1
|
Chang M, Takahashi Y, Miyahira K, Omuro Y, Montagne K, Yamada R, Gondo J, Kambe Y, Yasuno M, Masumoto N, Ushida T, Furukawa KS. Simultaneous Hydrostatic and Compressive Loading System for Mimicking the Mechanical Environment of Living Cartilage Tissue. MICROMACHINES 2023; 14:1632. [PMID: 37630168 PMCID: PMC10456493 DOI: 10.3390/mi14081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
In vivo, articular cartilage tissue is surrounded by a cartilage membrane, and hydrostatic pressure (HP) and compressive strain increase simultaneously with the compressive stress. However, it has been impossible to investigate the effects of simultaneous loading in vitro. In this study, a bioreactor capable of applying compressive stress under HP was developed to reproduce ex vivo the same physical loading environment found in cartilage. First, a HP stimulation unit was constructed to apply a cyclic HP pressure-resistant chamber by controlling a pump and valve. A compression-loading mechanism that can apply compressive stress using an electromagnetic force was implemented in the chamber. The synchronization between the compression and HP units was evaluated, and the stimulation parameters were quantitatively evaluated. Physiological HP and compressive strain were applied to the chondrocytes encapsulated in alginate and gelatin gels after applying high HP at 25 MPa, which induced damage to the chondrocytes. It was found that compressive stimulation increased the expression of genes related to osteoarthritis. Furthermore, the simultaneous application of compressive strain and HP, which is similar to the physiological environment in cartilage, had an inhibitory effect on the expression of genes related to osteoarthritis. HP alone also suppressed the expression of osteoarthritis-related genes. Therefore, the simultaneous hydrostatic and compressive stress-loading device developed to simulate the mechanical environment in vivo may be an important tool for elucidating the mechanisms of disease onset and homeostasis in cartilage.
Collapse
Affiliation(s)
- Minki Chang
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (M.C.); (Y.O.)
| | - Yosuke Takahashi
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.T.); (K.M.); (K.M.); (R.Y.); (J.G.); (Y.K.); (T.U.)
| | - Kyosuke Miyahira
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.T.); (K.M.); (K.M.); (R.Y.); (J.G.); (Y.K.); (T.U.)
| | - Yuma Omuro
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (M.C.); (Y.O.)
| | - Kevin Montagne
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.T.); (K.M.); (K.M.); (R.Y.); (J.G.); (Y.K.); (T.U.)
| | - Ryusei Yamada
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.T.); (K.M.); (K.M.); (R.Y.); (J.G.); (Y.K.); (T.U.)
| | - Junki Gondo
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.T.); (K.M.); (K.M.); (R.Y.); (J.G.); (Y.K.); (T.U.)
| | - Yu Kambe
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.T.); (K.M.); (K.M.); (R.Y.); (J.G.); (Y.K.); (T.U.)
| | - Masashi Yasuno
- Department of Mechanical Engineering, Faculty of Fundamental Engineering, Nippon Institute of Technology, Saitama 345-8501, Japan; (M.Y.); (N.M.)
| | - Noriyasu Masumoto
- Department of Mechanical Engineering, Faculty of Fundamental Engineering, Nippon Institute of Technology, Saitama 345-8501, Japan; (M.Y.); (N.M.)
| | - Takashi Ushida
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.T.); (K.M.); (K.M.); (R.Y.); (J.G.); (Y.K.); (T.U.)
| | - Katsuko S. Furukawa
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (M.C.); (Y.O.)
