1
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
2
|
Shakya A, Dodson M, Artiola JF, Ramirez-Andreotta M, Root RA, Ding X, Chorover J, Maier RM. Arsenic in Drinking Water and Diabetes. WATER 2023; 15:1751. [PMID: 37886432 PMCID: PMC10601382 DOI: 10.3390/w15091751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Arsenic is ubiquitous in soil and water environments and is consistently at the top of the Agency for Toxic Substances Disease Registry (ATSDR) substance priority list. It has been shown to induce toxicity even at low levels of exposure. One of the major routes of exposure to arsenic is through drinking water. This review presents current information related to the distribution of arsenic in the environment, the resultant impacts on human health, especially related to diabetes, which is one of the most prevalent chronic diseases, regulation of arsenic in drinking water, and approaches for treatment of arsenic in drinking water for both public utilities and private wells. Taken together, this information points out the existing challenges to understanding both the complex health impacts of arsenic and to implementing the treatment strategies needed to effectively reduce arsenic exposure at different scales.
Collapse
Affiliation(s)
- Aryatara Shakya
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew Dodson
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Janick F. Artiola
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | | | - Robert A. Root
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Xinxin Ding
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jon Chorover
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Raina M. Maier
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Balakrishnan P, Vaidya D, Voruganti VS, Haack K, Kent JW, North KE, Laston S, Howard BV, Umans JG, Lee ET, Best LG, MacCluer JW, Cole SA, Navas-Acien A, Franceschini N. Genetic Variants Related to Cardiometabolic Traits Are Associated to B Cell Function, Insulin Resistance, and Diabetes Among AmeriCan Indians: The Strong Heart Family Study. Front Genet 2018; 9:466. [PMID: 30369944 PMCID: PMC6194194 DOI: 10.3389/fgene.2018.00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/24/2018] [Indexed: 01/03/2023] Open
Abstract
Background: Genetic research may inform underlying mechanisms for disparities in the burden of type 2 diabetes mellitus among American Indians. Our objective was to assess the association of genetic variants in cardiometabolic candidate genes with B cell dysfunction via HOMA-B, insulin resistance via HOMA-IR, and type 2 diabetes mellitus in the Strong Heart Family Study (SHFS). Methods and Results: We examined the association of variants, previously associated with cardiometabolic traits (∼200,000 from Illumina Cardio MetaboChip), using mixed models of HOMA-B residuals corrected for HOMA-IR (cHOMA-B), log transformed HOMA-IR, and incident diabetes, adjusted for age, sex, population stratification, and familial relatedness. Center-specific estimates were combined using fixed effect meta-analyses. We used Bonferroni correction to account for multiple testing (P < 4.13 × 10−7). We also assessed the association between variants in candidate diabetes genes with these metabolic traits. We explored the top SNPs in an independent, replication sample from Southwestern Arizona. We identified significant associations with cHOMA-B for common variants at 26 loci of which 8 were novel (PRSS7, FCRL5, PEL1, LRP12, IGLL1, ARHGEF10, PARVA, FLJ16686). The most significant variant association with cHOMA-B was observed on chromosome 5 for an intergenic variant near PARP8 (rs2961831, P = 6.39 × 10−9). In the replication study, we found a signal at rs4607517 near GCK/YKT6 (P = 0.01). Variants near candidate diabetes genes (especially GCK and KCNQ1) were also nominally associated with HOMA-IR and cHOMA-B. Conclusion: We identified variants at novel loci and confirmed those at known candidate diabetes loci associations for cHOMA-B. This study also provided evidence for association of variants at KCNQ2, CTNAA2, and KCNQ1with cHOMA-B among American Indians. Further studies are needed to account for the high heritability of diabetes among the American Indian participants of the SHFS cohort.
Collapse
Affiliation(s)
- Poojitha Balakrishnan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Dhananjay Vaidya
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States.,Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - V Saroja Voruganti
- Department of Nutrition, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sandra Laston
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, United States
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, United States.,Georgetown and Howard Universities Center for Clinical and Translational Science, Washington, DC, United States
| | - Elisa T Lee
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, United States
| | - Jean W MacCluer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|