1
|
Chen B, Yu X, Horvath-Diano C, Ortuño MJ, Tschöp MH, Jastreboff AM, Schneeberger M. GLP-1 programs the neurovascular landscape. Cell Metab 2024; 36:2173-2189. [PMID: 39357509 DOI: 10.1016/j.cmet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Claudia Horvath-Diano
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - María José Ortuño
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Xu X, Li J, Liu M, Zhang B. Neuroprotective effect of marrubiin against MPTP-induced experimental Parkinson's disease in male wistar rats. Toxicol Mech Methods 2024; 34:908-919. [PMID: 38847585 DOI: 10.1080/15376516.2024.2364191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
In this work, we have analyzed the neuroprotective activity of marrubiin against MPTP-induced Parkinson's disease (PD) in rat brains. MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) a neurotoxin was administered intraperitoneally (i.p.,) to rats and then treated using marrubiin. After marrubiin treatment, rats were trained, and tested for behavioral analyses like cognitive performance, open field test, rotarod test, grip strength test, beam walking test, the status of body weight, and striatal levels of neurotransmitters like dopamine, norepinephrine, serotonin, DOPAC, homovanillic acid, 5-hydroxy indole acetic acid, the status of oxidative stress markers like LPO, protein carbonyl content (PCC), Xanthine oxidase (XO), and status of antioxidant enzyme levels like SOD, CAT, GPX in the striatum and hippocampal tissues, status of neuroinflammatory markers like TNF-α, IL1β, IL-6, and status of histological architecture in brain striatum were also analyzed. All these parameters were significantly (p < 0.05) abnormal in MPTP-induced rats. Marrubiin (MB) treated shows significant (p < 0.05) near normal behavioral restoration in cognitive performance, open field, rotarod, grip strength, and beam walking tests. Furthermore, the status of body weight, and levels of neurotransmitters, were also significantly (p < 0.05) reversed to near normalcy in marrubiin-treated rats. Similarly, oxidative stress, antioxidant enzyme levels in the striatum and hippocampal tissues, TNF-α, IL1β, IL-6 levels, and histological architecture were noted to be restored to near normalcy in marrubiin-treated rats. Collectively, our preliminary results highlight the neuroprotective ability of marrubiin. However, the cellular and biochemical mechanisms of marrubiin's neuroprotective ability have to be studied in detail.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Jingde Li
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Mingjun Liu
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Baoyan Zhang
- Department of Neurology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
van de Wetering R, Bibi R, Biggerstaff A, Hong S, Pengelly B, Prisinzano TE, La Flamme AC, Kivell BM. Nalfurafine promotes myelination in vitro and facilitates recovery from cuprizone + rapamycin-induced demyelination in mice. Glia 2024; 72:1801-1820. [PMID: 38899723 DOI: 10.1002/glia.24583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 μM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.
Collapse
Affiliation(s)
- Ross van de Wetering
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rabia Bibi
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Andy Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sheein Hong
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Bria Pengelly
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anne C La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
4
|
Chojdak-Łukasiewicz J, Bizoń A, Kołtuniuk A, Waliszewska-Prosół M, Budrewicz S, Piwowar A, Pokryszko-Dragan A. Are Sirtuins 1 and 2 Relevant Players in Relapsing-Remitting Multiple Sclerosis? Biomedicines 2024; 12:2027. [PMID: 39335541 PMCID: PMC11428838 DOI: 10.3390/biomedicines12092027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SIRTs were demonstrated to play an important role in inflammatory, degenerative, and metabolic alterations, constituting the background of the central nervous system. Thus, they seem to be an appropriate object of investigation (as potential biomarkers of disease activity and/or novel therapeutic targets) in multiple sclerosis (MS), which has a complex etiology that comprises a cross-talk between all these processes. The aim of this study was to evaluate the levels of SIRT1 and SIRT2 in the serum of patients with the relapsing-remitting type of MS (RRMS), as well as their relationships with various aspects of MS-related disability. METHODS A total of 115 patients with RRMS (78 women, 37 men, mean age 43 ± 9.9) and 39 healthy controls were included in the study. SIRT1 and SIRT2 were detected in the serum using the enzyme-linked immunoassay (ELISA) method. In the RRMS group, relationships were investigated between the SIRT 1 and 2 levels and the demographic data, MS-related clinical variables, and the results of tests evaluating fatigue, sleep problems, cognitive performance, autonomic dysfunction, and depression. RESULTS The levels of SIRT1 and SIRT2 in RRMS patients were significantly lower than in the controls (11.14 vs. 14. 23, p = 0.04; 8.62 vs. 14.2, p < 0.01). In the RRMS group, the level of both SIRTs was higher in men than in women (15.7 vs. 9.0; 11.3 vs. 7.3, p = 0.002) and showed a significant correlation with the degree of disability (R = -0.25, p = 0.018). No other relationships were found between SIRT levels and the analyzed data. CONCLUSIONS The serum levels of SIRT1 and 2 were decreased in the RRMS patients (especially in the female ones) and correlated with the degree of neurological deficit. The role of SIRTs as biomarkers of disease activity or mediators relevant for "invisible disability" in MS warrants further investigation.
Collapse
Affiliation(s)
- Justyna Chojdak-Łukasiewicz
- Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Aleksandra Kołtuniuk
- Department of Nursing and Obstetrics, Faculty of Health Sciences, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | - Marta Waliszewska-Prosół
- Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Sławomir Budrewicz
- Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Alam MZ, Bagabir HA, Zaher MAF, Alqurashi TMA, Alghamdi BS, Kazi M, Ashraf GM, Alshahrany GA, Alzahrani NA, Bakhalgi RM, Juweiriya, Al-Thepyani M, AboTaleb HA, Aldhahri RS, El-Aziz GSA, Al-Abbasi FA, Eibani LK, Alzahrani FJ, Khan MSA. Black Seed Oil-Based Curcumin Nanoformulations Ameliorated Cuprizone-Induced Demyelination in the Mouse Hippocampus. Mol Neurobiol 2024:10.1007/s12035-024-04310-5. [PMID: 38890237 DOI: 10.1007/s12035-024-04310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by the demyelination of nerves, axonal damage, and neuroinflammation. Cognition impairment, pain, and loss of mobility are some of the usual complications of MS. It has been postulated that the overproduction of proinflammatory cytokines and reactive oxygen species (ROS) are the main factors that contribute to MS pathology. Among various animal models, the cuprizone model is the most widely used model for investigating MS-related pathology. We assessed the effects of cuprizone along with the protective effects of some black seed oil-based nanoformulations of curcumin with and without piperine, in mice hippocampus in terms of the changes in antioxidant enzymes, transcription factors, and cytokines during demyelination and remyelination processes. The results of behavioral studies point toward impairment in working memory following the feeding of cuprizone for 5 weeks. However, in treatment groups, mice seemed to prevent the toxic effects of cuprizone. Nanoformulations used in this study were found to be highly effective in lowering the amount of ROS as indicated by the levels of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione peroxidase. Moreover, nanoformulations CCF and CCPF were observed resisting the toxic effects of cuprizone. We observed greater expression of NFκB-p65 in the CPZ group than in the control group. CCF nanoformulation had a better inhibitory effect on NFκB-p65 than other formulations. Histological examination of the hippocampus was also conducted. Nanoformulations used here were found effective in reversing MS-related pathophysiology and hence have the potential to be applied as adjuvant therapy for MS treatment.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh Campus, Jeddah, Saudi Arabia
| | | | - Thamer M A Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. BOX-2457, 11451, Riyadh, Saudi Arabia
| | - Ghulam Md Ashraf
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gadah Ali Alshahrany
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rafal Mohammed Bakhalgi
- Department of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Juweiriya
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India
| | - Mona Al-Thepyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh Campus, Jeddah, Saudi Arabia
| | | | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Gamal Said Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loay Khaled Eibani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Jaman Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Gharighnia S, Omidi A, Ragerdi Kashani I, Sepand MR, Pour Beiranvand S. Ameliorative effects of acetyl-L-carnitine on corpus callosum and functional recovery in demyelinated mouse model. Int J Neurosci 2024; 134:409-419. [PMID: 35912879 DOI: 10.1080/00207454.2022.2107515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
AIM Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the central nervous system. Oxidative stress via distinct pathobiological pathways plays a pivotal role in the formation and persistence of MS lesions. Acetyl-L-carnitine (ALC) facilitates the uptake of acetyl coenzyme-A into the mitochondria by a fatty acid oxidation process. ALC could be a therapeutic antioxidant in the myelin repair process. This study explored the potential neuroprotective effects of ALC in cuprizone (CPZ) intoxicated mice. MATERIALS AND METHODS Thirty male C57BL/6 mice were divided into three groups. The control animals received a normal diet. The CPZ and CPZ + ALC groups were fed with a 0.2% cuprizone diet for 12 weeks. In the CPZ + ALC group, animals received ALC (300 mg/kg/day) from the 10th -12th weeks. Animals were evaluated functionally by beam walking test (BWT) weekly. Eventually, the corpus callosum (CC) was extracted for histological, biochemical, and molecular studies. RESULTS BWT data showed ALC significantly improves balance and gait in the demyelinating mouse model. Histological staining represented ALC effectively increased remyelination in the CC. Biochemical evaluations demonstrated ALC decreased the malondialdehyde level with a parallel increase in the reduced glutathione and catalase activity levels in the CC. Molecular analysis revealed that ALC significantly increased the expression of oligodendrocyte transcription-2 (Olig-2) and Poly lipoproteins (Plp) genes in the CC. CONCLUSIONS ALC improved balance and motor coordination in the demyelinated mouse model. It may be by reducing the levels of free radicals and increasing the expression of Olig-2 and Plp as myelin-related genes.
