, Metabolic Engineering, and Process Optimization. SENSORS (BASEL, SWITZERLAND) 2024; 24:3073. [PMID: 38793927 PMCID: PMC11124800 DOI: 10.3390/s24103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Specialized cancer treatments have the potential to exploit glutamine dependence to increase patient survival rates. Glutamine diagnostics capable of tracking a patient's response to treatment would enable a personalized treatment dosage to optimize the tradeoff between treatment success and dangerous side effects. Current clinical glutamine testing requires sophisticated and expensive lab-based tests, which are not broadly available on a frequent, individualized basis. To address the need for a low-cost, portable glutamine diagnostic, this work engineers a cell-free glutamine biosensor to overcome assay background and signal-to-noise limitations evident in previously reported studies. The findings from this work culminate in the development of a shelf-stable, paper-based, colorimetric glutamine test with a high signal strength and a high signal-to-background ratio for dramatically improved signal resolution. While the engineered glutamine test is important progress towards improving the management of cancer and other health conditions, this work also expands the assay development field of the promising cell-free biosensing platform, which can facilitate the low-cost detection of a broad variety of target molecules with high clinical value.
Collapse
Affiliation(s)
- Tyler J. Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joseph P. Talley
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Chad D. Hyer
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Catherine J. Miller
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
5
|
Brazaca LC, Imamura AH, Blasques RV, Camargo JR, Janegitz BC, Carrilho E. The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosens Bioelectron 2024; 246:115846. [PMID: 38006702 DOI: 10.1016/j.bios.2023.115846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
The use of microfluidic paper-based analytical devices (μPADs) for aiding medical diagnosis is a growing trend in the literature mainly due to their low cost, easy use, simple manufacturing, and great potential for application in low-resource settings. Many important biomarkers (proteins, ions, lipids, hormones, DNA, RNA, drugs, whole cells, and more) and biofluids are available for precise detection and diagnosis. We have reviewed the advances μPADs in medical diagnostics have achieved in the last few years, focusing on the most common human biofluids (whole blood/plasma, sweat, urine, tears, and saliva). The challenges of detecting specific biomarkers in each sample are discussed, along with innovative techniques that overcome such limitations. Finally, the difficulties of commercializing μPADs are considered, and future trends are presented, including wearable devices and integrating multiple steps in a single platform.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Vieira Blasques
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Jéssica Rocha Camargo
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
6
|
Phillips EA, Silverman AD, Joneja A, Liu M, Brown C, Carlson P, Coticchia C, Shytle K, Larsen A, Goyal N, Cai V, Huang J, Hickey JE, Ryan E, Acheampong J, Ramesh P, Collins JJ, Blake WJ. Detection of viral RNAs at ambient temperature via reporter proteins produced through the target-splinted ligation of DNA probes. Nat Biomed Eng 2023; 7:1571-1582. [PMID: 37142844 PMCID: PMC10727988 DOI: 10.1038/s41551-023-01028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/25/2023] [Indexed: 05/06/2023]
Abstract
Nucleic acid assays are not typically deployable in point-of-care settings because they require costly and sophisticated equipment for the control of the reaction temperature and for the detection of the signal. Here we report an instrument-free assay for the accurate and multiplexed detection of nucleic acids at ambient temperature. The assay, which we named INSPECTR (for internal splint-pairing expression-cassette translation reaction), leverages the target-specific splinted ligation of DNA probes to generate expression cassettes that can be flexibly designed for the cell-free synthesis of reporter proteins, with enzymatic reporters allowing for a linear detection range spanning four orders of magnitude and peptide reporters (which can be mapped to unique targets) enabling highly multiplexed visual detection. We used INSPECTR to detect a panel of five respiratory viral targets in a single reaction via a lateral-flow readout and ~4,000 copies of viral RNA via additional ambient-temperature rolling circle amplification of the expression cassette. Leveraging synthetic biology to simplify workflows for nucleic acid diagnostics may facilitate their broader applicability at the point of care.
