1
|
Ma H, Gao L, Chang R, Zhai L, Zhao Y. Crosstalk between macrophages and immunometabolism and their potential roles in tissue repair and regeneration. Heliyon 2024; 10:e38018. [PMID: 39381218 PMCID: PMC11458987 DOI: 10.1016/j.heliyon.2024.e38018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Immune metabolism is a result of many specific metabolic reactions, such as glycolysis, the tricarboxylic acid (TCA) pathway, the pentose phosphate pathway (PPP), mitochondrial oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), fatty acid biosynthesis (FAs) and amino acid pathways, which promote cell proliferation and maintenance with structural and pathological energy to regulate cellular signaling. The metabolism of macrophages produces many metabolic intermediates that play important regulatory roles in tissue repair and regeneration. The metabolic activity of proinflammatory macrophages (M1) mainly depends on glycolysis and the TCA cycle system, but anti-inflammatory macrophages (M2) have intact functions of the TCA cycle, which enhances FAO and is dependent on OXPHOS. However, the metabolic mechanisms of macrophages in tissue repair and regeneration have not been well investigated. Thus, we review how three main metabolic mechanisms of macrophages, glucose metabolism, lipid metabolism, and amino acid metabolism, regulate tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lihong Zhai
- Institute of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
2
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
3
|
Atochina-Vasserman E, Meshanni J, Stevenson E, Zhang D, Sun R, Ona N, Reagan E, Abramova E, Guo CJ, Wilkinson M, Baboo I, Yang Y, Pan L, Maurya D, Percec V, Li Y, Gow A, Weissman D. Targeted delivery of TGF-β mRNA to lung parenchyma using one-component ionizable amphiphilic Janus Dendrimers. RESEARCH SQUARE 2024:rs.3.rs-4656663. [PMID: 39041040 PMCID: PMC11261981 DOI: 10.21203/rs.3.rs-4656663/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Current clinical strategies for the delivery of pulmonary therapeutics to the lung are primarily targeted to the upper portions of the airways. However, targeted delivery to the lower regions of the lung is necessary for the treatment of parenchymal lung injury and disease. Here, we have developed an mRNA therapeutic for the lower lung using one-component Ionizable Amphiphilic Janus Dendrimers (IAJDs) as a delivery vehicle. We deliver an anti-inflammatory cytokine mRNA, transforming growth factor-beta (TGF-β), to produce transient protein expression in the lower regions of the lung. This study highlights IAJD's potential for precise, effective, and safe delivery of TGF-β mRNA to the lung. This delivery system offers a promising approach for targeting therapeutics to the specific tissues, a strategy necessary to fill the current clinical gap in treating parenchymal lung injury and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Nathan Ona
- University of Pennsylvania Perelman School of Medicine
| | - Erin Reagan
- University of Pennsylvania Perelman School of Medicine
| | | | | | | | - Ishana Baboo
- University of Pennsylvania Perelman School of Medicine
| | - Yuzi Yang
- East China University of Science and Technology
| | - Liuyan Pan
- East China University of Science and Technology
| | - Devendra Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania
| | | | | | | | | |
Collapse
|
4
|
Zhan P, Lu X, Li Z, Wang WJ, Peng K, Liang NN, Wang Y, Li J, Fu L, Zhao H, Xu DX, Tan ZX. Mitoquinone alleviates bleomycin-induced acute lung injury via inhibiting mitochondrial ROS-dependent pulmonary epithelial ferroptosis. Int Immunopharmacol 2022; 113:109359. [DOI: 10.1016/j.intimp.2022.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
5
|
Stevenson ER, Wilkinson ML, Abramova E, Guo C, Gow AJ. Intratracheal Administration of Acyl Coenzyme A Acyltransferase-1 Inhibitor K-604 Reduces Pulmonary Inflammation Following Bleomycin-Induced Lung Injury. J Pharmacol Exp Ther 2022; 382:356-365. [PMID: 35970601 PMCID: PMC9426763 DOI: 10.1124/jpet.122.001284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Acute lung injury (ALI) is characterized by epithelial damage, barrier dysfunction, and pulmonary edema. Macrophage activation and failure to resolve play a role in ALI; thus, macrophage phenotype modulation is a rational target for therapeutic intervention. Large, lipid-laden macrophages have been observed in various injury models, including intratracheal bleomycin (ITB), suggesting that lipid storage may play a role in ALI severity. The endoplasmic reticulum-associated enzyme acyl coenzyme A acyltransferase-1 (Acat-1/Soat1) is highly expressed in macrophages, where it catalyzes the esterification of cholesterol, leading to intracellular lipid accumulation. We hypothesize that inhibition of Acat-1 will reduce macrophage activation and improve outcomes of lung injury in ITB. K-604, a selective inhibitor of Acat-1, was used to reduce cholesterol esterification and hence lipid accumulation in response to ITB. Male and female C57BL6/J mice (n = 16-21/group) were administered control, control + K-604, ITB, or ITB + K-604 on d0, control or K-604 on d3, and were sacrificed on day 7. ITB caused significant body weight loss and an increase in cholesterol accumulation in bronchoalveolar lavage cells. These changes were mitigated by Acat-1 inhibition. K-604 also significantly reduced ITB-induced alveolar thickening. Surfactant composition was normalized as indicated by a significant decrease in phospholipid: SP-B ratio in ITB+K-604 compared with ITB. K-604 administration preserved mature alveolar macrophages, decreased activation in response to ITB, and decreased the percentage mature and pro-fibrotic interstitial macrophages. These results show that inhibition of Acat-1 in the lung is associated with reduced inflammatory response to ITB-mediated lung injury. SIGNIFICANCE STATEMENT: Acyl coenzyme A acyltransferase-1 (Acat-1) is critical to lipid droplet formation, and thus inhibition of Acat-1 presents as a pharmacological target. Intratracheal administration of K-604, an Acat-1 inhibitor, reduces intracellular cholesterol ester accumulation in lung macrophages, attenuates inflammation and macrophage activation, and normalizes mediators of surface-active function after intratracheal bleomycin administration in a rodent model. The data presented within suggest that inhibition of Acat-1 in the lung improves acute lung injury outcomes.