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.T.); (K.M.); (K.M.); (R.Y.); (J.G.); (Y.K.); (T.U.)
| |
Collapse
|
2
|
Rojas-Aguilar FA, Briones-Aranda A, Jaramillo-Morales OA, Romero-Nava R, Esquinca-Avilés HA, Espinosa-Juárez JV. The Additive Antinociceptive Effect of Resveratrol and Ketorolac in the Formalin Test in Mice. Pharmaceuticals (Basel) 2023; 16:1078. [PMID: 37630993 PMCID: PMC10460057 DOI: 10.3390/ph16081078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pain represents one of the leading causes of suffering and disability worldwide. Currently available drugs cannot treat all types of pain and may have adverse effects. Hence, the use of pharmacological combinations is an alternative treatment strategy. Therefore, this study aimed to evaluate the combination of resveratrol and ketorolac through isobolographic analysis. CD1 mice were used to study the antinociceptive effect of this combination using the formalin test and the study was divided into two phases. In the first phase, four individual doses of each drug were evaluated, totaling eight testing groups. From these data, the median effective doses (ED50) of each drug were calculated. In the second phase, four testing groups were used to evaluate the combination of sub-doses of both drugs and obtain the experimental ED50. To evaluate gastric damage, five groups were employed, including indomethacin, vehicle, resveratrol, ketorolac, and combined resveratrol and ketorolac groups. Stomach samples from the mice were taken after 5 h of treatment, and the area of the ulcers was determined. Resveratrol plus ketorolac elicited a reduction in nociceptive behavior during both phases of the formalin test, and isobologram analysis revealed that the theoretical and experimental ED50 values of resveratrol and ketorolac did not differ significantly, implying an additive interaction between the drugs. Additionally, the drug combination did not generate gastric ulcers, thus enhancing the desired effects without increasing the adverse effects. Consequently, these findings substantiate the efficacy of the resveratrol and ketorolac combination in the formalin test, thereby highlighting its potential as a viable alternative for alleviating pain.
Collapse
Affiliation(s)
- Fidencio Abner Rojas-Aguilar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (F.A.R.-A.); (R.R.-N.)
| | - Alfredo Briones-Aranda
- Laboratorio de Farmacología, Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Chiapas, Mexico;
| | - Osmar Antonio Jaramillo-Morales
- División de Ciencias de la Vida, Departamento de Enfermería y Obstetricia, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Guanajuato, Mexico;
| | - Rodrigo Romero-Nava
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (F.A.R.-A.); (R.R.-N.)
| | | | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico;
| |
Collapse
|
3
|
Wu Z, Yang Z, Liu L, Xiao Y. Natural compounds protect against the pathogenesis of osteoarthritis by mediating the NRF2/ARE signaling. Front Pharmacol 2023; 14:1188215. [PMID: 37324450 PMCID: PMC10266108 DOI: 10.3389/fphar.2023.1188215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Osteoarthritis (OA), a chronic joint cartilage disease, is characterized by the imbalanced homeostasis between anabolism and catabolism. Oxidative stress contributes to inflammatory responses, extracellular matrix (ECM) degradation, and chondrocyte apoptosis and promotes the pathogenesis of OA. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central regulator of intracellular redox homeostasis. Activation of the NRF2/ARE signaling may effectively suppress oxidative stress, attenuate ECM degradation, and inhibit chondrocyte apoptosis. Increasing evidence suggests that the NRF2/ARE signaling has become a potential target for the therapeutic management of OA. Natural compounds, such as polyphenols and terpenoids, have been explored to protect against OA cartilage degeneration by activating the NRF2/ARE pathway. Specifically, flavonoids may function as NRF2 activators and exhibit chondroprotective activity. In conclusion, natural compounds provide rich resources to explore the therapeutic management of OA by activating NRF2/ARE signaling.
Collapse
Affiliation(s)
- Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhouxin Yang
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Luying Liu
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Yong Xiao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Xiaoyong Traditional Chinese Medicine Clinic in Yudu, Ganzhou, China
| |
Collapse
|
4
|
Chen B, Ning K, Sun ML, Zhang XA. Regulation and therapy, the role of JAK2/STAT3 signaling pathway in OA: a systematic review. Cell Commun Signal 2023; 21:67. [PMID: 37013568 PMCID: PMC10071628 DOI: 10.1186/s12964-023-01094-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial chronic disease primarily characterized by the degeneration of articular cartilage. Currently, there is a lack of effective treatments for OA other than surgery. The exploration of the mechanisms of occurrence is important in exploring other new and effective treatments for OA. The current evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a vital role in cytogenesis and is involved in OA progression. The terms "JAK2", "STAT3", and "Osteoarthritis"were used in a comprehensive literature search in PubMed to further investigate the relationship between the JAK2/STAT3 signaling pathway and OA. This review focuses on the role and mechanism of JAK2/STAT3 signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation. In addition, this review summarizes recent evidence of therapeutic approaches to treat OA by targeting the JAK2/STAT3 pathway to accelerate the translation of evidence into the progression of strategies for OA treatment. Video abstract.