Collapse
Affiliation(s)
| | | | | | | | - Carl Brown
- Sherlock Biosciences, Watertown, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Emily Ryan
- Sherlock Biosciences, Watertown, MA, USA
| | | | | | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA, USA
- College of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William J Blake
- Sherlock Biosciences, Watertown, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
7
|
Hunt JP, Free TJ, Galiardi J, Watt KM, Wood DW, Bundy BC. Streamlining the Detection of Human Thyroid Receptor Ligand Interactions with XL1-Blue Cell-Free Protein Synthesis and Beta-Galactosidase Fusion Protein Biosensors. Life (Basel) 2023; 13:1972. [PMID: 37895354 PMCID: PMC10608756 DOI: 10.3390/life13101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid receptor signaling controls major physiological processes and disrupted signaling can cause severe disorders that negatively impact human life. Consequently, methods to detect thyroid receptor ligands are of great toxicologic and pharmacologic importance. Previously, we reported thyroid receptor ligand detection with cell-free protein synthesis of a chimeric fusion protein composed of the human thyroid receptor beta (hTRβ) receptor activator and a β-lactamase reporter. Here, we report a 60% reduction in sensing cost by reengineering the chimeric fusion protein biosensor to include a reporter system composed of either the full-length beta galactosidase (β-gal), the alpha fragment of β-gal (β-gal-α), or a split alpha fragment of the β-gal (split β-gal-α). These biosensor constructs are deployed using E. coli XL1-Blue cell extract to (1) avoid the β-gal background activity abundant in BL21 cell extract and (2) facilitate β-gal complementation reporter activity to detect human thyroid receptor ligands. These results constitute a promising platform for high throughput screening and potentially the portable detection of human thyroid receptor ligands.
Collapse
Affiliation(s)
- J. Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Tyler J. Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Jackelyn Galiardi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kevin M. Watt
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - David W. Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Beabout K, Ehrenworth Breedon AM, Blum SM, Miklos AE, Lux MW, Chávez JL, Goodson MS. Detection of Bile Acids in Complex Matrices Using a Transcription Factor-Based Biosensor. ACS Biomater Sci Eng 2023; 9:5151-5162. [PMID: 36475595 DOI: 10.1021/acsbiomaterials.2c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bile acids play an important role in digestion and human health, are found throughout the gastrointestinal tract, and are excreted in feces. Therefore, bile acids are promising biomarkers for monitoring health and detecting fecal contamination in water sources. Here, we engineered a bile acid sensor by expressing the transcription factor BreR, a TetR-like repressor from Vibrio cholorae, in Escherichia coli. The sensor was further optimized by screening a promoter library. To further characterize the BreR sensor and increase its utility, we moved expression to a cell-free expression (CFE) system, resulting in an approximately 3 orders of magnitude increase in deoxycholic acid sensitivity. We next optimized this sensor to detect bile acids in fecal water, wastewater, and serum and transferred the CFE sensor to a paper-based assay to enhance fieldability.
Collapse
Affiliation(s)
- Kathryn Beabout
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Amy M Ehrenworth Breedon
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Steven M Blum
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Aleksandr E Miklos
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Matthew W Lux
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
9
|
Silva SJRD, Kohl A, Pena L, Pardee K. Clinical and laboratory diagnosis of monkeypox (mpox): Current status and future directions. iScience 2023; 26:106759. [PMID: 37206155 PMCID: PMC10183700 DOI: 10.1016/j.isci.2023.106759] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
The emergence and rapid spread of the monkeypox virus (MPXV) to non-endemic countries has brought this once obscure pathogen to the forefront of global public health. Given the range of conditions that cause similar skin lesions, and because the clinical manifestation may often be atypical in the current mpox outbreak, it can be challenging to diagnose patients based on clinical signs and symptoms. With this perspective in mind, laboratory-based diagnosis assumes a critical role for the clinical management, along with the implementation of countermeasures. Here, we review the clinical features reported in mpox patients, the available laboratory tests for mpox diagnosis, and discuss the principles, advances, advantages, and drawbacks of each assay. We also highlight the diagnostic platforms with the potential to guide ongoing clinical response, particularly those that increase diagnostic capacity in low- and middle-income countries. With the outlook of this evolving research area, we hope to provide a resource to the community and inspire more research and the development of diagnostic alternatives with applications to this and future public health crises.
