1
|
Wang Z, Wang X, Ma Y, Cong P, Wang X, Song Y, Xu J, Xue C. Astaxanthin alleviates ganglioside metabolism disorder in the cortex of Alzheimer's disease mice. Food Funct 2023; 14:10362-10374. [PMID: 37929718 DOI: 10.1039/d3fo03223j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The present study analyzed the amelioration effect and mechanism of two kinds of astaxanthin (AST), including free-AST (F-AST) and docosahexaenoic acid-acylated AST monoester (AST-DHA), on ganglioside (GLS) metabolism in the cortex of APP/PS1 mice using the LC-MS strategy in combination with molecular biology. Water maze and immunohistochemical experiments demonstrated that AST significantly improved the cognitive level of APP/PS1 mice and reduced Aβ deposition in the cortex. After the dietary intake of AST, the composition and level of 84 GLS molecular species in the mouse cortex were determined using the LC-MS strategy. The results showed that the total GLS was reduced, most complex GLS was decreased, and simple GLS (GM3 and GM1a) was increased in the APP/PS1 mouse cortex. Notably, F-AST mainly regulated complex GLS (p < 0.001), whereas AST-DHA primarily reacted with simple GLS (p < 0.001). OAc-GQ1a(38:1), OAc-GQ1a(36:1), GD1a(36:1), and GM3(38:1) decreased 3.73, 2.31, and 2.29-fold and increased 3.54-fold, respectively, and were identified as potential AD biomarkers in the cortices of APP/PS1 mice. Additionally, the AST diet significantly upregulated the mRNA expression of GLS synthesizing genes (st3gal5, st8sia1, b3galt4, st3fal2, and soat) and siae (p < 0.05) and down-regulated that of the GLS catabolizing gene hexa (p < 0.01). In conclusion, improving GLS homeostasis in the AD mouse cortex might be a critical pathway to explain the AD-preventing effect of AST.
Collapse
Affiliation(s)
- Zhigao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Yingxu Ma
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Xincen Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
- Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China
| |
Collapse
|
2
|
Yu H, Zheng Z, Zhang L, Yang X, Varki A, Chen X. Chemoenzymatic Synthesis of N-Acetyl Analogues of 9- O-Acetylated b-Series Gangliosides. Tetrahedron 2023; 142:133522. [PMID: 37981995 PMCID: PMC10653377 DOI: 10.1016/j.tet.2023.133522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The stable N-acetyl analogues of biologically important 9-O-acetylated b-series gangliosides including 9NAc-GD3, 9NAc-GD2, 9NAc-GD1b, and 9NAc-GT1b were chemoenzymatically synthesized from a GM3 sphingosine. Two chemoenzymatic methods using either 6-azido-6-deoxy-N-acetylmannosamine (ManNAc6N3) as a chemoenzymatic synthon or 6-acetamido-6-deoxy-N-acetylmannosamine (ManNAc6NAc) as an enzymatic precursor for 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) were developed and compared for the synthesis of 9NAc-GD3. The latter method was found to be more efficient and was used to produce the desired 9-N-acetylated glycosylsphingosines. Furthermore, glycosylsphingosine acylation reaction conditions were improved to obtain target 9-N-acetylated gangliosides in a faster reaction with an easier purification process compared to the previous acylation conditions.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Zimin Zheng
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Libo Zhang
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, 92093, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, 95616, USA
| |
Collapse
|
3
|
Cenalmor A, Pascual E, Gil-Manso S, Correa-Rocha R, Suárez JR, García-Álvarez I. Evaluation of Anti-Neuroinflammatory Activity of Isatin Derivatives in Activated Microglia. Molecules 2023; 28:4882. [PMID: 37375437 DOI: 10.3390/molecules28124882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation plays a crucial role in the progression of Alzheimer's disease and other neurodegenerative disorders. Overactivated microglia cause neurotoxicity and prolong the inflammatory response in many neuropathologies. In this study, we have synthesised a series of isatin derivatives to evaluate their anti-neuroinflammatory potential using lipopolysaccharide activated microglia as a cell model. We explored four different substitutions of the isatin moiety by testing their anti-neuroinflammatory activity on BV2 microglia cells. Based on the low cytotoxicity and the activity in reducing the release of nitric oxide, pro-inflammatory interleukin 6 and tumour necrosis factor α by microglial cells, the N1-alkylated compound 10 and the chlorinated 20 showed the best results at 25 µM. Taken together, the data suggest that 10 and 20 are promising lead compounds for developing new neuroprotective agents.