Collapse
Affiliation(s)
- Sanaz Gharighnia
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Pour Beiranvand
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Nicola MA, Attaai AH, Abdel-Raheem MH, Mohammed AF, Abu-Elhassan YF. Neuroprotective effects of rutin against cuprizone-induced multiple sclerosis in mice. Inflammopharmacology 2024; 32:1295-1315. [PMID: 38512652 PMCID: PMC11006763 DOI: 10.1007/s10787-024-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system that injures the myelin sheath, provoking progressive axonal degeneration and functional impairments. No efficient therapy is available at present to combat such insults, and hence, novel safe and effective alternatives for MS therapy are extremely required. Rutin (RUT) is a flavonoid that exhibits antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. The present study evaluated the potential beneficial effects of two doses of RUT in a model of pattern-III lesion of MS, in comparison to the conventional standard drug; dimethyl fumarate (DMF). Demyelination was induced in in male adult C57BL/6 mice by dietary 0.2% (w/w) cuprizone (CPZ) feeding for 6 consecutive weeks. Treated groups received either oral RUT (50 or 100 mg/kg) or DMF (15 mg/kg), along with CPZ feeding, for 6 consecutive weeks. Mice were then tested for behavioral changes, followed by biochemical analyses and histological examinations of the corpus callosum (CC). Results revealed that CPZ caused motor dysfunction, demyelination, and glial activation in demyelinated lesions, as well as significant oxidative stress, and proinflammatory cytokine elevation. Six weeks of RUT treatment significantly improved locomotor activity and motor coordination. Moreover, RUT considerably improved remyelination in the CC of CPZ + RUT-treated mice, as revealed by luxol fast blue staining and transmission electron microscopy. Rutin also significantly attenuated CPZ-induced oxidative stress and inflammation in the CC of tested animals. The effect of RUT100 was obviously more marked than either that of DMF, regarding most of the tested parameters, or even its smaller tested dose. In silico docking revealed that RUT binds tightly within NF-κB at the binding site of the protein-DNA complex, with a good negative score of -6.79 kcal/mol. Also, RUT-Kelch-like ECH-associated protein 1 (Keap1) model clarifies the possible inhibition of Keap1-Nrf2 protein-protein interaction. Findings of the current study provide evidence for the protective effect of RUT in CPZ-induced demyelination and behavioral dysfunction in mice, possibly by modulating NF-κB and Nrf2 signaling pathways. The present study may be one of the first to indicate a pro-remyelinating effect for RUT, which might represent a potential additive benefit in treating MS.
Collapse
Affiliation(s)
- Mariam A Nicola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt.
| | - Abdelraheim H Attaai
- Department of Anatomy and Histology, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, West of Assiut, Asyût, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Asyût, 71526, Egypt
| | | | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt
| | - Yasmin F Abu-Elhassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt
| |
Collapse
|
9
|
Sadek MA, Rabie MA, El Sayed NS, Sayed HM, Kandil EA. Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: an insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology 2024; 32:1499-1518. [PMID: 38112964 PMCID: PMC11006778 DOI: 10.1007/s10787-023-01399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Multiple sclerosis (MS) is an incurable chronic neurodegenerative disease where autoimmunity, oxidative stress, and neuroinflammation collaboration predispose myelin sheath destruction. Interestingly, curcumin, a natural polyphenol, showed a neuroprotective effect in numerous neurodegenerative diseases, including MS. Nevertheless, the influence of curcumin against MS-induced cognitive impairment is still vague. Hence, we induced experimental autoimmune encephalomyelitis (EAE) in mice using spinal cord homogenate (SCH) and complete Freund's adjuvant, which eventually mimic MS. This study aimed not only to evaluate curcumin efficacy against EAE-induced cognitive and motor dysfunction, but also to explore a novel mechanism of action, by which curcumin exerts its beneficial effects in MS. Curcumin (200 mg/kg/day) efficacy was evaluated by behavioral tests, histopathological examination, and biochemical tests. Concisely, curcumin amended EAE-induced cognitive and motor impairments, as demonstrated by the behavioral tests and histopathological examination of the hippocampus. Interestingly, curcumin activated the adenosine monophosphate (AMP)-activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1) axis, which triggered cyclic AMP response element-binding protein/brain-derived neurotrophic factor/myelin basic protein (CREB/BDNF/MBP) pathway, hindering demyelination of the corpus callosum. Furthermore, AMPK/SIRT1 activation augmented nuclear factor erythroid 2-related factor 2 (Nrf2), a powerful antioxidant, amending EAE-induced oxidative stress. Additionally, curcumin abolished EAE-induced neuroinflammation by inhibiting Janus kinase 2 /signal transducers and activators of transcription 3 (JAK2/STAT3) axis, by various pathways, including AMPK/SIRT1 activation. JAK2/STAT3 inhibition halts inflammatory cytokines synthesis. In conclusion, curcumin's neuroprotective effect in EAE is controlled, at least in part, by AMPK/SIRT1 activation, which ultimately minimizes EAE-induced neuronal demyelination, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Rakshe PS, Dutta BJ, Chib S, Maurya N, Singh S. Unveiling the interplay of AMPK/SIRT1/PGC-1α axis in brain health: Promising targets against aging and NDDs. Ageing Res Rev 2024; 96:102255. [PMID: 38490497 DOI: 10.1016/j.arr.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The escalating prevalence of neurodegenerative diseases (NDDs) within an aging global population presents a pressing challenge. The multifaceted pathophysiological mechanisms underlying these disorders, including oxidative stress, mitochondrial dysfunction, and neuroinflammation, remain complex and elusive. Among these, the AMPK/SIRT1/PGC-1α pathway emerges as a pivotal network implicated in neuroprotection against these destructive processes. This review sheds light on the potential therapeutic implications of targeting this axis, specifically emphasizing the promising role of flavonoids in mitigating NDD-related complications. Expanding beyond conventional pharmacological approaches, the exploration of non-pharmacological interventions such as exercise and calorie restriction (CR), coupled with the investigation of natural compounds, offers a beacon of hope. By strategically elucidating the intricate connections within these pathways, this review aims to pave the ways for novel multi-target agents and interventions, fostering a renewed optimism in the quest to combat and manage the debilitating impacts of NDDs on global health and well-being.
Collapse
Affiliation(s)
- Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
11
|
Ibrahim SM, Kamel AS, Ahmed KA, Mohammed RA, Essam RM. The preferential effect of Clemastine on F3/Contactin-1/Notch-1 compared to Jagged-1/Notch-1 justifies its remyelinating effect in an experimental model of multiple sclerosis in rats. Int Immunopharmacol 2024; 128:111481. [PMID: 38232534 DOI: 10.1016/j.intimp.2023.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Clemastine (CLM) is repurposed to enhance remyelination in multiple sclerosis (MS) patients. CLM blocks histamine and muscarinic receptors as negative regulators to oligodendrocyte differentiation. These receptors are linked to the canonical and non-canonical Notch-1 signaling via specific ligands; Jagged-1 and F3/Contactin-1, respectively. Yet, there are no previous studies showing the influence of CLM on Notch entities. Herein, the study aimed to investigate to which extent CLM aligns to one of the two Notch-1 arms in experimental autoimmune encephalomyelitis (EAE) rat model. Three groups were utilized where first group received vehicles. The second group was injected by spinal cord homogenate mixed with complete Freund's adjuvant on days 0 and 7. In the third group, CLM (5 mg/kg/day; p.o) was administered for 15 days starting from the day of the first immunization. CLM ameliorated EAE-associated motor and gripping impairment in rotarod, open-field, and grip strength arena beside sensory anomalies in hot plate, cold allodynia, and mechanical Randall-Selitto tests. Additionally, CLM alleviated depressive mood observed in tail suspension test. These findings harmonized with histopathological examinations of Luxol-fast blue stain together with enhanced immunostaining of myelin basic protein and oligodendrocyte lineage gene 2 in corpus callosum and spinal cord. Additionally, CLM enhanced oligodendrocyte myelination and maturation by increasing 2',3'-cyclic nucleotide 3'-phosphodiesterase, proteolipid protein, aspartoacylase as well. CLM restored the level of F3/Contactin-1 in the diseased rats over Jagged-1 level; the ligand of the canonical pathway. This was accompanied by elevated gene expression of Deltex-1 and reduced hairy and enhancer-of-split homologs 1 and 5. Additionally, CLM suppressed microglial and astrocyte activation via reducing the expression of ionized calcium-binding adaptor molecule-1 as well as glial fibrillary acidic protein, respectively. These results outlined the remyelinating beneficence of CLM which could be due to augmenting the non-canonical Notch-1 signaling over the canonical one.