Collapse
Affiliation(s)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto ON M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto ON M5S 3G8, Canada
| |
Collapse
|
10
|
Cell-free protein synthesis system for bioanalysis: Advances in methods and applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Free TJ, Tucker RW, Simonson KM, Smith SA, Lindgren CM, Pitt WG, Bundy BC. Engineering At-Home Dilution and Filtration Methods to Enable Paper-Based Colorimetric Biosensing in Human Blood with Cell-Free Protein Synthesis. BIOSENSORS 2023; 13:104. [PMID: 36671942 PMCID: PMC9855769 DOI: 10.3390/bios13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Diagnostic blood tests can guide the administration of healthcare to save and improve lives. Most clinical biosensing blood tests require a trained technician and specialized equipment to process samples and interpret results, which greatly limits test accessibility. Colorimetric paper-based diagnostics have an equipment-free readout, but raw blood obscures a colorimetric response which has motivated diverse efforts to develop blood sample processing techniques. This work uses inexpensive readily-available materials to engineer user-friendly dilution and filtration methods for blood sample collection and processing to enable a proof-of-concept colorimetric biosensor that is responsive to glutamine in 50 µL blood drop samples in less than 30 min. Paper-based user-friendly blood sample collection and processing combined with CFPS biosensing technology represents important progress towards the development of at-home biosensors that could be broadly applicable to personalized healthcare.
Collapse
|
12
|
Evaluating and mitigating clinical samples matrix effects on TX-TL cell-free performance. Sci Rep 2022; 12:13785. [PMID: 35962056 PMCID: PMC9374283 DOI: 10.1038/s41598-022-17583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
Cell-free biosensors are promising tools for medical diagnostics, yet their performance can be affected by matrix effects arising from the sample itself or from external components. Here we systematically evaluate the performance and robustness of cell-free systems in serum, plasma, urine, and saliva using two reporter systems, sfGFP and luciferase. In all cases, clinical samples have a strong inhibitory effect. Of the different inhibitors, only RNase inhibitor mitigated matrix effects. However, we found that the recovery potential of RNase inhibitor was partially muted by interference from glycerol contained in the commercial buffer. We solved this issue by designing a strain producing an RNase inhibitor protein requiring no additional step in extract preparation. Furthermore, our new extract yielded higher reporter levels than previous conditions and tempered interpatient variability associated with matrix effects. This systematic evaluation and improvements of cell-free system robustness unified across many types of clinical samples is a significant step towards developing cell-free diagnostics for a wide range of conditions.
Collapse
|
13
|
Copeland CE, Kim J, Copeland PL, Heitmeier CJ, Kwon YC. Characterizing a New Fluorescent Protein for a Low Limit of Detection Sensing in the Cell-Free System. ACS Synth Biol 2022; 11:2800-2810. [PMID: 35850511 PMCID: PMC9396652 DOI: 10.1021/acssynbio.2c00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free protein synthesis-based biosensors have been developed as highly accurate, low-cost biosensors. However, since most biomarkers exist at low concentrations in various types of biopsies, the biosensor's dynamic range must be increased in the system to achieve low limits of detection necessary while deciphering from higher background signals. Many attempts to increase the dynamic range have relied on amplifying the input signal from the analyte, which can lead to complications of false positives. In this study, we aimed to increase the protein synthesis capability of the cell-free protein synthesis system and the output signal of the reporter protein to achieve a lower limit of detection. We utilized a new fluorescent protein, mNeonGreen, which produces a higher output than those commonly used in cell-free biosensors. Optimizations of DNA sequence and the subsequent cell-free protein synthesis reaction conditions allowed characterizing protein expression variability by given DNA template types, reaction environment, and storage additives that cause the greatest time constraint on designing the cell-free biosensor. Finally, we characterized the fluorescence kinetics of mNeonGreen compared to the commonly used reporter protein, superfolder green fluorescent protein. We expect that this finely tuned cell-free protein synthesis platform with the new reporter protein can be used with sophisticated synthetic gene circuitry networks to increase the dynamic range of a cell-free biosensor to reach lower detection limits and reduce the false-positive proportion.