Collapse
Affiliation(s)
- Bo Chen
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
5
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
6
|
Wang Z, Efferth T, Hua X, Zhang XA. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154347. [PMID: 35914361 DOI: 10.1016/j.phymed.2022.154347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA. PURPOSE This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA. METHODS Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint." RESULTS According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1β, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/β-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis. CONCLUSION The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xin Hua
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Xin-An Zhang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China.
| |
Collapse
|
7
|
Yang S, Sun M, Zhang X. Protective Effect of Resveratrol on Knee Osteoarthritis and its Molecular Mechanisms: A Recent Review in Preclinical and Clinical Trials. Front Pharmacol 2022; 13:921003. [PMID: 35959426 PMCID: PMC9357872 DOI: 10.3389/fphar.2022.921003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is one of the progressing chronic joint associated with by many complex factors such as age, obesity, and trauma. Knee osteoarthritis (KOA) is the most common type of OA. KOA is characterized by articular cartilage destruction and degeneration, synovial inflammation, and abnormal subchondral bone changes. To date, no practical clinical approach has been able to modify the pathological progression of KOA. Drug therapy is limited to pain control and may lead to serious side effects when taken for a long time. Therefore, searching for safer and more reliable treatments has become necessary. Interestingly, more and more research has focused on natural products, and monomeric compounds derived from natural products have received much attention as drug candidates for KOA treatment. Resveratrol (RES), a natural phenolic compound, has various pharmacological and biological activities, including anti-cancer, anti-apoptotic, and anti-decay. Recently, studies on the effects of RES on maintaining the normal homeostasis of chondrocytes in KOA have received increasing attention, which seems to be attributed to the multi-targeted effects of RES on chondrocyte function. This review summarizes preclinical trials, clinical trials, and emerging tissue engineering studies of RES for KOA and discusses the specific mechanisms by which RES alleviates KOA. A better understanding of the pharmacological role of RES in KOA could provide clinical implications for intervention in the development of KOA.
Collapse
Affiliation(s)
| | - Mingli Sun
- *Correspondence: Mingli Sun, ; Xinan Zhang,
| | | |
Collapse
|
8
|
Liu Y, Li Y, Liang J, Sun Z, Wu Q, Liu Y, Sun C. Leptin: an entry point for the treatment of peripheral tissue fibrosis and related diseases. Int Immunopharmacol 2022; 106:108608. [PMID: 35180626 DOI: 10.1016/j.intimp.2022.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Leptin is a small peptide mainly secreted by adipocyte, which acts on the central nervous system of the hypothalamus to regulate the body's energy balance by inhibiting food intake, it also can directly act on specific cells through leptin receptors (for example, ObRa, which exists in the blood-brain barrier or kidneys), thereby affect cell metabolism. Excessive deposition of extracellular matrix (ECM) causes damage to normal tissues or destruction of organ structure, which will eventually lead to tissue or organ fibrosis. The sustainable development of fibrosis can lead to structural damage and functional decline of organs, and even exhaustion, which seriously threatens human health and life. In recent years, studies have found that leptin directly alleviates the fibrosis process of various tissues and organs in mammals. Therefore, we speculate that leptin may become a significant treatment for fibrosis of various tissues and organs in the future. So, the main purpose of this review is to explore the specific mechanism of leptin in the process of fibrosis in multiple tissues and organs, and to provide a theoretical basis for the treatment of various tissues and organs fibrosis and related diseases caused by it, which is of great significance in the future.