Collapse
Affiliation(s)
- Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| |
Collapse
|
12
|
Złotek M, Kurowska A, Herbet M, Piątkowska-Chmiel I. GLP-1 Analogs, SGLT-2, and DPP-4 Inhibitors: A Triad of Hope for Alzheimer's Disease Therapy. Biomedicines 2023; 11:3035. [PMID: 38002034 PMCID: PMC10669527 DOI: 10.3390/biomedicines11113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's is a prevalent, progressive neurodegenerative disease marked by cognitive decline and memory loss. The disease's development involves various pathomechanisms, including amyloid-beta accumulation, neurofibrillary tangles, oxidative stress, inflammation, and mitochondrial dysfunction. Recent research suggests that antidiabetic drugs may enhance neuronal survival and cognitive function in diabetes. Given the well-documented correlation between diabetes and Alzheimer's disease and the potential shared mechanisms, this review aimed to comprehensively assess the potential of new-generation anti-diabetic drugs, such as GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, as promising therapeutic approaches for Alzheimer's disease. This review aims to comprehensively assess the potential therapeutic applications of novel-generation antidiabetic drugs, including GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, in the context of Alzheimer's disease. In our considered opinion, antidiabetic drugs offer a promising avenue for groundbreaking developments and have the potential to revolutionize the landscape of Alzheimer's disease treatment.
Collapse
Affiliation(s)
| | | | | | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.Z.); (A.K.); (M.H.)
| |
Collapse
|
13
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
14
|
Rowhanirad S, Taherianfard M. The neuroprotective effects of Chalcones from Ashitaba on cuprizone-induced demyelination via modulation of brain-derived neurotrophic factor and tumor necrosis factor α. Brain Behav 2023; 13:e3144. [PMID: 37403256 PMCID: PMC10498084 DOI: 10.1002/brb3.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. However, the limitations of available therapeutic strategies are frustrating, both in terms of their low efficacy and multiple side effects. Previous studies showed that natural compounds such as Chalcones possess neuroprotective effects on neurodegenerative disorders. However, few studies have so far been published on the potential effects of Chalcones on treating demyelinating disease. The present study was designed to investigate the effects of Chalcones from Ashitaba (ChA) on cuprizone-induced noxious changes in the C57BL6 mice model of MS. METHODS The mice received normal diets (Control group: CNT), or Cuprizone-supplemented diets either without ChA (Cuprizone group: CPZ) or with low or high (300, 600 mg/kg/day) doses of ChA (ChA-treated groups: CPZ+ChA300/600). Brain-derived neurotrophic factor (BDNF) and tumor necrosis factor alpha (TNFα) levels, demyelination scores in the corpus callosum (CC), and cognitive impairment were evaluated using the enzyme-linked immunosorbent assay, histological, and Y-maze tests, respectively. RESULTS The findings showed that ChA Co-treatment significantly reduced the extent of demyelination in the CC and the serum and brain levels of TNFα in the ChA-treated groups compared to the CPZ group. Besides, treatment with a higher dose of ChA significantly improved the behavioral responses and BDNF levels in the serum and brain of the CPZ+ChA600 group when compared with the CPZ group. CONCLUSION The present study provided evidence for the neuroprotective effects of ChA on cuprizone-induced demyelination and behavioral dysfunction in C57BL/6 mice, possibly by modulating TNFα secretion and BDNF expression.
Collapse
Affiliation(s)
- Soodeh Rowhanirad
- Division of Physiology, Department of Basic Science, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Mahnaz Taherianfard
- Division of Physiology, Department of Basic Science, School of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
15
|
Goodarzi G, Tehrani SS, Fana SE, Moradi-Sardareh H, Panahi G, Maniati M, Meshkani R. Crosstalk between Alzheimer's disease and diabetes: a focus on anti-diabetic drugs. Metab Brain Dis 2023; 38:1769-1800. [PMID: 37335453 DOI: 10.1007/s11011-023-01225-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023]
Abstract
Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM) are two of the most common age-related diseases. There is accumulating evidence of an overlap in the pathophysiological mechanisms of these two diseases. Studies have demonstrated insulin pathway alternation may interact with amyloid-β protein deposition and tau protein phosphorylation, two essential factors in AD. So attention to the use of anti-diabetic drugs in AD treatment has increased in recent years. In vitro, in vivo, and clinical studies have evaluated possible neuroprotective effects of anti-diabetic different medicines in AD, with some promising results. Here we review the evidence on the therapeutic potential of insulin, metformin, Glucagon-like peptide-1 receptor agonist (GLP1R), thiazolidinediones (TZDs), Dipeptidyl Peptidase IV (DPP IV) Inhibitors, Sulfonylureas, Sodium-glucose Cotransporter-2 (SGLT2) Inhibitors, Alpha-glucosidase inhibitors, and Amylin analog against AD. Given that many questions remain unanswered, further studies are required to confirm the positive effects of anti-diabetic drugs in AD treatment. So to date, no particular anti-diabetic drugs can be recommended to treat AD.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Yurttas AG, Dasci MF. Exploring the molecular mechanism of linagliptin in osteosarcoma cell lines for anti-cancer activity. Pathol Res Pract 2023; 248:154640. [PMID: 37421842 DOI: 10.1016/j.prp.2023.154640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Finding new applications for widely used current drugs is a fast and effective technique for discovering new anticancer chemicals. Osteosarcoma (OS), the most prevalent form of bone cancer, has several side effects that significantly lower patients' quality of life. This study aims to systematically examine the anti-cancer activity of linagliptin (LG) in the osteosarcoma cell line Saos-2. METHODS MTT assays and flow cytometry were used to assess cell viability and apoptosis, respectively. qPCR array experiments were carried out to determine target gene expressions and explain the molecular mechanism of LG's action. RESULTS Linagliptin treatment significantly decreased the viability of Saos-2 cells and hFOB1.19 cells (p < 0.001). The treatment also induced increased apoptotic effects in both Saos-2 cells (p < 0.001) and hFOB1.19 cells (p < 0.05). qPCR assays were conducted to assess cancer pathway analysis after applying specific quantities of LG to Saos-2 and hFOB1.19 cells. CONCLUSION The findings of this study demonstrate that LG inhibits the proliferation of Saos-2 cells and induces cell death. LG supports cell death by suppressing the expression of specific genes involved in cancer pathways.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Mustafa Fatih Dasci
- Department of Orthopaedics and Traumatology, University of Health Science, Bağcılar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
17
|
Ibrahim Fouad G, Ahmed KA. Remyelinating activities of Carvedilol or alpha lipoic acid in the Cuprizone-Induced rat model of demyelination. Int Immunopharmacol 2023; 118:110125. [PMID: 37028277 DOI: 10.1016/j.intimp.2023.110125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis (MS) is a complex and multifactorial neurodegenerative disease with unknown etiology, MS is featured by multifocal demyelinated lesions distributed throughout the brain. It is assumed to result from an interaction between genetic and environmental factors, including nutrition. Therefore, different therapeutic approaches are aiming to stimulate remyelination which could be defined as an endogenous regeneration and repair of myelin in the central nervous system. Carvedilol is an adrenergic receptor antagonist. Alpha lipoic acid (ALA) is a well-known antioxidant. Herein, we investigated the remyelination potential of Carvedilol or ALA post-Cuprizone (CPZ) intoxication. Carvedilol or ALA (20 mg/kg/d) was administrated orally for two weeks at the end of the five weeks of CPZ (0.6%) administration. CPZ provoked demyelination, enhanced oxidative stress, and stimulated neuroinflammation. Histological investigation of CPZ-induced brains showed obvious demyelination in the corpus callosum (CC). Both Carvedilol and ALA demonstrated remyelinating activities, with corresponding upregulation of the expression of MBP and PLP, the major myelin proteins, downregulation of the expression of TNF-α and MMP-9, and decrement of serum IFN-γ levels. Moreover, both Carvedilol and ALA alleviated oxidative stress, and ameliorated muscle fatigue. This study highlights the neurotherapeutic potential of Carvedilol or ALA in CPZ-induced demyelination, and offers a better model for the exploring of neuroregenerative strategies. The current study is the first to demonstrate a pro-remyelinating activity for Carvedilol, as compared to ALA, which might represent a potential additive benefit in halting demyelination and alleviating neurotoxicity. However, we could declare that Carvedilol showed a lower neuroprotective potential than ALA.