Collapse
Affiliation(s)
- Caroline E Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeehye Kim
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Pearce L Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chloe J Heitmeier
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Wang T, Lu Y. Advances, Challenges and Future Trends of Cell-Free Transcription-Translation Biosensors. BIOSENSORS 2022; 12:bios12050318. [PMID: 35624619 PMCID: PMC9138237 DOI: 10.3390/bios12050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
In recent years, the application of cell-free protein synthesis systems in biosensing has been developing rapidly. Cell-free synthetic biology, with its advantages of high biosafety, fast material transport, and high sensitivity, has overcome many defects of cell-based biosensors and provided an abiotic substitute for biosensors. In addition, the application of freeze-drying technology has improved the stability of such systems, making it possible to realize point-of-care application of field detection and broadening the application prospects of cell-free biosensors. However, despite these advancements, challenges such as the risk of sample interference due to the lack of physical barriers, maintenance of activity during storage, and poor robustness still need to be addressed before the full potential of cell-free biosensors can be realized on a larger scale. In this review, current strategies and research results for improving the performance of cell-free biosensors are summarized, including a comprehensive discussion of the existing challenges, future trends, and potential investments needed for improvement.
Collapse
|
15
|
Hunt JP, Zhao EL, Free TJ, Soltani M, Warr CA, Benedict AB, Takahashi MK, Griffitts JS, Pitt WG, Bundy BC. Towards detection of SARS-CoV-2 RNA in human saliva: A paper-based cell-free toehold switch biosensor with a visual bioluminescent output. N Biotechnol 2022; 66:53-60. [PMID: 34555549 PMCID: PMC8452453 DOI: 10.1016/j.nbt.2021.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic has illustrated the global demand for rapid, low-cost, widely distributable and point-of-care nucleic acid diagnostic technologies. Such technologies could help disrupt transmission, sustain economies and preserve health and lives during widespread infection. In contrast, conventional nucleic acid diagnostic procedures require trained personnel, complex laboratories, expensive equipment, and protracted processing times. In this work, lyophilized cell-free protein synthesis (CFPS) and toehold switch riboregulators are employed to develop a promising paper-based nucleic acid diagnostic platform activated simply by the addition of saliva. First, to facilitate distribution and deployment, an economical paper support matrix is identified and a mass-producible test cassette designed with integral saliva sample receptacles. Next, CFPS is optimized in the presence of saliva using murine RNase inhibitor. Finally, original toehold switch riboregulators are engineered to express the bioluminescent reporter NanoLuc in response to SARS-CoV-2 RNA sequences present in saliva samples. The biosensor generates a visible signal in as few as seven minutes following administration of 15 μL saliva enriched with high concentrations of SARS-CoV-2 RNA sequences. The estimated cost of this test is less than 0.50 USD, which could make this platform readily accessible to both the developed and developing world. While additional research is needed to decrease the limit of detection, this work represents important progress toward developing a diagnostic technology that is rapid, low-cost, distributable and deployable at the point-of-care by a layperson.
Collapse
Affiliation(s)
- J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Emily Long Zhao
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Tyler J Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Chandler A Warr
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Alex B Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Melissa K Takahashi
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Joel S Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
16
|
Streamlining cell-free protein synthesis biosensors for use in human fluids: In situ RNase inhibitor production during extract preparation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Hunt JP, Galiardi J, Free TJ, Yang SO, Poole D, Zhao EL, Andersen JL, Wood DW, Bundy BC. Mechanistic discoveries and simulation-guided assay optimization of portable hormone biosensors with cell-free protein synthesis. Biotechnol J 2021; 17:e2100152. [PMID: 34761537 DOI: 10.1002/biot.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Nuclear receptors (NRs) influence nearly every system of the body and our lives depend on correct NR signaling. Thus, a key environmental and pharmaceutical quest is to identify and detect chemicals which interact with nuclear hormone receptors, including endocrine disrupting chemicals (EDCs), therapeutic receptor modulators, and natural hormones. Previously reported biosensors of nuclear hormone receptor ligands facilitated rapid detection of NR ligands using cell-free protein synthesis (CFPS). In this work, the advantages of CFPS are further leveraged and combined with kinetic analysis, autoradiography, and western blot to elucidate the molecular mechanism of this biosensor. Additionally, mathematical simulations of enzyme kinetics are used to optimize the biosensor assay, ultimately lengthening its readable window by five-fold and improving sensor signal strength by two-fold. This approach enabled the creation of an on-demand thyroid hormone biosensor with an observable color-change readout. This mathematical and experimental approach provides insight for engineering rapid and field-deployable CFPS biosensors and promises to improve methods for detecting natural hormones, therapeutic receptor modulators, and EDCs.
