1
|
Qu G, Li X, Jin R, Guan D, Ji J, Li S, Shi H, Tong P, Gan W, Zhang A. MicroRNA-26a alleviates tubulointerstitial fibrosis in diabetic kidney disease by targeting PAR4. J Cell Mol Med 2024; 28:e18099. [PMID: 38164021 PMCID: PMC10844712 DOI: 10.1111/jcmm.18099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024] Open
Abstract
Our previous study found that miR-26a alleviates aldosterone-induced tubulointerstitial fibrosis (TIF). However, the effect of miR-26a on TIF in diabetic kidney disease (DKD) remains unclear. This study clarifies the role and possible mechanism of exogenous miR-26a in controlling the progression of TIF in DKD models. Firstly, we showed that miR-26a was markedly decreased in type 2 diabetic db/db mice and mouse tubular epithelial cells (mTECs) treated with high glucose (HG, 30 mM) using RT-qPCR. We then used adeno-associated virus carrying miR-26a and adenovirus miR-26a to enhance the expression of miR-26a in vivo and in vitro. Overexpressing miR-26a alleviated the TIF in db/db mice and the extracellular matrix (ECM) deposition in HG-stimulated mTECs. These protective effects were caused by reducing expression of protease-activated receptor 4 (PAR4), which involved in multiple pro-fibrotic pathways. The rescue of PAR4 expression reversed the anti-fibrosis activity of miR-26a. We conclude that miR-26a alleviates TIF in DKD models by directly targeting PAR4, which may provide a novel molecular strategy for DKD therapy.
Collapse
Affiliation(s)
- Gaoting Qu
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Xingyue Li
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Ran Jin
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Dian Guan
- Department of Pediatric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Jialing Ji
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Shanwen Li
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Huimin Shi
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Pingfan Tong
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Weihua Gan
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Aiqing Zhang
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| |
Collapse
|
2
|
Liu W, Li F, Guo D, Du C, Zhao S, Li J, Yan Z, Hao J. Schisandrin B Alleviates Renal Tubular Cell Epithelial-Mesenchymal Transition and Mitochondrial Dysfunction by Kielin/Chordin-like Protein Upregulation via Akt Pathway Inactivation and Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase Pathway Activation in Diabetic Kidney Disease. Molecules 2023; 28:7851. [PMID: 38067580 PMCID: PMC10708382 DOI: 10.3390/molecules28237851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease is a common complication of diabetes and remains the primary cause of end-stage kidney disease in the general population. Schisandrin B (Sch B) is an active ingredient in Schisandra chinensis. Our study illustrates that Sch B can mitigate renal tubular cell (RTC) epithelial-mesenchymal transition (EMT) and mitochondrial dysfunction in db/db mice, accompanied by the downregulation of TGF-β1 and the upregulation of PGC-1α. Similarly, Sch B demonstrated a protective effect by reducing the expression of TGF-β1, α-SMA, fibronectin, and Col I, meanwhile enhancing the expression of E-cadherin in human RTCs (HK2 cells) stimulated with high glucose. Moreover, under high glucose conditions, Sch B effectively increased mitochondrial membrane potential, lowered ROS production, and increased the ATP content in HK2 cells, accompanied by the upregulation of PGC-1α, TFAM, MFN1, and MFN2. Mechanistically, the RNA-seq results showed a significant increase in KCP mRNA levels in HK2 cells treated with Sch B in a high glucose culture. The influence of Sch B on KCP mRNA levels was confirmed by real-time PCR in high glucose-treated HK2 cells. Depletion of the KCP gene reversed the impact of Sch B on TGF-β1 and PGC-1α in HK2 cells with high glucose level exposure, whereas overexpression of the KCP gene blocked EMT and mitochondrial dysfunction. Furthermore, the PI3K/Akt pathway was inhibited and the AMPK pathway was activated in HK2 cells exposed to a high concentration of glucose after the Sch B treatment. Treatment with the PI3K/Akt pathway agonist insulin and the AMPK pathway antagonist compound C attenuated the Sch B-induced KCP expression in HK2 cells exposed to a high level of glucose. Finally, molecular autodock experiments illustrated that Sch B could bind to Akt and AMPK. In summary, our findings suggested that Sch B could alleviate RTC EMT and mitochondrial dysfunction by upregulating KCP via inhibiting the Akt pathway and activating the AMPK pathway in DKD.