Collapse
|
18
|
Jin T, Zhang Y, Botchway BOA, Huang M, Lu Q, Liu X. Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomed Pharmacother 2023; 161:114515. [PMID: 36913894 DOI: 10.1016/j.biopha.2023.114515] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease with poor prognosis. The intricacies surrounding its pathophysiology could partly account for the lack of effective treatment for ALS. Sestrin2 has been reported to improve metabolic, cardiovascular and neurodegenerative diseases, and is involved in the direct and indirect activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axis. Quercetin, as a phytochemical, has considerable biological activities, such as anti-oxidation, anti-inflammation, anti-tumorigenicity, and neuroprotection. Interestingly, quercetin can activate the AMPK/SIRT1 signaling pathway to reduce endoplasmic reticulum stress, and alleviate apoptosis and inflammation. This report examines the molecular relationship between Sestrin2 and AMPK/SIRT1 axis, as well as the main biological functions and research progress of quercetin, together with the correlation between quercetin and Sestrin2/AMPK/SIRT1 axis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
19
|
ElGamal RZ, Tadros MG, Menze ET. Linagliptin counteracts rotenone's toxicity in non-diabetic rat model of Parkinson's disease: Insights into the neuroprotective roles of DJ-1, SIRT-1/Nrf-2 and implications of HIF1-α. Eur J Pharmacol 2023; 941:175498. [PMID: 36623635 DOI: 10.1016/j.ejphar.2023.175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
While all current therapies' main focus is enhancing dopaminergic effects and remission of symptoms, delaying Parkinson's disease (PD) progression remains a challenging mission. Linagliptin, a Dipeptidyl Peptidase-4 (DPP-4) Inhibitor, exhibited neuroprotection in various neurodegenerative diseases. This study aims to evaluate the neuroprotective effects of Linagliptin in a rotenone-induced rat model of PD and investigate the possible underlying mechanisms of Linagliptin's actions. The effects of two doses of Linagliptin (5 and 10 mg/kg) on spontaneous locomotion, catalepsy, coordination and balance, and histology were assessed. Then, after Linagliptin showed promising results, it was further tested for its potential anti-inflammatory, antiapoptotic effects, and different pathways for oxidative stress. Linagliptin prevented rotenone-induced motor deficits and histological damage. Besides, it significantly inhibited the rotenone-induced increase in pro-inflammatory cytokines: Tumor Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6) and decrease in caspase 3 levels. These effects were associated with induction in the levels of Protein deglycase also known as DJ-1, Hypoxia-inducible factor 1-alpha (HIF-1α), potentiation in the Sirtuin 1 (SIRT-1)/Nuclear factor erythroid-2-related factor 2 (Nrf-2)/Heme oxygenase-1 (HO-1) pathway, and an increase in the antioxidant activity of catalase which provided neuroprotection to the neurons from rotenone-induced PD. Collectively, these results suggest that Linagliptin might be a suitable candidate for the management of PD.
Collapse
Affiliation(s)
- Rania Z ElGamal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, 41636, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Rizk MZ, Beherei HH. Neurotherapeutic efficacy of loaded sulforaphane on iron oxide nanoparticles against cuprizone-induced neurotoxicity: role of MMP-9 and S100β. Toxicol Mech Methods 2023:1-17. [PMID: 36775846 DOI: 10.1080/15376516.2023.2177219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cuprizone (CUP) induces neurotoxicity and demyelination in animal models by provoking the activation of glial cells and the generation of reactive oxygen species (ROS). Sulforaphane (SF) is a phytochemical that exhibits a neuroprotective potential. In this study, we investigated the neurotherapeutic and pro-remyelinating activities of SF and SF-loaded within iron oxide nanoparticles (IONP-SF) in CUP-exposed rats. Magnetite iron oxide nanoparticles (IONPs) were prepared using the hydrothermal method that was further loaded with SF (IONP-SF). The loading of SF within the magnetite nanoparticles was assessed using FTIR, TEM, DLS, Zetasizer, and XPS. For the in vivo investigations, adult male Wistar rats (n = 40) were administrated either on a regular diet or a diet with CUP (0.2%) for 5 weeks. The rats were divided into four groups: negative control, CUP-induced, CUP + SF, and CUP + IONP-SF. CUP-exposed brains exhibited a marked elevation in lipid peroxidation, along with a significant decrease in the activities of glutathione peroxidase (GPx), and catalase (CAT). In addition, CUP intoxication downregulated the expression of myelin basic protein (MBP) and myelin proteolipid protein (PLP), upregulated the expression of Matrix metallopeptidase-9 (MMP-9) and S100β, and increased caspase-3 immunoexpression, these results were supported histopathologically in the cerebral cortexes. Treatment of CUP-rats with either SF or IONP-SF demonstrated remyelinating and neurotherapeutic activities. We could conclude that IONP-SF was more effective than free SF in mitigating the CUP-induced downregulation of MBP, upregulation of S100β, and caspase-3 immunoexpression.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
21
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
22
|
Al-Otaibi KM, Alghamdi BS, Al-Ghamdi MA, Mansouri RA, Ashraf GM, Omar UM. Therapeutic effect of combination vitamin D3 and siponimod on remyelination and modulate microglia activation in cuprizone mouse model of multiple sclerosis. Front Behav Neurosci 2023; 16:1068736. [PMID: 36688131 PMCID: PMC9849768 DOI: 10.3389/fnbeh.2022.1068736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
Stimulation of remyelination is critical for the treatment of multiple sclerosis (MS) to alleviate symptoms and protect the myelin sheath from further damage. The current study aimed to investigate the possible therapeutic effects of combining vitamin D3 (Vit D3) and siponimod (Sipo) on enhancing remyelination and modulating microglia phenotypes in the cuprizone (CPZ) demyelination mouse model. The study was divided into two stages; demyelination (first 5 weeks) and remyelination (last 4 weeks). In the first 5 weeks, 85 mice were randomly divided into two groups, control (n = 20, standard rodent chow) and CPZ (n = 65, 0.3% CPZ mixed with chow for 6 weeks, followed by 3 weeks of standard rodent chow). At week 5, the CPZ group was re-divided into four groups (n = 14) for remyelination stages; untreated CPZ (0.2 ml of CMC orally), CPZ+Vit D3 (800 IU/kg Vit D3 orally), CPZ+Sipo (1.5 mg/kg Sipo orally), and CPZ+Vit D3 (800 IU/kg Vit D3) + Sipo (1.5 mg/kg Sipo orally). Various behavioral tasks were performed to evaluate motor performance. Luxol Fast Blue (LFB) staining, the expression level of myelin basic protein (MBP), and M1/M2 microglia phenotype genes were assessed in the corpus callosum (CC). The results showed that the combination of Vit D3 and Sipo improved behavioral deficits, significantly promoted remyelination, and modulated expression levels of microglia phenotype genes in the CC at early and late remyelination stages. These results demonstrate for the first time that a combination of Vit D3 and Sipo can improve the remyelination process in the cuprizone (CPZ) mouse model by attenuating the M1 microglia phenotype. This may help to improve the treatment of MS patients.
Collapse
Affiliation(s)
- Kholoud M. Al-Otaibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Maryam A. Al-Ghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Sex Differences in the Behavioural Aspects of the Cuprizone-Induced Demyelination Model in Mice. Brain Sci 2022; 12:brainsci12121687. [PMID: 36552147 PMCID: PMC9775311 DOI: 10.3390/brainsci12121687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease characterised by demyelination in the central nervous system. The cuprizone-induced demyelination model is often used in mice to test novel treatments for multiple sclerosis. However, despite significant demyelination, behavioural deficits may be subtle or have mixed results depending on the paradigm used. Furthermore, the sex differences within the model are not well understood. In the current study, we have sought to understand the behavioural deficits associated with the cuprizone-induced demyelination model in both male and female C57BL/6J mice. Using Black gold II stain, we found that cuprizone administration over 6 weeks caused significant demyelination in the corpus callosum that was consistent across both sexes. Cuprizone administration caused increased mechanical sensitivity when measured using an electronic von Frey aesthesiometer, with no sex differences observed. However, cuprizone administration decreased motor coordination, with more severe deficits seen in males in the horizontal bar and passive wire hang tests. In contrast, female mice showed more severe deficits in the motor skill sequence test. Cuprizone administration caused more anxiety-like behaviours in males compared to females in the elevated zero maze. Therefore, this study provides a better understanding of the sex differences involved in the behavioural aspects of cuprizone-induced demyelination, which could allow for a better translation of results from the laboratory to the clinic.