Collapse
Affiliation(s)
- Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhuwen Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Medical College, Qinghai University, Xining, 810000, China.
| | - Yongnian Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Medical College, Qinghai University, Xining, 810000, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
TNF-α Antagonizes the Effect of Leptin on Insulin Secretion through FOXO1-Dependent Transcriptional Suppression of LepRb in INS-1 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9142798. [PMID: 35198097 PMCID: PMC8860543 DOI: 10.1155/2022/9142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Proinflammatory cytokines play a causal role in the development of hyperinsulinemia and T2MD. FOXO1, a transcription factor which is known to enhance proinflammation, was recently shown to be involved in obesity-induced β cell dysfunction. However, molecular mechanisms for the association remained elusive. In this study, we first found that both leptin (10 nM) and TNF-α (20 ng/ml) significantly inhibited glucose-stimulated insulin secretion (GSIS) of INS-1E cells. When in combination, the GSIS function of INS-1E cells was significantly increased compared with that of the leptin alone treatment, indicating that TNF-α attenuated the inhibiting effect of leptin on GSIS of INS-1E cells. Similarly, we found that TNF-α has the same inhibitory effect on leptin in regulating insulin synthesis and secretion, and the survival and apoptosis of insulin cells. Further studies showed that TNF-α blocks leptin pathway by reducing the expression of leptin receptor (LepRb, also called OBRb) and inhibiting the activation of STAT3, a key molecule involved in the leptin signaling pathway in INS-1E cells. Besides, the downregulated expression of phosphorylated FOXO1 was found to be involved in the possible mechanism of TNF-α. Overexpression of constitutively active FOXO1 markedly aggravated the LepRb reduction by TNF-α treatment of INS-1E cells, and the endogenous FOXO1 knockdown abolished the effect of TNF-α on INS-1E cells. Furthermore, we have proved that FOXO1 could directly bind to the promoter of LepRb as a negative transcription regulator. Taken together, the results of this study reveal that TNF-α-induced LepRb downregulated in pancreatic β cells and demonstrate that transcriptional reduction of FOXO1 might be the primary mechanism underlying TNF-α promoting INS-1E leptin resistance and β cell dysfunction. Conclusions. Our current studies based on INS-1E cells in vitro indicate that the inflammatory factor TNF-α plays an important role in the development of INS-1E leptin resistance and glucose metabolism disorders, probably through FOXO1-induced transcription reduction of LepRb promoter in pancreatic β cells, and FOXO1 may be a novel target for treating β cell dysfunction in obesity-induced hyperinsulinemia and T2DM.
Collapse
|
10
|
El Bakary NM, Abdel-Rafei MK, Maarouf RE, Mansour SZ, Thabet NM. Trans-resveratrol alleviates hepatic and renal injury in γ-irradiated rats. Hum Exp Toxicol 2022; 41:9603271221142817. [DOI: 10.1177/09603271221142817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background Although ionizing radiation (IR) has been of immense value to human life due to its involvement in several fields, it doesn’t eliminate that exposure to IR results in an array of biological consequences, including oxidative stress, inflammation, and death. Thus, this study aimed to explore the curative effect of trans-Resveratrol (t-Res) on hepatic and renal injury in a rat model exposed to single and fractionated doses of γ-rays. Methods Rats exposed to a single dose of IR (6 Gy, as an acute effect) or a fractionated dose of IR (2 Gy/time/3 days, day after day; to imitate a chronic impact) were treated with t-Res. Then, the radio-protective effect of t-Res was investigated via biochemical and histological estimations in the liver and kidney of rats in the different groups. Results The data displayed a significant amelioration in biochemical and histological indices in the liver and kidney of rats exposed to IR doses and treated with t-Res. Particularly, t-Res reduced the oxidative stress milieu through decreasing HIF-1α, ROS, and MDA levels associated with increased CAT activity and Nrf-2 gene expression. Also, t-Res improved the inflammatory status via a decrease in TNF-α, NF-κB, SOCS-3, and HSP-70 genes expression linked with elevations in SIRT-1 and P53 genes expression. Conclusion It could be concluded that t-Res had hepatoprotective and renoprotective effects against the deleterious consequences of γ-rays exposure due to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Nermeen M El Bakary