Collapse
Affiliation(s)
- Weilin Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
- Department of Infectious Diseases, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Dongwei Guo
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Congyuan Du
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Juan Li
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhe Yan
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
3
|
Lin Y, Wei J, Zhang Y, Huang J, Wang S, Luo Q, Yu H, Ji L, Zhou X, Li C. Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1. Chin J Nat Med 2023; 21:359-370. [PMID: 37245874 DOI: 10.1016/s1875-5364(23)60453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 05/30/2023]
Abstract
Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-β1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-β1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.
Collapse
Affiliation(s)
- Yiyou Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiale Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yehui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junhao Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sichen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongxia Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaojie Zhou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Zhou Z, Qiao Y, Zhao Y, Chen X, Li J, Zhang H, Lan Q, Yang B. Natural products: potential drugs for the treatment of renal fibrosis. Chin Med 2022; 17:98. [PMID: 35978370 PMCID: PMC9386947 DOI: 10.1186/s13020-022-00646-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing prevalence and mortality, chronic kidney disease (CKD) has become a world public health problem. As the primary pathological manifestation in CKD, renal fibrosis is often used as a critical target for the treatment of CKD and inhibits the progression of CKD to end-stage renal disease (ESRD). As a potential drug, natural products have been confirmed to have the potential as a routine or supplementary therapy for chronic kidney disease, which may target renal fibrosis and act through various pharmacological activities such as anti-inflammatory and anti-oxidation of natural products. This article briefly introduces the pathological mechanism of renal fibrosis and systematically summarizes the latest research on the treatment of renal fibrosis with natural products of Chinese herbal medicines.
Collapse
Affiliation(s)
- Zijun Zhou
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanheng Qiao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Zhao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hanqing Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiumei Lan
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Abstract
Epigenetics examines heritable changes in DNA and its associated proteins except mutations in gene sequence. Epigenetic regulation plays fundamental roles in kidney cell biology through the action of DNA methylation, chromatin modification via epigenetic regulators and non-coding RNA species. Kidney diseases, including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis are multistep processes associated with numerous molecular alterations even in individual kidney cells. Epigenetic alterations, including anomalous DNA methylation, aberrant histone alterations and changes of microRNA expression all contribute to kidney pathogenesis. These changes alter the genome-wide epigenetic signatures and disrupt essential pathways that protect renal cells from uncontrolled growth, apoptosis and development of other renal associated syndromes. Molecular changes impact cellular function within kidney cells and its microenvironment to drive and maintain disease phenotype. In this chapter, we briefly summarize epigenetic mechanisms in four kidney diseases including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis. We primarily focus on current knowledge about the genome-wide profiling of DNA methylation and histone modification, and epigenetic regulation on specific gene(s) in the pathophysiology of these diseases and the translational potential of identifying new biomarkers and treatment for prevention and therapy. Incorporating epigenomic testing into clinical research is essential to elucidate novel epigenetic biomarkers and develop precision medicine using emerging therapies.