Collapse
|
24
|
Bin-Jumah MN, Gilani SJ, Alabbasi AF, Al-Abbasi FA, AlGhamdi SA, Alshehri OY, Alghamdi AM, Sayyed N, Kazmi I. Protective Effect of Fustin against Huntington's Disease in 3-Nitropropionic Treated Rats via Downregulation of Oxidative Stress and Alteration in Neurotransmitters and Brain-Derived Neurotrophic Factor Activity. Biomedicines 2022; 10:3021. [PMID: 36551777 PMCID: PMC9775313 DOI: 10.3390/biomedicines10123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Researchers have revealed that Rhus verniciflua heartwood, which contains fustin as an important component, possesses antioxidant-mediated, anti-mutagenic, and anti-rheumatoid arthritis characteristics. Additionally, out of the numerous plant-derived secondary metabolites, there are various research papers concentrating on flavonoids for potential advantages in neurological illnesses. The current study aims to assess the neuroprotective potential of fustin in rodents over 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD)-like consequences. The efficacy of fustin 50 and 100 mg/kg was studied with multiple-dose administrations of 3-NPA, which experimentally induced HD-like symptoms in rats for 22 days. At the end of the study, several behavioral tests were performed including a beam walk, rotarod, and grip strength tests. Similarly, some biochemical parameters were assessed to support oxidative stress (reduced glutathione-GSH, superoxide dismutase-SOD, catalase-CAT, and malondialdehyde-MDA), alteration in neurotransmitters (gamma-aminobutyric acid-GABA-and glutamate), alteration in brain-derived neurotrophic factor activity, and nitrite levels. Additionally, pro-inflammatory parameters were carried out to evaluate the neuroinflammatory responses associated with streptozotocin such as TNF-α, IL-1β, and COX in the perfused brain. The fustin-treated group exhibited a significant restoration of memory function via modulation in behavioral activities. Moreover, 3-NPA altered biochemical, neurotransmitters, brain protein levels, and neuroinflammatory measures, which fustin efficiently restored. This is the first report demonstrating the efficacy of novel phytoconstituent fustin as a potential future candidate for the treatment of HD via offering neuroprotection by subsiding the oxidative and enzymatic activity in the 3-NPA experimental animal paradigm.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ohoud Y. Alshehri
- Department of Biochemistry, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, Uttar Pradesh, India
| | - Imran Kazmi
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Wu J, Zhang J, Xie Q, He X, Guo Z, Zheng B, Wang S, Yang Q, Du C. Bergaptol Alleviates LPS-Induced Neuroinflammation, Neurological Damage and Cognitive Impairment via Regulating the JAK2/STAT3/p65 Pathway. J Inflamm Res 2022; 15:6199-6211. [PMID: 36386582 PMCID: PMC9656435 DOI: 10.2147/jir.s383853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Neuroinflammation is considered a critical pathological process in various central nervous system (CNS) diseases and is closely related to neuronal death and dysfunction. Bergaptol is a natural 5-hydroxyfurocoumarin found in lemon, bergamot and other plants. Some studies have confirmed its anti-cancer, anti-inflammatory and anti-atherogenic functions, indicating that it may have significant medicinal value. In this study, we investigated the potential effect of Bergaptol in vitro and in vivo neuroinflammatory models. Methods Mice were injected with LPS (40 μg/kg) into the hippocampal CA1 region and then injected intraperitoneally with Bergaptol (10, 20 and 40 mg/kg) once a day for two weeks. In addition, to verify the effect of Bergaptol on BV2 cells, Bergaptol with different concentrations (5, 10 and 20 μg/mL) was firstly incubated for 1 hour, then LPS with a concentration of 1 μg/mL was added and incubated for 23 hours. Results Bergaptol treatment significantly improved the cognitive impairment induced by LPS. In addition, Bergaptol significantly inhibited the reduction of dendritic spines and the mRNA level of inflammatory factors (TNF-α, IL-6 and IL-1β) in hippocampal induced by LPS. In vitro, Bergaptol inhibited the production of TNF-α, IL-6 and IL-1β from LPS-treated BV-2 cells. In addition, Bergaptol treatment significantly reduced the phosphorylation levels of JAK2, STAT3 and p65 in LPS-stimulated BV-2 cells. Conclusion In conclusion, our results suggest that Bergaptol alleviates LPS-induced neuroinflammation, neurological damage and cognitive impairment by regulating the JAK2/STAT3/P65 pathway, suggesting that Bergaptol is a promising neuroprotective agent.
Collapse
Affiliation(s)
- Jianbing Wu
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Jie Zhang
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Qiangli Xie
- Department of Cardiovascular Medicine, Chengdu Qingbaijiang District People’s Hospital, Chengdu, 610300, People’s Republic of China
| | - Xiaohuan He
- Department of the Fifth Dispatched Outpatient, The General Hospital of Western Theater Command, Chengdu, 610083, People’s Republic of China
| | - Zhangchao Guo
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Bo Zheng
- Department of Neurology, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Sisong Wang
- Department of Neurosurgery, the Chengdu 363 Affiliated Hospital of Southwest Medical University, Chengdu, 610041, People’s Republic of China
| | - Qiumei Yang
- Department of Geriatrics, Luzhou People’s Hospital, Luzhou, 646000, People’s Republic of China
| | - Chunfu Du
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
- Correspondence: Chunfu Du, Department of Neurosurgery, Ya’an People’s Hospital, 358 Chenghou Road, Ya’an, Sichuan, 625000, People’s Republic of China, Tel +86-835-2862065, Email
| |
Collapse
|
26
|
Chojdak-Łukasiewicz J, Bizoń A, Waliszewska-Prosół M, Piwowar A, Budrewicz S, Pokryszko-Dragan A. Role of Sirtuins in Physiology and Diseases of the Central Nervous System. Biomedicines 2022; 10:2434. [PMID: 36289696 PMCID: PMC9598817 DOI: 10.3390/biomedicines10102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Silent information regulators, sirtuins (SIRTs), are a family of enzymes which take part in major posttranslational modifications of proteins and contribute to multiple cellular processes, including metabolic and energetic transformations, as well as regulation of the cell cycle. Recently, SIRTs have gained increased attention as the object of research because of their multidirectional activity and possible role in the complex pathomechanisms underlying human diseases. The aim of this study was to review a current literature evidence of SIRTs' role in the physiology and pathology of the central nervous system (CNS). SIRTs have been demonstrated to be crucial players in the crosstalk between neuroinflammation, neurodegeneration, and metabolic alterations. The elucidation of SIRTs' role in the background of various CNS diseases offers a chance to define relevant markers of their progression and promising candidates for novel therapeutic targets. Possible diagnostic and therapeutic implications from SIRTs-related investigations are discussed, as well as their future directions and associated challenges.
Collapse
Affiliation(s)
| | - Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | | | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Pokryszko-Dragan
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
27
|
Motor Behavioral Deficits in the Cuprizone Model: Validity of the Rotarod Test Paradigm. Int J Mol Sci 2022; 23:ijms231911342. [PMID: 36232643 PMCID: PMC9570024 DOI: 10.3390/ijms231911342] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple Sclerosis (MS) is a neuroinflammatory disorder, which is histopathologically characterized by multifocal inflammatory demyelinating lesions affecting both the central nervous system’s white and grey matter. Especially during the progressive phases of the disease, immunomodulatory treatment strategies lose their effectiveness. To develop novel progressive MS treatment options, pre-clinical animal models are indispensable. Among the various different models, the cuprizone de- and remyelination model is frequently used. While most studies determine tissue damage and repair at the histological and ultrastructural level, functional readouts are less commonly applied. Among the various overt functional deficits, gait and coordination abnormalities are commonly observed in MS patients. Motor behavior is mediated by a complex neural network that originates in the cortex and terminates in the skeletal muscles. Several methods exist to determine gait abnormalities in small rodents, including the rotarod testing paradigm. In this review article, we provide an overview of the validity and characteristics of the rotarod test in cuprizone-intoxicated mice.
Collapse
|
28
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
29
|
Sun W, Zhang N, Liu B, Yang J, Loers G, Siebert HC, Wen M, Zheng X, Wang Z, Han J, Zhang R. HDAC3 Inhibitor RGFP966 Ameliorated Neuroinflammation in the Cuprizone-Induced Demyelinating Mouse Model and LPS-Stimulated BV2 Cells by Downregulating the P2X7R/STAT3/NF-κB65/NLRP3 Activation. ACS Chem Neurosci 2022; 13:2579-2598. [PMID: 35947794 DOI: 10.1021/acschemneuro.1c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Suppression of excessive microglial overactivation can prevent the progression of multiple sclerosis (MS). Histone deacetylases 3 inhibitor (HDAC3i) has been demonstrated to exert anti-inflammatory effects by suppressing microglia (M1-liked) activation. Here, we demonstrate that the RGFP966 (a selective inhibitor of HDAC3) protects white matter after cuprizone-induced demyelination, as shown by reductions in neurological behavioral deficits and increases in myelin basic protein. Moreover, in this study, we found that RGFP966 caused a significant reduction in the levels of inflammatory cytokines, including IL-1β, TNF-α, as well as iNOS, and inhibited microglial (M1-liked) activation in the experimental cuprizone model and LPS-stimulated BV2 cells. Meanwhile, RGFP966 alleviated apoptosis of LPS-induced BV2 cells in vitro. Furthermore, RGFP966 suppressed the expression of P2X7R, NLRP3, ASC, IL-18, IL-1β, and caspase-1, inhibited the ratio of phosphorylated-STAT3/STAT3 and phosphorylated NF-κB p65/NF-κB p65, as well as increased acetylated NF-κB p65 in vitro and in vivo. Furthermore, we confirmed that brilliant blue G (antagonists of P2X7R) suppressed the expression of microglial NLRP3, IL-18, IL-1β, caspase-1, NF-κB p65 (including phosphorylated NF-κB p65), and STAT3 (including phosphorylated STAT3) in vitro. These findings demonstrated that RFFP966 alleviated the inflammatory response and exerted a neuroprotective effect possibly by modulating P2X7R/STAT3/NF-κB65/NLRP3 signaling pathways. Thus, HDAD3 might be considered a promising intervention target for neurodegenerative diseases, such as MS.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyi Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Junrong Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
30
|
da Silva EM, Yariwake VY, Alves RW, de Araujo DR, Andrade-Oliveira V. Crosstalk between incretin hormones, Th17 and Treg cells in inflammatory diseases. Peptides 2022; 155:170834. [PMID: 35753504 DOI: 10.1016/j.peptides.2022.170834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells constantly crosstalk with the gut microbiota and immune cells of the gut lamina propria. Enteroendocrine cells, secrete hormones, such as incretin hormones, which participate in host physiological events, such as stimulating insulin secretion, satiety, and glucose homeostasis. Interestingly, evidence suggests that the incretin pathway may influence immune cell activation. Consequently, drugs targeting the incretin hormone signaling pathway may ameliorate inflammatory diseases such as inflammatory bowel diseases, cancer, and autoimmune diseases. In this review, we discuss how these hormones may modulate two subsets of CD4 + T cells, the regulatory T cells (Treg)/Th17 axis important for gut homeostasis: thus, preventing the development and progression of inflammatory diseases. We also summarize the main experimental and clinical findings using drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP-1) signaling pathways and their great impact on conditions in which the Treg/Th17 axis is disturbed such as inflammatory diseases and cancer. Understanding the role of incretin stimulation in immune cell activation and function, might contribute to new therapeutic designs for the treatment of inflammatory diseases, autoimmunity, and tumors.