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rokaya E Maarouf
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
11
|
Tu R, Liu X, Dong X, Li R, Liao W, Hou J, Mao Z, Huo W, Wang C, Li Y. Janus kinase 2 (JAK2) methylation and obesity: A Mendelian randomization study. Nutr Metab Cardiovasc Dis 2021; 31:3484-3491. [PMID: 34656381 DOI: 10.1016/j.numecd.2021.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/18/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Janus kinase 2 (JAK2) play an important role in the energy metabolism. Whether there is a causal relationship between JAK2 methylation levels and obesity remains unclear. Based on the instrumental variables of 5 SNP sites, this study was aimed to explore the causal relationship between JAK2 methylation levels and obesity by Mendelian randomization analysis. METHODS AND RESULTS A total of 1021 participants (511 cases and 510 controls defined by body mass index (BMI) ≥ 28.0 kg/m2) was conducted from the Henan Rural Cohort study. SNPscan® was performed to test the SNP genotyping and MethylTarget™ was applied to detect the DNA methylation level. The logistic regression model was used to evaluate the associations between SNP or methylation of JAK2 and obesity (according to BMI). Mendelian randomization analysis was used to assess the potential causal association between JAK2 methylation and obesity. According to the logistic regression model, 1 CpG sit in the promotor was related to an increased risk of obesity (P < 0.05). 10 CpG sites in the exon were associated with decreased risk of obesity (P < 0.05). Mendelian randomization analysis showed a causal association between the methylated level of JAK2 and obesity, based on the instrumental variables of 5 SNPs (P < 0.05). CONCLUSIONS This study supported that the methylation degree of JAK2 has a complex relationship with obesity, which might be related to the region of methylation. A causal relationship exists between the methylated level of JAK2 and obesity.
Collapse
Affiliation(s)
- Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuqian Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
12
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
13
|
Leptin Induced TLR4 Expression via the JAK2-STAT3 Pathway in Obesity-Related Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7385160. [PMID: 34457118 PMCID: PMC8387187 DOI: 10.1155/2021/7385160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 02/03/2023]
Abstract
Obesity is considered as a risk factor of osteoarthritis (OA), but the precise relationship is still poorly understood. Leptin, one of the most relevant factors secreted by adipose tissues, plays an important role in the pathogenesis of OA. Our aim was to investigate the regulation and molecular mechanism of the leptin signaling pathway in obesity-related OA. SD rats were fed with a high-fat diet (HFD) for 5, 15, and 27 weeks. The levels of leptin in serum increased from W5, while in the synovial fluid increased from W15. The histological evaluation showed that the pathological changes of OA occurred at 27 weeks rather than 5 or 15 weeks. We also found that leptin induced CD14/TLR4 activation by the JAK2-STAT3 signaling pathway to promote OA. Moreover, silencing SOCS3 enhanced leptin-induced JAK2-STAT3-CD14/TLR4 activation in rat primary chondrocytes. Our findings indicated that leptin may be one of the initiating factors of obesity-related OA. TLR4 is at least partially regulated by leptin through the JAK2-STAT3-CD14 pathway. Meanwhile, SOCS3 acting as a negative feedback inhibitor of leptin signaling presented a potential therapeutic prospect for obesity-related OA. Our study provided new evidence suggesting the key role of leptin in mediating obesity-related OA process and its underlying mechanisms.