Collapse
Affiliation(s)
- Alejandro Cenalmor
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Elena Pascual
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Sergio Gil-Manso
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), 28009 Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), 28009 Madrid, Spain
| | - José Ramón Suárez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel García-Álvarez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
4
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Aberrant Ganglioside Functions to Underpin Dysregulated Myelination, Insulin Signalling, and Cytokine Expression: Is There a Link and a Room for Therapy? Biomolecules 2022; 12:biom12101434. [PMID: 36291644 PMCID: PMC9599472 DOI: 10.3390/biom12101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Gangliosides are molecules widely present in the plasma membranes of mammalian cells, participating in a variety of processes, including protein organization, transmembrane signalling and cell adhesion. Gangliosides are abundant in the grey matter of the brain, where they are critically involved in postnatal neural development and function. The common precursor of the majority of brain gangliosides, GM3, is formed by the sialylation of lactosylceramide, and four derivatives of its a- and b-series, GM1, GD1a, GD1b and GT1b, constitute 95% of all the brain gangliosides. Impairments in ganglioside metabolism due to genetic abnormalities of GM-synthases are associated with severe neurological disorders. Apart from that, the latest genome-wide association and translational studies suggest a role of genes involved in brain ganglioside synthesis in less pervasive psychiatric disorders. Remarkably, the most recent animal studies showed that abnormal ganglioside functions result in dysregulated neuroinflammation, aberrant myelination and altered insulin receptor signalling. At the same time, these molecular features are well established as accompanying developmental psychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). This led us to hypothesize a role of deficient ganglioside function in developmental neuropsychiatric disorders and warrants further gene association clinical studies addressing this question. Here, we critically review the literature to discuss this hypothesis and focus on the recent studies on ST3GAL5-deficient mice. In addition, we elaborate on the therapeutic potential of various anti-inflammatory remedies for treatment of developmental neuropsychiatric conditions related to aberrant ganglioside functions.
Collapse
|
7
|
Alvarez AB, Rodríguez PEA, Fidelio GD. Gangliosides smelt nanostructured amyloid Aβ(1-40) fibrils in a membrane lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183749. [PMID: 34506795 DOI: 10.1016/j.bbamem.2021.183749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aβ(1-40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aβ(1-40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aβ(1-40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes. Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy. We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).
Collapse
Affiliation(s)
- Alain Bolaño Alvarez
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Argentina
| | | | - Gerardo D Fidelio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
8
|
Bile acids attenuate PKM2 pathway activation in proinflammatory microglia. Sci Rep 2022; 12:1459. [PMID: 35087114 PMCID: PMC8795255 DOI: 10.1038/s41598-022-05408-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Glycolysis is the metabolic pathway that converts glucose into pyruvate. Central nervous system (CNS) pathologies, such as spinal cord injury (SCI) and ischemia, are accompanied by an increase of the glycolytic pathway in the damaged areas as part of the inflammatory response. Pyruvate kinase is a key glycolytic enzyme that converts phosphoenolpyruvate and ADP to pyruvate and ATP. The protein has two isoforms, PKM1 and PKM2, originated from the same gene. As a homodimer, PKM2 loses the pyruvate kinase activity and acts as a transcription factor that regulates the expression of target genes involved in glycolysis and inflammation. After SCI, resident microglia and hematogenous macrophages are key inducers of the inflammatory response with deleterious effects. Activation of the bile acid receptor TGR5 inhibits the pro-inflammatory NFκB pathway in microglia and macrophages. In the present study we have investigated whether bile acids affect the expression of glycolytic enzymes and their regulation by PKM2. Bacterial lipopolysaccharide (LPS) induced the expression of PKM1, PKM2 and its target genes in primary cultures of microglial and Raw264.7 macrophage cells. SCI caused an increase of PKM2 immunoreactivity in macrophages after SCI. Pretreatment with tauroursodeoxycholic acid (TUDCA) or taurolithocholic acid (TLCA) reduced the expression of PKM2 and its target genes in cell cultures. Similarly, after SCI, TUDCA treatment reduced the expression of PKM2 in the lesion center. These results confirm the importance of PKM2 in the inflammatory response in CNS pathologies and indicate a new mechanism of bile acids as regulators of PKM2 pathway.
Collapse
|
9
|
Li Z, Zhang H, Cao C, Qian T, Li H. Gangliosides combined with mild hypothermia provides neuroprotection in a rat model of traumatic brain injury. Neuroreport 2021; 32:1113-1121. [PMID: 34284446 DOI: 10.1097/wnr.0000000000001703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) remains a major cause of disability and death in modern society. In this study, we explored the neuroprotection role of the combination of gangliosides (GM) and mild hypothermia (MH) and the potential effect on oxidative stress injuries in a rat model of TBI. All 50 rats were randomized to five groups: (1) NC group: undergoing surgery without hit; (2) TBI group: undergoing surgery with hit; (3) GM group: TBI treated with gangliosides; (4) MHT group: TBI treated with MH; (5) GM+MHT group: TBI treated with gangliosides and MH. Spatial learning impairments, neurological function injury, Evans Blue leakage, brain MRI and oxidative stress injuries were assessed. The protein levels of Cleaved-caspase 3 and CytC were also detected. Both GM and MHT could rescue TBI-induced spatial learning impairments, improve neurological function injury and brain edema. In addition, the combination of them has a better therapeutic effect. Through the MRI, we found that compared with the TBI group, the brain tissue edema area of GM group, MHT group, and GM+MHT group was smaller, the occupancy effect was weakened, and the midline was slightly shifted. Compared with the GM group and MHT group, these changes in the GM+MHT group were much smaller. GM combined with MH-alleviated TBI-induced oxidative stress injuries and apoptosis. Our study reveals that GM and MH potentially provide neuroprotection via the suppression of oxidative stress injuries and apoptosis after TBI in rats.
Collapse
Affiliation(s)
- Zhaolin Li
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University
| | - Hongwei Zhang
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University
| | - Cangzhu Cao
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University
| | - Tao Qian
- Department of Neurosurgery, Hebei General Hospital, Xinhua District, Shijiazhuang, China
| | - Hong Li
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University
| |
Collapse
|