Collapse
|
8
|
Wang B, Wang X, Tong X, Zhang Y. Schisandrin B Inhibits Cell Viability and Migration, and Induces Cell Apoptosis by circ_0009112/miR-708-5p Axis Through PI3K/AKT Pathway in Osteosarcoma. Front Genet 2021; 11:588670. [PMID: 33414806 PMCID: PMC7783358 DOI: 10.3389/fgene.2020.588670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is a primary tumor of bone and its incidence is increasing. Schisandrin B (Sch B), a generally used lignan in Chinese medicine, has been found to repress cancer progression. This study aims to reveal the effects and regulatory mechanism of Sch B in the viability, apoptosis and migration of osteosarcoma cells. In this study, we found circ_0009112 expression was higher and miR-708-5p expression was lower in SaOS2 and U2OS cells than in hFOB1.19 cells. Circ_0009112 expression was downregulated, but miR-708-5p was upregulated by Sch B treatment in a dose-dependent manner in SaOS2 and U2OS cells. Sch B exposure inhibited osteosarcoma development in vitro and in vivo; however, these effects were restored by circ_0009112. Furthermore, circ_0009112 acted as a sponge of miR-708-5p. Circ_0009112 regulated PI3K/AKT pathway after Sch B treatment by associating with miR-708-5p. Sch B exposure inhibited cell viability and migration, whereas promoted cell apoptosis by regulating circ_0009112/miR-708-5p axis through PI3K/AKT pathway in osteosarcoma cells. This study provided a theoretical basis for further studying osteosarcoma therapy with Sch B.
Collapse
Affiliation(s)
- Bing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaowei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xing Tong
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Li JK, Yang C, Su Y, Luo JC, Luo MH, Huang DL, Tu GW, Luo Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Therapeutic Strategy for Acute Kidney Injury. Front Immunol 2021; 12:684496. [PMID: 34149726 PMCID: PMC8209464 DOI: 10.3389/fimmu.2021.684496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common and potential life-threatening disease in patients admitted to hospital, affecting 10%-15% of all hospitalizations and around 50% of patients in the intensive care unit. Severe, recurrent, and uncontrolled AKI may progress to chronic kidney disease or end-stage renal disease. AKI thus requires more efficient, specific therapies, rather than just supportive therapy. Mesenchymal stem cells (MSCs) are considered to be promising cells for cellular therapy because of their ease of harvesting, low immunogenicity, and ability to expand in vitro. Recent research indicated that the main therapeutic effects of MSCs were mediated by MSC-derived extracellular vesicles (MSC-EVs). Furthermore, compared with MSCs, MSC-EVs have lower immunogenicity, easier storage, no tumorigenesis, and the potential to be artificially modified. We reviewed the therapeutic mechanism of MSCs and MSC-EVs in AKI, and considered recent research on how to improve the efficacy of MSC-EVs in AKI. We also summarized and analyzed the potential and limitations of EVs for the treatment of AKI to provide ideas for future clinical trials and the clinical application of MSC-EVs in AKI.
Collapse
Affiliation(s)
- Jia-Kun Li
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing-Chao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-Hao Luo
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan-Lei Huang
- Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Zhe Luo, ; Guo-Wei Tu,
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhe Luo, ; Guo-Wei Tu,
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- *Correspondence: Zhe Luo, ; Guo-Wei Tu,
| |
Collapse
|
10
|
Zhou Y, Men L, Sun Y, Wei M, Fan X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. Eur J Pharmacol 2020; 892:173796. [PMID: 33345853 DOI: 10.1016/j.ejphar.2020.173796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Fruit of Schisandra chinensis Turcz. (Baill.) (S. chinensis) is a traditional herbal medicine widely used in China, Korea, and many other east Asian countries. At present, S. chinensis commonly forms Chinese medicinal formulae with other herbal medicines to treat liver disease and neurological disease in clinical. Modern researches indicated that lignans were the main active ingredients of S. chinensis with high content and novel dibenzocyclooctadiene skeletal structure, exhibited considerable antioxidant, anti-inflammatory, and neuroprotective properties. Additionally, some of these lignans also showed certain potentials in anti-cancer, anti-fibrosis, and other effects. In the current review, we summarize literature reported lignans from S. chinensis in the past five years, and highlight the molecular mechanisms of lignans in exerting their biological functions. Also, we point out some deficiencies of existing researches and discuss the future direction of lignans study.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lihui Men