Collapse
Affiliation(s)
- John Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Jackelyn Galiardi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Tyler J Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Seung Ook Yang
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Daniel Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Emily Long Zhao
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
18
|
|
19
|
Arce A, Guzman Chavez F, Gandini C, Puig J, Matute T, Haseloff J, Dalchau N, Molloy J, Pardee K, Federici F. Decentralizing Cell-Free RNA Sensing With the Use of Low-Cost Cell Extracts. Front Bioeng Biotechnol 2021; 9:727584. [PMID: 34497801 PMCID: PMC8419261 DOI: 10.3389/fbioe.2021.727584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cell-free gene expression systems have emerged as a promising platform for field-deployed biosensing and diagnostics. When combined with programmable toehold switch-based RNA sensors, these systems can be used to detect arbitrary RNAs and freeze-dried for room temperature transport to the point-of-need. These sensors, however, have been mainly implemented using reconstituted PURE cell-free protein expression systems that are difficult to source in the Global South due to their high commercial cost and cold-chain shipping requirements. Based on preliminary demonstrations of toehold sensors working on lysates, we describe the fast prototyping of RNA toehold switch-based sensors that can be produced locally and reduce the cost of sensors by two orders of magnitude. We demonstrate that these in-house cell lysates provide sensor performance comparable to commercial PURE cell-free systems. We further optimize these lysates with a CRISPRi strategy to enhance the stability of linear DNAs by knocking-down genes responsible for linear DNA degradation. This enables the direct use of PCR products for fast screening of new designs. As a proof-of-concept, we develop novel toehold sensors for the plant pathogen Potato Virus Y (PVY), which dramatically reduces the yield of this important staple crop. The local implementation of low-cost cell-free toehold sensors could enable biosensing capacity at the regional level and lead to more decentralized models for global surveillance of infectious disease.
Collapse
Affiliation(s)
- Anibal Arce
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Puig
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tamara Matute
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fernán Federici
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
20
|
Soltani M, Hunt JP, Bundy BC. Rapid RNase inhibitor production to enable low-cost, on-demand cell-free protein synthesis biosensor use in human body fluids. Biotechnol Bioeng 2021; 118:3973-3983. [PMID: 34185319 DOI: 10.1002/bit.27874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Human body fluids contain biomarkers which are used extensively for prognostication, diagnosis, monitoring, and evaluation of different treatments for a variety of diseases and disorders. The application of biosensors based on cell-free protein synthesis (CFPS) offers numerous advantages including on-demand and at-home use for fast, accurate detection of a variety of biomarkers in human fluids at an affordable price. However, current CFPS-based biosensors use commercial RNase inhibitors to inhibit different RNases present in human fluids and this reagent is approximately 90% of the expense of these biosensors. Here the flexible nature of Escherichia coli-lysate-based CFPS was used for the first time to produce murine RNase Inhibitor (m-RI) and to optimize its soluble and active production by tuning reaction temperature, reaction time, reduced potential, and addition of GroEL/ES folding chaperons. Furthermore, RNase inhibition activity of m-RI with the highest activity and stability was determined against increasing amounts of three human fluids of serum, saliva, and urine (0%-100% v/v) in lyophilized CFPS reactions. To further demonstrate the utility of the CFPS-produced m-RI, a lyophilized saliva-based glutamine biosensor was demonstrated to effectively work with saliva samples. Overall, the use of CFPS-produced m-RI reduces the total reagent costs of CFPS-based biosensors used in human body fluids approximately 90%.