Collapse
Affiliation(s)
| | - Victor Yuji Yariwake
- Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Renan Willian Alves
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil
| | | | - Vinicius Andrade-Oliveira
- Paulista School of Medicine, Federal University of São Paulo (UNIFESP), Brazil; Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil; Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil.
| |
Collapse
|
31
|
Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23179583. [PMID: 36076972 PMCID: PMC9455625 DOI: 10.3390/ijms23179583] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain and displays a critical role in neuroprotection and inflammation by activating the GLP-1 receptor signaling pathways. Several studies in vivo and in vitro using preclinical models of neurodegenerative diseases show that GLP-1R activation has anti-inflammatory properties. This review explores the molecular mechanistic action of GLP-1 RAS in relation to inflammation in the brain. These findings update our knowledge of the potential benefits of GLP-1RAS actions in reducing the inflammatory response. These molecules emerge as a potential therapeutic tool in treating neurodegenerative diseases and neuroinflammatory pathologies.
Collapse
|
32
|
Liu T, Mu S, Yang L, Mao H, Ma F, Wang Y, Zhan Y. Comprehensive bibliometric analysis of sirtuins: Focus on sirt1 and kidney disease. Front Pharmacol 2022; 13:966786. [PMID: 36052119 PMCID: PMC9424666 DOI: 10.3389/fphar.2022.966786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Sirtuins, as regulators of metabolism and energy, have been found to play an important role in health and disease. Sirt1, the most widely studied member of the sirtuin family, can ameliorate oxidative stress, immune inflammation, autophagy, and mitochondrial homeostasis by deacetylating regulatory histone and nonhistone proteins. Notably, sirt1 has gradually gained attention in kidney disease research. Therefore, an evaluation of the overall distribution of publications concerning sirt1 based on bibliometric analysis methods to understand the thematic evolution and emerging research trends is necessary to discover topics with potential implications for kidney disease research. We conducted a bibliometric analysis of publications derived from the Web of Science Core Collection and found that publications concerning sirt1 have grown dramatically over the past 2 decades, especially in the past 5 years. Among these, the proportion of publications regarding kidney diseases have increased annually. China and the United States are major contributors to the study of sirt1, and Japanese researchers have made important contributions to the study of sirt1 in kidney disease. Obesity, and Alzheimer’s disease are hotspots diseases for the study of sirt1, while diabetic nephropathy is regarded as a research hotspot in the study of sirt1 in kidney disease. NAD+, oxidative stress, and p53 are the focus of the sirt1 research field. Autophagy and NLRP3 inflammasome are emerging research trends have gradually attracted the interest of scholars in sirt1, as well as in kidney disease. Notably, we also identified several potential research topics that may link sirt1 and kidney disease, which require further study, including immune function, metabolic reprogramming, and fecal microbiota.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shujuan Mu
- South District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yongli Zhan,
| |
Collapse
|
33
|
Naeem AG, El-Naga RN, Michel HE. Nebivolol elicits a neuroprotective effect in the cuprizone model of multiple sclerosis in mice: emphasis on M1/M2 polarization and inhibition of NLRP3 inflammasome activation. Inflammopharmacology 2022; 30:2197-2209. [PMID: 35948811 DOI: 10.1007/s10787-022-01045-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/23/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND AIM Multiple sclerosis (MS) is a demyelinating neurodegenerative inflammatory disease affecting mainly young adults. Microgliosis-derived neuroinflammation represents a key hallmark in MS pathology and progression. Nebivolol (Neb) demonstrated antioxidant, anti-inflammatory and neuroprotective properties in several brain pathologies. This study was conducted to investigate the potential neuroprotective effect of Neb in the cuprizone (Cup) model of MS. METHODS C57Bl/6 mice were fed 0.2% Cup mixed into rodent chow for 5 weeks. Neb (5 and 10 mg/kg/day) was administered by oral gavage during the last 2 weeks. RESULTS Neb prevented Cup-induced weight loss and motor deficits as evidenced by increased latency to fall in the rotarod test and enhanced locomotor activity as compared to Cup-intoxicated mice. Neb reversed Cup-induced demyelination as confirmed by Luxol fast blue staining and myelin basic protein western blotting. Administration of Neb modulated microglial activation status by suppressing M1 markers (Iba-1, CD86, iNOS, NO and TNF-α) and increasing M2 markers (Arg-1 and IL-10) as compared to Cup-fed mice. Furthermore, Neb hindered NLRP3/caspase-1/IL-18 inflammatory cascade and alleviated oxidative stress by reducing lipid peroxidation, as well as increasing catalase and superoxide dismutase activities. CONCLUSION These findings suggest the potential neuroprotective effect of Neb in the Cup-induced model of MS in mice, at least partially by virtue of shifting microglia towards M2 phenotype, mitigation of NLRP3 inflammasome activation and alleviation of oxidative stress.
Collapse
Affiliation(s)
- Antoinette G Naeem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
34
|
Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022; 12:biom12081079. [PMID: 36008973 PMCID: PMC9405760 DOI: 10.3390/biom12081079] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and oxidative stress. As a group of NAD+-dependent III deacetylases, the sirtuin (SIRT1-7) family plays a very important role in regulating mitochondrial biogenesis and participates in the progress of NAFLD. SIRT family members are distributed in the nucleus, cytoplasm, and mitochondria; regulate hepatic fatty acid oxidation metabolism through different metabolic pathways and mechanisms; and participate in the regulation of mitochondrial energy metabolism. SIRT1 may improve NAFLD by regulating ROS, PGC-1α, SREBP-1c, FoxO1/3, STAT3, and AMPK to restore mitochondrial function and reduce steatosis of the liver. Other SIRT family members also play a role in regulating mitochondrial biogenesis, fatty acid oxidative metabolism, inflammation, and insulin resistance. Therefore, this paper comprehensively introduces the role of SIRT family in regulating mitochondrial biogenesis in the liver in NAFLD, aiming to further explain the importance of SIRT family in regulating mitochondrial function in the occurrence and development of NAFLD, and to provide ideas for the research and development of targeted drugs. Relatively speaking, the role of some SIRT family members in NAFLD is still insufficiently clear, and further research is needed.
Collapse
|
35
|
Therapeutic Perspectives of CD26 Inhibitors in Imune-Mediated Diseases. Molecules 2022; 27:molecules27144498. [PMID: 35889373 PMCID: PMC9321265 DOI: 10.3390/molecules27144498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 02/01/2023] Open
Abstract
The enzymatic activity of CD26/DPP4 (dipeptidyl peptidase 4/DPP4) is highlighted in multiple studies to play a vital role in glucose metabolism by cleaving and inactivating the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). A large number of studies demonstrate that CD26 also plays an integral role in the immune system, particularly in T cell activation. CD26 is extensively expressed in immune cells, such as T cells, B cells, NK cells, dendritic cells, and macrophages. The enzymatic activity of CD26 cleaves and regulates numerous chomokines and cytokines. CD26 inhibitors have been widely used for the treatment of diabetes mellitus, while it is still under investigation as a therapy for immune-mediated diseases. In addition, CD26’s involvement in cancer immunology was also described. The review aims to summarize the therapeutic effects of CD26 inhibitors on immune-mediated diseases, as well as the mechanisms that underpin them.