Collapse
Affiliation(s)
- Emily R Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Melissa L Wilkinson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Andrew J Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
6
|
Nitro Fatty Acids (NO 2-FAs): An Emerging Class of Bioactive Fatty Acids. Molecules 2021; 26:molecules26247536. [PMID: 34946618 PMCID: PMC8708353 DOI: 10.3390/molecules26247536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Unsaturated nitro fatty acids (NO2-FAs) constitute a category of molecules that may be formed endogenously by the reaction of unsaturated fatty acids (UFAs) with secondary species of nitrogen monoxide and nitrite anions. The warhead of NO2-FAs is a nitroalkene moiety, which is a potent Michael acceptor and can undergo nucleophilic attack from thiol groups of biologically relevant proteins, showcasing the value of these molecules regarding their therapeutic potential against many diseases. In general, NO2-FAs inhibit nuclear factorκ-B (NF-κB), and simultaneously they activate nuclear factor (erythroid derived)-like 2 (Nrf2), which activates an antioxidant signaling pathway. NO2-FAs can be synthesized not only endogenously in the organism, but in a synthetic laboratory as well, either by a step-by-step synthesis or by a direct nitration of UFAs. The step-by-step synthesis requires specific precursor compounds and is in position to afford the desired NO2-FAs with a certain position of the nitro group. On the contrary, the direct nitration of UFAs is not a selective methodology; thus, it affords a mixture of all possible nitro isomers.
Collapse
|
7
|
Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biol 2021; 50:102226. [PMID: 35150970 PMCID: PMC8844680 DOI: 10.1016/j.redox.2021.102226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 μM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs. Small molecule electrophiles, pleiotropic anti-inflammatory and anti-fibrotic drugs. NO2-OA inhibits activated myofibroblasts, induces dedifferentiation to fibroblasts. NO2-OA activates extracellular matrix degradation by macrophages. NO2-OA promotes proliferation of alveolar type 1 and 2 epithelial cells. NO2-OA reverses established lung fibrosis in murine lung slices.
Collapse
|
8
|
Wilkinson ML, Gow AJ. Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation. Innate Immun 2021; 27:353-364. [PMID: 34375151 PMCID: PMC8419298 DOI: 10.1177/17534259211015330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Fatty acid nitroalkenes are reversibly-reactive electrophiles that are endogenously detectable at nM concentrations and display anti-inflammatory, pro-survival actions. These actions are elicited through the alteration of signal transduction proteins via a Michael addition on nucleophilic cysteine thiols. Nitrated fatty acids (NO2-FAs), like 9- or 10-nitro-octadec-9-enolic acid, will act on signal transduction proteins directly or on key regulatory proteins to cause an up-regulation or down-regulation of the protein's expression, yielding an anti-inflammatory response. These responses have been characterized in many organ systems, such as the cardiovascular system, with the pulmonary system less well defined. Macrophages are one of the most abundant immune cells in the lung and are essential in maintaining lung homeostasis. Despite this, macrophages can play a role in both acute and chronic lung injury due to up-regulation of anti-inflammatory signal transduction pathways and down-regulation of pro-inflammatory pathways. Through their propensity to alter signal transduction pathways, NO2-FAs may be able to reduce macrophage activation during pulmonary injury. This review will focus on the implications of NO2-FAs on macrophage activation in the lung and the signal transduction pathways that may be altered, leading to reduced pulmonary injury.
Collapse
Affiliation(s)
- Melissa L Wilkinson
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| |
Collapse
|