Collapse
Affiliation(s)
- Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
21
|
Amalfitano E, Karlikow M, Norouzi M, Jaenes K, Cicek S, Masum F, Sadat Mousavi P, Guo Y, Tang L, Sydor A, Ma D, Pearson JD, Trcka D, Pinette M, Ambagala A, Babiuk S, Pickering B, Wrana J, Bremner R, Mazzulli T, Sinton D, Brumell JH, Green AA, Pardee K. A glucose meter interface for point-of-care gene circuit-based diagnostics. Nat Commun 2021; 12:724. [PMID: 33526784 PMCID: PMC7851131 DOI: 10.1038/s41467-020-20639-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/01/2020] [Indexed: 01/24/2023] Open
Abstract
Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2. Getting synthetic biology circuit-based sensors into field applications is still a challenge. Here the authors combine a circuit sensor with a glucose meter for small analyte and nucleic acid detection.
Collapse
Affiliation(s)
- Evan Amalfitano
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Margot Karlikow
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Masoud Norouzi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Seray Cicek
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Fahim Masum
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | | | - Yuxiu Guo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Laura Tang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Andrew Sydor
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, AZ, 85287, USA
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5T 3A9, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Daniel Trcka
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada
| | - Mathieu Pinette
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Bradley Pickering
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, R3E 0J9, MB, Canada.,Iowa State University, College of Veterinary Medicine, Department of Veterinary Microbiology and Preventive Medicine, Ames, IA, 50011, USA
| | - Jeff Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5T 3A9, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Department of Microbiology, Sinai Health System/University Health Network, Toronto, M5G 1X5, ON, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, ON, Canada
| | - John H Brumell
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, ON, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, M5G 1X8, ON, Canada
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, AZ, 85287, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada. .,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, ON, Canada.
| |
Collapse
|
22
|
Dopp JL, Reuel NF. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Lin X, Li Y, Li Z, Hua R, Xing Y, Lu Y. Portable environment-signal detection biosensors with cell-free synthetic biosystems. RSC Adv 2020; 10:39261-39265. [PMID: 35518409 PMCID: PMC9057330 DOI: 10.1039/d0ra05293k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
By embedding regulated genetic circuits and cell-free systems onto a paper, the portable in vitro biosensing platform showed the possibility of detecting environmental pollutants, namely arsenic ions and bacterial quorum-sensing signal AHLs (N-acyl homoserine lactones). This platform has a great potential for practical environmental management and diagnosis. By embedding the regulated genetic circuits and cell-free systems onto a paper, a portable in vitro biosensing platform has been established.![]()
Collapse
Affiliation(s)
- Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuting Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhixia Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Rui Hua
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuyang Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
24
|
Hunt JP, Barnett RJ, Robinson H, Soltani M, Nelson JAD, Bundy BC. Rapid sensing of clinically relevant glutamine concentrations in human serum with metabolically engineered E. coli-based cell-free protein synthesis. J Biotechnol 2020; 325:389-394. [PMID: 32961202 DOI: 10.1016/j.jbiotec.2020.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Bioavailable glutamine (Gln) is critical for metabolism, intestinal health, immune function, and cell signaling. Routine measurement of serum Gln concentrations could facilitate improved diagnosis and treatment of severe infections, anorexia nervosa, chronic kidney disease, diabetes, and cancer. Current methods for quantifying tissue Gln concentrations rely mainly on HPLC, which requires extensive sample preparation and expensive equipment. Consequently, patient Gln levels may be clinically underutilized. Cell-free protein synthesis (CFPS) is an emerging sensing platform with promising clinical applications, including detection of hormones, amino acids, nucleic acids, and other biomarkers. In this work, in vitro E. coli amino acid metabolism is engineered with methionine sulfoximine to inhibit glutamine synthetase and create a CFPS Gln sensor. The sensor features a strong signal-to-noise ratio and a detection range ideally suited to physiological Gln concentrations. Furthermore, it quantifies Gln concentration in the presence of human serum. This work demonstrates that CFPS reactions which harness the metabolic power of E. coli lysate may be engineered to detect clinically relevant analytes in human samples. This approach could lead to transformative point-of-care diagnostics and improved treatment regimens for a variety of diseases including cancer, diabetes, anorexia nervosa, chronic kidney disease, and severe infections.