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yunxia Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Wei
- Natural Medicine Institute of Zhejiang YangShengTang Co., Hangzhou, 310000, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Yan C, Gao L, Qiu X, Deng C. Schisandrin B synergizes docetaxel-induced restriction of growth and invasion of cervical cancer cells in vitro and in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1157. [PMID: 33241006 PMCID: PMC7576040 DOI: 10.21037/atm-20-6109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Cervical cancer is a prevalent tumor in women. Here we investigated the synergic effects of Schisandrin B (Sch B), an active compound extracted from the Chinese herb Schisandra Chinensis, in docetaxel (DTX)-induced restriction of growth and invasion of cervical cancer. Methods Caski cells were treated with Sch B and DTX for 24 hours. In vitro effects were investigated with Cell counting kit-8, western blotting, colony-forming, Transwell, Annexin V-FITC enabled flow cytometry. Then, in vivo experiments were engaged with Sch B (20 mg/kg) and DTX (10 mg/kg) for 30 days, and IHC were applied to validate the effects in vivo. Results Both Sch B and DTX reduced cell viability, inhibited colony formatting, induced apoptosis, and limited cell invasion. Co-administration of Sch B and DTX more significantly enhanced these changes. The relative levels of HPV infection and tumor progression related proteins p-AKT/AKT, NF-kappaB, Cyclin D1, CDK-4, MMP-9, Notch1, β-catenin and p-p38/p38 were markedly inactivated. The effects of Sch B in cervical cancer were further confirmed in Caski cell-xenograft BALB/c nude mice. Co-administration of Sch B enhanced the anti-tumor effects of DTX in vivo, inhibited tumor formation, increased apoptotic cells, and reduced Ki67 and N-cadherin expression. Conclusions Altogether, Sch B enhanced the anti-tumor effects of DTX in vitro and in vivo via growth, invasion, and apoptosis regulating. The results supported therapies of co-administering Sch B and DTX to be developed in cervical cancer.
Collapse
Affiliation(s)
- Chunmei Yan
- Department of Gynecology and Obstetrics, The Hospital of Lanzhou Jiao Tong University, Lanzhou, China
| | - Liya Gao
- Department of Gynecology and Obstetrics, Beijing Chuiyangliu Hospital, Beijing, China
| | - Xiaofei Qiu
- Department of Gynecology and Obstetrics, The Central People's Hospital of Tengzhou, Tengzhou, China
| | - Chunxia Deng
- Department of Gynecology and Obstetrics, Beijing Chuiyangliu Hospital, Beijing, China
| |
Collapse
|
12
|
Wang J, Fang Z, Song C, Kang H, Guo Q, Dong Y, Zhang Y, Peng R, Guan H, Li F. Schisandrin B Inhibits Osteoclastogenesis and Protects Against Ovariectomy-Induced Bone Loss. Front Pharmacol 2020; 11:1175. [PMID: 32848781 PMCID: PMC7413103 DOI: 10.3389/fphar.2020.01175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease which is highly prevalent worldwide and considered to be associated with excessive bone resorption mediated by osteoclast. Osteoclast differentiation is featured by the activation of inflammation-related pathways and the generation of reactive oxygen species. Schisandrin B is a bioactive compound with strong antiinflammation and antioxidative properties, we thus speculated that Schisandrin B might serve as a potential candidate for osteoporosis. In the present study, we found that the formation and` function of osteoclasts were dramatically suppressed by Schisandrin B. And consistent with the in vitro results, treatment with Schisandrin B attenuated ovariectomy-induced bone loss in mice. Moreover, Schisandrin B notably inhibited the activation of mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways and scavenged ROS by activating nuclear factor E2 p45-related factor 2 (Nrf2) signaling. In conclusion, our study indicates that Schisandrin B is an effective approach to treat osteoporosis and other osteoclast-related diseases.
Collapse
Affiliation(s)
- Jia Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|