Collapse
|
14
|
Yao J, Liu X, Sun Y, Dong X, Liu L, Gu H. Curcumin-Alleviated Osteoarthritic Progression in Rats Fed a High-Fat Diet by Inhibiting Apoptosis and Activating Autophagy via Modulation of MicroRNA-34a. J Inflamm Res 2021; 14:2317-2331. [PMID: 34103964 PMCID: PMC8179815 DOI: 10.2147/jir.s312139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The mechanism underlying curcumin’s protective effect on osteoarthritis (OA) has not been clarified. This study aimed to determine whether curcumin exerts a chondroprotective effect by inhibiting apoptosis via upregulation of E2F1/PITX1 and activation of autophagy via the Akt/mTOR pathway by targeting microRNA-34a (miR-34a). Methods Male Sprague–Dawley rats were fed a normal diet (ND) or high-fat diet (HFD) for 28 weeks. Five rats from each diet group were selected randomly for histological analysis of OA characteristics. Rats fed a HFD were given a single intra-stifle joint injection of the miR-34a mimic agomir-34a or negative control agomir (NC), followed by weekly low-dose (200 μg/kg body weight) or high-dose (400 μg/kg body weight) curcumin intra-joint injections from weeks 29 to 32. The rats’ stifle joints were submitted to histological analysis and to an apoptotic assay. Expression of miR-34a was detected using a real-time RT-PCR. E2F1 and PITX1 protein levels were determined by Western blot analysis, and the expressions of Beclin1, LC3B, p62, phosphorylated (p)-Akt, and p-mTOR were measured using immunofluorescence analysis. Results We found that rats fed a HFD had OA-like lesions in their articular cartilage and had increased apoptosis of chondrocytes and decreased autophagy compared to rats fed a ND. Curcumin treatment alleviated OA changes, inhibited apoptosis, and upregulated autophagy. Agomir-34a treatment reduced E2F1, PITX1, Beclin1, and LC3B expression and increased p62, p-Akt, and p-mTOR expression in HFD-fed rats given low- or high-dose curcumin. Greater numbers of apoptotic cells, lesser expression of p62, p-Akt, and p-mTOR, and greater expression of E2F1, PITX1, and LC3B were observed in the agomir-34a and high-dose curcumin-treated group than in agomir-34a and low-dose curcumin-treated group. Conclusion Curcumin’s chondroprotective effect was mediated by its suppression of miR-34a, apparently by reducing apoptosis, via upregulation of E2F1/PITX1, and by augmenting autophagy, likely via the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jiayu Yao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaotong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yingxu Sun
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xin Dong
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| |
Collapse
|
15
|
Molecular and Cellular Effects of Chemical Chaperone-TUDCA on ER-Stressed NHAC-kn Human Articular Chondrocytes Cultured in Normoxic and Hypoxic Conditions. Molecules 2021; 26:molecules26040878. [PMID: 33562298 PMCID: PMC7915106 DOI: 10.3390/molecules26040878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is considered one of the most common arthritic diseases characterized by progressive degradation and abnormal remodeling of articular cartilage. Potential therapeutics for OA aim at restoring proper chondrocyte functioning and inhibiting apoptosis. Previous studies have demonstrated that tauroursodeoxycholic acid (TUDCA) showed anti-inflammatory and anti-apoptotic activity in many models of various diseases, acting mainly via alleviation of endoplasmic reticulum (ER) stress. However, little is known about cytoprotective effects of TUDCA on chondrocyte cells. The present study was designed to evaluate potential effects of TUDCA on interleukin-1β (IL-1β) and tunicamycin (TNC)-stimulated NHAC-kn chondrocytes cultured in normoxic and hypoxic conditions. Our results showed that TUDCA alleviated ER stress in TNC-treated chondrocytes, as demonstrated by reduced CHOP expression; however, it was not effective enough to prevent apoptosis of NHAC-kn cells in either normoxia nor hypoxia. However, co-treatment with TUDCA alleviated inflammatory response induced by IL-1β, as shown by down regulation of Il-1β, Il-6, Il-8 and Cox2, and increased the expression of antioxidant enzyme Sod2. Additionally, TUDCA enhanced Col IIα expression in IL-1β- and TNC-stimulated cells, but only in normoxic conditions. Altogether, these results suggest that although TUDCA may display chondoprotective potential in ER-stressed cells, further analyses are still necessary to fully confirm its possible recommendation as potential candidate in OA therapy.
Collapse
|
16
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells 2020; 9:cells9051232. [PMID: 32429348 PMCID: PMC7291002 DOI: 10.3390/cells9051232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients' quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.
Collapse
|