Collapse
|
36
|
Ibrahim WW, Abdel Rasheed NO. Diapocynin neuroprotective effects in 3-nitropropionic acid Huntington's disease model in rats: emphasis on Sirt1/Nrf2 signaling pathway. Inflammopharmacology 2022; 30:1745-1758. [PMID: 35639233 PMCID: PMC9499906 DOI: 10.1007/s10787-022-01004-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/30/2022] [Indexed: 04/12/2023]
Abstract
Background and Aim Huntington's disease (HD) is a rare inherited disease portrayed with marked cognitive and motor decline owing to extensive neurodegeneration. NADPH oxidase is considered as an important contributor to the oxidative injury in several neurodegenerative disorders including HD. Thus, the present study explored the possible neuroprotective effects of diapocynin, a specific NADPH oxidase inhibitor, against 3-nitropropionic acid (3-NP) model of HD in rats. Methods Animals received diapocynin (10 mg/kg/day, p.o), 30 min before 3-NP (10 mg/kg/day, i.p) over a period of 14 days. Results Diapocynin administration attenuated 3-NP-induced oxidative stress with significant increase in reduced glutathione, glutathione-S-transferase, nuclear factor erythroid 2-related factor 2, and brain-derived neurotrophic factor striatal contents contrary to NADPH oxidase (NOX2; gp91phox subunit) diminished expression. Moreover, diapocynin mitigated 3-NP-associated neuroinflammation
and glial activation with prominent downregulation of nuclear factor-Кβ p65 and marked decrement of inducible nitric oxide synthase content in addition to decreased immunoreactivity of ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein; markers of microglial and astroglial activation, respectively. Treatment with diapocynin hindered 3-NP-induced apoptosis with prominent decrease in tumor suppressor protein and Bcl-2-associated X protein contents whereas the anti-apoptotic marker; B-cell lymphoma-2 content was noticeably increased. Diapocynin neuroprotective effects could be attributed to silent information regulator 1 upregulation which curbed 3-NP-associated hazards resulting in improved motor functions witnessed during open field, rotarod, and grip strength tests as well as attenuated 3-NP-associated histopathological derangements. Conclusion The present findings indicated that diapocynin could serve as an auspicious nominee for HD management. Graphical abstract ![]()
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
37
|
Telmisartan neuroprotective effects in 3-nitropropionic acid Huntington's disease model in rats: Cross talk between PPAR-γ and PI3K/Akt/GSK-3β pathway. Life Sci 2022; 297:120480. [DOI: 10.1016/j.lfs.2022.120480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
|
38
|
Piacente F, Bottero M, Benzi A, Vigo T, Uccelli A, Bruzzone S, Ferrara G. Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23084352. [PMID: 35457169 PMCID: PMC9025744 DOI: 10.3390/ijms23084352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages, and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate relationship with other cells, playing a crucial role both in health and in neurological diseases. In this context, DCs are critical to orchestrating the immune response linking the innate and adaptive immune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step that drives the inflammatory response or the resolution of inflammation with the participation of different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their exact function in CNS disease is still debated. In this review, we will discuss modern concepts of DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently, inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs. Thus, a special focus will be dedicated to sirtuins’ role in DCs functions.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
- Correspondence: ; Tel.: +39-(0)10-353-8150
| | - Giovanni Ferrara
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| |
Collapse
|
39
|
Hu Y, Zhao M, Zhao T, Qi M, Yao G, Dong Y. The Protective Effect of Pilose Antler Peptide on CUMS-Induced Depression Through AMPK/Sirt1/NF-κB/NLRP3-Mediated Pyroptosis. Front Pharmacol 2022; 13:815413. [PMID: 35401226 PMCID: PMC8984150 DOI: 10.3389/fphar.2022.815413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Pilose antler peptide (PAP), prepared from the pilose antler of Cervus nippon Temminck, is widely used in traditional Chinese medicine (TCM) against various inflammatory disorders. TCM prescriptions containing pilose antler are often prescribed clinically to treat depression. However, the pharmacological mechanisms of how PAP, against inflammation, prevents and treats depression remain poorly understood. Methods: PAP was identified by de novo sequencing and database searching. Then, behavioral tests were conducted to investigate the effect of PAP on CUMS-exposed mice. In parallel, Nissl staining and Golgi-Cox staining were used for exploring the effect of PAP on neural cells and dendritic spine density. Additionally, the expression of key proteins of the AMPK/Sirt1/NF-κB/NLRP3 pathway was analyzed by Western blot. Finally, the CUMS procedure was conducted for 6 weeks. At the 5th week, PAP and fluoxetine (Flu) were intragastrically treated for 2 weeks. The silencing information regulator-related enzyme 1 (Sirt1) inhibitor EX-527 and the AMP-activated protein kinase (AMPK) inhibitor dorsomorphin were employed to investigate the effects of Sirt1 and AMPK on PAP-mediated depression. Results: PAP attenuated the behavior alteration caused by CUMS stimulation, decreased the number of neurons, and restored the dendritic spine density. PAP treatment effectively upregulated the expressions of p-AMPK and Sirt1 and suppressed the expressions of Ac-NF-κB, NLRP3, Ac-Caspase-1, GSDMD-N, Cleaved-IL-1β, and Cleaved-IL-18. Moreover, selectively inhibited Sirt1 and AMPK were able to compromise the therapeutic effect of PAP on depression. Conclusion: The present work indicated that PAP has a protective effect on CUMS-induced depression. In addition, AMPK and Sirt1 played critical roles in the PAP-relieved depression. PAP might be a potential therapeutic option for treating depression.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Ammar RA, Mohamed AF, Kamal MM, Safar MM, Abdelkader NF. Neuroprotective effect of liraglutide in an experimental mouse model of multiple sclerosis: role of AMPK/SIRT1 signaling and NLRP3 inflammasome. Inflammopharmacology 2022; 30:919-934. [PMID: 35364735 PMCID: PMC9135867 DOI: 10.1007/s10787-022-00956-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/28/2022]
Abstract
The heterogeneous nature of multiple sclerosis (MS) and the unavailability of treatments addressing its intricate network and reversing the disease state is yet an area that needs to be elucidated. Liraglutide, a glucagon-like peptide-1 analogue, recently exhibited intriguing potential neuroprotective effects. The currents study investigated its potential effect against mouse model of MS and the possible underlying mechanisms. Demyelination was induced in C57Bl/6 mice by cuprizone (400 mg/kg/day p.o.) for 5 weeks. Animals received either liraglutide (25 nmol/kg/day i.p.) or dorsomorphin, an AMPK inhibitor, (2.5 mg/Kg i.p.) 30 min before the liraglutide dose, for 4 weeks (starting from the second week). Liraglutide improved the behavioral profile in cuprizone-treated mice. Furthermore, it induced the re-myelination process through stimulating oligodendrocyte progenitor cells differentiation via Olig2 transcription activation, reflected by increased myelin basic protein and myelinated nerve fiber percentage. Liraglutide elevated the protein content of p-AMPK and SIRT1, in addition to the autophagy proteins Beclin-1 and LC3B. Liraglutide halted cellular damage as manifested by reduced HMGB1 protein and consequently TLR-4 downregulation, coupled with a decrease in NF-κB. Liraglutide also suppressed NLRP3 transcription. Dorsomorphin pre-administration indicated a possible interplay between AMPK/SIRT1 and NLRP3 inflammasome activation as it partially reversed liraglutide’s effects. Immunohistochemical examination of Iba+ microglia emphasized these findings. In conclusion, liraglutide exerts neuroprotection against cuprizone-induced demyelination via anti-inflammatory, autophagic flux activation, NLRP3 inflammasome suppression, and anti-apoptotic mechanisms, possibly mediated, at least in part, via AMPK/SIRT1, autophagy, TLR-4/ NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Reham A Ammar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Mohamed M Kamal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
41
|
Development of a Chemical Cocktail That Rescues Mouse Brain Demyelination in a Cuprizone-Induced Model. Cells 2022; 11:cells11071091. [PMID: 35406658 PMCID: PMC8997971 DOI: 10.3390/cells11071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Oligodendrocytes are glial cells located in the central nervous system (CNS) that play essential roles in the transmission of nerve signals and in the neuroprotection of myelinated neurons. The dysfunction or loss of oligodendrocytes leads to demyelinating diseases such as multiple sclerosis (MS). To treat demyelinating diseases, the development of a therapy that promotes remyelination is required. In the present study, we established an in vitro method to convert human fibroblasts into induced oligodendrocyte-like cells (iOLCs) in 3 days. The induced cells displayed morphologies and molecular signatures similar to oligodendrocytes after treatment with valproic acid and exposure to the small molecules Y27632, SU9516, and forskolin (FSK). To pursue the development of a cell-free remyelination therapy in vivo, we used a cuprizone-induced demyelinated mouse model. The small molecules (Y27632, SU9516, and FSK) were directly injected into the demyelinated corpus callosum of the mouse brain. This combination of small molecules rescued the demyelination phenotype within two weeks as observed by light and electron microscopy. These results provide a foundation for exploring the development of a treatment for demyelinating diseases via regenerative medicine.
Collapse
|
42
|
Biochanin A Improves Memory Decline and Brain Pathology in Cuprizone-Induced Mouse Model of Multiple Sclerosis. Behav Sci (Basel) 2022; 12:bs12030070. [PMID: 35323389 PMCID: PMC8945046 DOI: 10.3390/bs12030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system characterized by the demyelination of nerves, neural degeneration, and axonal loss. Cognitive impairment, including memory decline, is a significant feature in MS affecting up to 70% of patients. Thereby, it substantially impacts patients’ quality of life. Biochanin A (BCA) is an o-methylated isoflavone with a wide variety of pharmacological activities, including antioxidant, anti-inflammatory, and neuroprotective activities. Thus, this study aimed to investigate the possible protective effects of BCA on memory decline in the cuprizone (CPZ) model of MS. Thirty Swiss albino male mice (SWR/J) were randomly divided into three groups (n = 10): control (normal chow + i.p. 1:9 mixture of DMSO and PBS), CPZ (0.2% w/w of CPZ mixed into chow + i.p. 1:9 mixture of DMSO and PBS), and CPZ + BCA (0.2% w/w of CPZ mixed into chow + i.p. 40 mg/kg of BCA). At the last week of the study (week 5), a series of behavioral tasks were performed. A grip strength test was performed to assess muscle weakness while Y-maze, novel object recognition task (NORT), and novel arm discrimination task (NADT) were performed to assess memory. Additionally, histological examination of the hippocampus and the prefrontal cortex (PFC) were conducted. BCA administration caused a significant increase in the grip strength compared with the CPZ group. Additionally, BCA significantly improved the mice’s spatial memory in the Y-maze and recognition memory in the NORT and the NADT compared with the CPZ group. Moreover, BCA mitigated neuronal damage in the PFC and the hippocampus after five weeks of administration. In conclusion, our data demonstrates the possible protective effect of BCA against memory deterioration in mice fed with CPZ for five weeks.