Collapse
Affiliation(s)
- J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - R Jordan Barnett
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Hannah Robinson
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - J Andrew D Nelson
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
25
|
Senf B, Yeo WH, Kim JH. Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids. BIOSENSORS-BASEL 2020; 10:bios10090127. [PMID: 32961853 PMCID: PMC7559030 DOI: 10.3390/bios10090127] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
A recent development in portable biosensors allows rapid, accurate, and on-site detection of biomarkers, which helps to prevent disease spread by the control of sources. Less invasive sample collection is necessary to use portable biosensors in remote environments for accurate on-site diagnostics and testing. For non- or minimally invasive sampling, easily accessible body fluids, such as saliva, sweat, blood, or urine, have been utilized. It is also imperative to find accurate biomarkers to provide better clinical intervention and treatment at the onset of disease. At the same time, these reliable biomarkers can be utilized to monitor the progress of the disease. In this review, we summarize the most recent development of portable biosensors to detect various biomarkers accurately. In addition, we discuss ongoing issues and limitations of the existing systems and methods. Lastly, we present the key requirements of portable biosensors and discuss ideas for functional enhancements.
Collapse
Affiliation(s)
- Brian Senf
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
| | - Woon-Hong Yeo
- Human-Centric Interfaces and Engineering Program, Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
- Correspondence: ; Tel.: +1-360-546-9250; Fax: +1-360-546-9438
| |
Collapse
|
26
|
Zhang L, Guo W, Lu Y. Advances in Cell‐Free Biosensors: Principle, Mechanism, and Applications. Biotechnol J 2020; 15:e2000187. [DOI: 10.1002/biot.202000187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/22/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Liyuan Zhang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
- Department of Ecology Shenyang Agricultural University Shenyang Liaoning Province 110866 China
| | - Wei Guo
- Department of Ecology Shenyang Agricultural University Shenyang Liaoning Province 110866 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Voyvodic PL, Bonnet J. Cell-free biosensors for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Ayoubi-Joshaghani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahalan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng 2020; 117:1204-1229. [PMID: 31840797 DOI: 10.1002/bit.27248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.
Collapse
Affiliation(s)
| | | | - Khaled Seidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Hunt JP, Wilding KM, Barnett RJ, Robinson H, Soltani M, Cho JE, Bundy BC. Engineering Cell‐Free Protein Synthesis for High‐Yield Production and Human Serum Activity Assessment of Asparaginase: Toward On‐Demand Treatment of Acute Lymphoblastic Leukemia. Biotechnol J 2020; 15:e1900294. [DOI: 10.1002/biot.201900294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- J. Porter Hunt
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Kristen M. Wilding
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - R. Jordan Barnett
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Hannah Robinson
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Mehran Soltani
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Jae Eun Cho
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Bradley C. Bundy
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| |
Collapse
|
30
|
Biosensor design using an electroactive label-based aptamer to detect bisphenol A in serum samples. J Biosci 2019. [DOI: 10.1007/s12038-019-9921-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Abstract
Cell-free systems (CFS) have recently evolved into key platforms for synthetic biology applications. Many synthetic biology tools have traditionally relied on cell-based systems, and while their adoption has shown great progress, the constraints inherent to the use of cellular hosts have limited their reach and scope. Cell-free systems, which can be thought of as programmable liquids, have removed many of these complexities and have brought about exciting opportunities for rational design and manipulation of biological systems. Here we review how these simple and accessible enzymatic systems are poised to accelerate the rate of advancement in synthetic biology and, more broadly, biotechnology.
Collapse
Affiliation(s)
- Aidan Tinafar
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
32
|
Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors. Nat Commun 2019; 10:1697. [PMID: 30979906 PMCID: PMC6461607 DOI: 10.1038/s41467-019-09722-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/21/2019] [Indexed: 11/14/2022] Open
Abstract
Cell-free transcription–translation systems have great potential for biosensing, yet the range of detectable chemicals is limited. Here we provide a workflow to expand the range of molecules detectable by cell-free biosensors through combining synthetic metabolic cascades with transcription factor-based networks. These hybrid cell-free biosensors have a fast response time, strong signal response, and a high dynamic range. In addition, they are capable of functioning in a variety of complex media, including commercial beverages and human urine, in which they can be used to detect clinically relevant concentrations of small molecules. This work provides a foundation to engineer modular cell-free biosensors tailored for many applications. The range of chemicals detectable by cell-free systems is still limited. Here the authors combine metabolic cascades with transcription factor networks to detect small molecules in complex environments.
Collapse
|
33
|
Jin X, Kightlinger W, Hong SH. Optimizing Cell-Free Protein Synthesis for Increased Yield and Activity of Colicins. Methods Protoc 2019; 2:28. [PMID: 36358105 PMCID: PMC6632115 DOI: 10.3390/mps2020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Colicins are antimicrobial proteins produced by Escherichia coli that hold great promise as viable complements or alternatives to antibiotics. Cell-free protein synthesis (CFPS) is a useful production platform for toxic proteins because it eliminates the need to maintain cell viability, a common problem in cell-based production. Previously, we demonstrated that colicins produced by CFPS based on crude Escherichia coli lysates are effective in eradicating antibiotic-tolerant bacteria known as persisters. However, we also found that some colicins have poor solubility or low cell-killing activity. In this study, we improved the solubility of colicin M from 16% to nearly 100% by producing it in chaperone-enriched E. coli extracts, resulting in enhanced cell-killing activity. We also improved the cytotoxicity of colicin E3 by adding or co-expressing the E3 immunity protein during the CFPS reaction, suggesting that the E3 immunity protein enhances colicin E3 activity in addition to protecting the host strain. Finally, we confirmed our previous finding that active colicins can be rapidly synthesized by observing colicin E1 production over time in CFPS. Within three hours of CFPS incubation, colicin E1 reached its maximum production yield and maintained high cytotoxicity during longer incubations up to 20 h. Taken together, our findings indicate that colicin production can be easily optimized for improved solubility and activity using the CFPS platform.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| |
Collapse
|
34
|
Liu WQ, Zhang L, Chen M, Li J. Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Bundy BC, Hunt JP, Jewett MC, Swartz JR, Wood DW, Frey DD, Rao G. Cell-free biomanufacturing. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Pardee K. Perspective: Solidifying the impact of cell-free synthetic biology through lyophilization. Biochem Eng J 2018; 138:91-97. [PMID: 30740032 PMCID: PMC6358126 DOI: 10.1016/j.bej.2018.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Cell-free synthetic biology is an exciting and new branch in the field of synthetic biology. Based on in vitro transcription and translation systems, this application-focused domain builds on decades of cell-free biochemistry and protein expression to operate synthetic gene networks outside of cellular environments. This has brought new and perhaps even unexpected advantages. Chief among these is the ability to operate genetically encoded tools in a sterile and abiotic format. Recent work has extended this advantage by freeze-drying these cell-free systems into dried pellets or embedded paper-based reactions. Taken together, these new ideas have solved the longstanding challenge of how to deploy poised synthetic gene networks in a biosafe mode outside of the laboratory. There is significant excitement in the potential of this newfound venue and the community has begun to extend proof-of-concept demonstrations in important and creative ways. Here I explore these new efforts and provide my thoughts on the challenges and opportunities ahead for freeze-dried, cell-free synthetic biology.
Collapse
|
37
|
Soltani M, Davis BR, Ford H, Nelson JAD, Bundy BC. Reengineering cell-free protein synthesis as a biosensor: Biosensing with transcription, translation, and protein-folding. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Wilding KM, Hunt JP, Wilkerson JW, Funk PJ, Swensen RL, Carver WC, Christian ML, Bundy BC. Endotoxin-Free E. coli-
Based Cell-Free Protein Synthesis: Pre-Expression Endotoxin Removal Approaches for on-Demand Cancer Therapeutic Production. Biotechnol J 2018; 14:e1800271. [DOI: 10.1002/biot.201800271] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/12/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Kristen M. Wilding
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - John P. Hunt
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - Joshua W. Wilkerson
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - Parker J. Funk
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - Rebecca L. Swensen
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - William C. Carver
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | | | - Bradley C. Bundy
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| |
Collapse
|