Collapse
|
43
|
EGF-Coupled Gold Nanoparticles Increase the Expression of CNPase and the Myelin-Associated Proteins MAG, MOG, and MBP in the Septal Nucleus Demyelinated by Cuprizone. Life (Basel) 2022; 12:life12030333. [PMID: 35330085 PMCID: PMC8955175 DOI: 10.3390/life12030333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/25/2022] Open
Abstract
Current pharmacological therapies against demyelinating diseases are not quite satisfactory to promote remyelination. Epidermal growth factor (EGF) can expand the population of oligodendrocyte precursor cells (OPCs) that may help with the remyelination process, but its delivery into the injured tissue is still a biomedical challenge. Gold nanoparticles (GNPs) may be a useful tool for drug delivery into the brain. To evaluate remyelination in the septal nucleus, we administered intracerebral GNPs coupled with EGF (EGF–GNPs). C57BL6/J mice were demyelinated with 0.4% cuprizone (CPZ) and divided into several groups: Sham, Ctrl, GNPs, EGF, and EGF–GNPs. We evaluated the remyelination process at two time-points: 2 weeks and 3 weeks post-injection (WPI) of each treatment. We used the rotarod for evaluating motor coordination. Then, we did a Western blot analysis myelin-associated proteins: CNPase, MAG, MOG, and MBP. EGF–GNPs increase the expression of CNPase, MAG, and MOG at 2 WPI. At 3 WPI, we found that the EGF–GNPs treatment improves motor coordination and increases MAG, MOG, and MBP. EGF–GNPs enhance the expression of myelin-associated proteins and improve the motor coordination in mice. Thus, EGF-associated GNPs may be a promising pharmacological vehicle for delivering long-lasting drugs into the brain.
Collapse
|
44
|
Linagliptin ameliorates acetic acid-induced colitis via modulating AMPK/SIRT1/PGC-1α and JAK2/STAT3 signaling pathway in rats. Toxicol Appl Pharmacol 2022; 438:115906. [PMID: 35122774 DOI: 10.1016/j.taap.2022.115906] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis is a chronic inflammatory disease, profoundly affecting the patient's quality of life and is associated with various complications. Linagliptin, a potent DPP- IV inhibitor, shows favorable anti-inflammatory effects in several animal model pathologies. To this end, the present study aimed to investigate the anti-inflammatory effect of linagliptin in a rat model of acetic acid-induced colitis. Moreover, the molecular mechanisms behind this effect were addressed. Accordingly, colitis was established by the administration of a 2 ml 6% acetic acid intrarectally and treatment with linagliptin (5 mg/kg) started 24 h after colitis induction and continued for 7 days. On one hand, the DPP-IV inhibitor alleviated the severity of colitis as evidenced by a decrease of disease activity index (DAI) scores, colon weight/length ratio, macroscopic damage, and histopathological deteriorations. Additionally, linagliptin diminished colon inflammation via attenuation of TNF-α, IL-6, and NF-κB p65 besides restoration of anti-inflammatory cytokine IL-10. On the other hand, linagliptin increased levels of p-AMPK, SIRT1, and PGC-1α while abolishing the increment in p-JAK2 and p-STAT3. In parallel linagliptin reduced mTOR levels and upregulated expression levels of SHP and MKP-1 which is postulated to mediate AMPK-driven JAK2/STAT3 inhibition. Based on these findings, linagliptin showed promising anti-inflammatory activity against acetic acid-induced colitis that is mainly attributed to the activation of the AMPK-SIRT1-PGC-1α pathway as well as suppression of the JAK2/STAT3 signaling pathway that might be partly mediated through AMPK activation.
Collapse
|
45
|
Hussien YA, Mansour DF, Nada SA, Abd El-Rahman SS, Abdelsalam RM, Attia AS, El-Tanbouly DM. Linagliptin attenuates thioacetamide-induced hepatic encephalopathy in rats: Modulation of C/EBP-β and CX3CL1/Fractalkine, neuro-inflammation, oxidative stress and behavioral defects. Life Sci 2022; 295:120378. [DOI: 10.1016/j.lfs.2022.120378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
|
46
|
Song S, Guo R, Mehmood A, Zhang L, Yin B, Yuan C, Zhang H, Guo L, Li B. Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis-related NLRP3 pathway. CNS Neurosci Ther 2022; 28:422-434. [PMID: 34985189 PMCID: PMC8841291 DOI: 10.1111/cns.13791] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Aims Multiple sclerosis (MS) still maintains increasing prevalence and poor prognosis, while glucagon‐like peptide‐1 receptor (GLP‐1R) agonists show excellent neuroprotective capacities recently. Thus, we aim to evaluate whether the GLP‐1R agonist liraglutide (Lira) could ameliorate central nervous system demyelination and inflammation. Methods The therapeutic effect of Lira was tested on experimental autoimmune encephalitis (EAE) in vivo and a microglia cell line BV2 in vitro. Results Lira administration could ameliorate the disease score of EAE mice, delay the disease onset, ameliorate pathological demyelination and inflammation score in lumbar spinal cord, reduce pathogenic T helper cell transcription in spleen, restore phosphorylated adenosine monophosphate‐activated protein kinase (pAMPK) level, autophagy level, and inhibit pyroptosis‐related NLR family, pyrin domain‐containing protein 3 (NLRP3) pathway in lumbar spinal cord. Additionally, cell viability test, lactate dehydrogenase release test, and dead/live cell staining test for BV2 cells showed Lira could not salvage BV2 from nigericin‐induced pyroptosis significantly. Conclusion Lira has anti‐inflammation and anti‐demyelination effect on EAE mice, and the protective effect of Lira in the EAE model may be related to regulation of pAMPK pathway, autophagy, and NLRP3 pathway. However, Lira treatment cannot significantly inhibit pyroptosis of BV2 cells in vitro. Our study provides Lira as a potential candidate for Multiple Sclerosis treatment.
Collapse
Affiliation(s)
- Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Bowen Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.,Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.,Department of Neurology, Baoding First Central Hospital, Baoding, China
| | - Huining Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
47
|
CHEN C, WEN D, DU J, XIAO H, ZHONG S, WU Z, PENG J, LIU D, TANG H. Activation of SIRT1 signaling pathway by clove improves cognitive dysfunction in septic mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.82622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Juan DU
- Army Medical University, China
| | | | | | | | - Ji PENG
- Army Medical University, China
| | | | | |
Collapse
|
48
|
AMPK inhibitor BML-275 induces neuroprotection through decreasing cyt c and AIF expression after transient brain ischemia. Bioorg Med Chem 2021; 52:116522. [PMID: 34837819 DOI: 10.1016/j.bmc.2021.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
Stroke is a major public health problem with an imperative need for a more effective and tolerated therapy. Neuroprotective therapy may be an effective therapeutic intervention for stroke. The morbidity and mortality of stroke-induced secondary brain injury is mainly caused by neuronal apoptosis, which can be executed in a caspase-dependent or apoptosis inducing factor (AIF)-dependent manner. As apoptosis is an energy-dependent process with a relative time delay, abnormal energy metabolism could be a significant and fundamental pathophysiological basis of stroke. To our knowledge, convincible evidences that AMPK inhibition exerts neuroprotection in cerebral ischemia injury via anti-apoptosis remain to be investigated. Accordingly, the aims of this study were to investigate the protective effects of AMPK inhibitor BML-275 on cerebral ischemic/reperfusion (I/R) injury and to elucidate the underlying mechanisms. Cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) in male C57BL/6 mice. The therapeutic effects of BML-275 were evaluated by infarct sizes, neurological scores and the proportion of apoptotic neurons after 24 h of reperfusion. The cell apoptosis markers cyt c and AIF were also evaluated. The results showed that intraperitoneally administration of BML-275 alleviate the cerebral infarction, neurological deficit and neuronal apoptosis induced by MCAO. BML-275 simultaneously induces anti-apoptosis and decreases the expression of cyt c and AIF. This study supports the hypothesis that anti-apoptosis is one of potential neuroprotective strategies for the treatment of stroke.
Collapse
|
49
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
50
|
Ma Y, Liu H, Ou Z, Qi C, Xing R, Wang S, Han Y, Zhao TJ, Chen Y. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3. Glia 2021; 70:379-392. [PMID: 34724258 DOI: 10.1002/glia.24113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
Myelin sheath is an important structure to maintain functions of the nerves in central nervous system. Protein palmitoylation has been established as a sorting determinant for the transport of myelin-forming proteins to the myelin membrane, however, its function in the regulation of oligodendrocyte development remains unknown. Here, we show that an Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC5, is involved in the control of oligodendrocyte development. Loss of Zdhhc5 in oligodendrocytes inhibits myelination and remyelination by reducing total myelinating oligodendrocyte population. STAT3 is the primary substrate for DHHC5 palmitoylation in oligodendrocytes. Zdhhc5 ablation reduces STAT3 palmitoylation and suppresses STAT3 phosphorylation and activation. As a result, the transcription of the myelin-related and anti-apoptosis genes is inhibited, leading to suppressed oligodendrocyte development and myelination. Our findings demonstrate a key role DHHC5 in controlling myelinogenesis.
Collapse
Affiliation(s)
- Yanchen Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiqing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiyun Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yinuo Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|