1
|
Borba JV, Resmim CM, Gonçalves FL, Silva RM, Pretzel CW, Moraes HS, Sauter MD, Rosemberg DB. Anxiety modulators elicit different behavioral outcomes in adult zebrafish: Emphasis on homebase-related parameters and spatio-temporal exploration. Pharmacol Biochem Behav 2025; 246:173914. [PMID: 39581386 DOI: 10.1016/j.pbb.2024.173914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Anxiety is an emotion that represents a crucial anticipatory reaction of aversive stimuli, with clinical relevance in cases of disproportional and severe occurrences. Although distinct animal models have contributed to elucidate anxiety-related mechanisms, the influence of anxiogenic and anxiolytic modulations on both locomotion and exploration-related parameters in the open field test (OFT) is not fully elucidated. Here, we aimed to assess the influence of anxiogenic and anxiolytic manipulations on the exploratory dynamics of adult zebrafish (Danio rerio) focusing on homebase-related behaviors. As anxiogenic manipulations, we used the morphine (1.5 mg/L) withdrawal protocol (MOR); 3.5 mL/L conspecific alarm substance (CAS) for 5 min; and 100 mg/L caffeine (CAF) for 15 min. To evoke anxiolytic-like responses, animals were acutely exposed to 0.5 % (v/v) ethanol (ETOH) for 1 h; 100 μg/L fluoxetine (FLU) for 15 min; and 0.006 mg/L clonazepam (CZP) for 10 min. Then, fish were individually exposed to the 30-min OFT trial, with posterior analysis of behavioral activity. While MOR induced hyperlocomotion and increased periphery occupancy, CAS and CAF groups showed higher immobility and increased latency to homebase formation, respectively. Conversely, ETOH and FLU reduced homebase occupancy, supporting anxiolytic-like behaviors, while CZP did not change zebrafish behavior in the OFT. Cluster analysis was used to reconfirm the remarkable similarities and discrepancies between treatments, thus contributing to characterize the distinct responses measured. Overall, our novel data show the relevance of homebase-related analysis as a sensitive tool to reflect affective-like states in zebrafish, providing innovative approaches to unravel the spatio-temporal dynamics of anxiety-like behaviors in vertebrates.
Collapse
Affiliation(s)
- João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Hevelyn S Moraes
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Milena D Sauter
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
2
|
Wilson LC, Lyttle M, Kanan A, Le A. Social stimuli impact behavioral responses to caffeine in the zebrafish. Sci Rep 2024; 14:29645. [PMID: 39609562 PMCID: PMC11605092 DOI: 10.1038/s41598-024-80629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Caffeine is a widely consumed stimulant with dose-dependent effects on behavior. Across species, lower doses tend be anxiolytic and increase activity, while higher doses tend to be anxiogenic and decrease activity. Given the importance of the social environment on stress responses, we investigated how social stimuli modulate behavioral responses to caffeine. We exposed adult zebrafish to low (25 mg/L) or moderate (60 mg/L) caffeine either in isolation or within view of a stimulus group. Zebrafish are highly social, and social stimuli are known to buffer responses to environmental stressors. As predicted, we found that isolated fish were more sensitive to caffeine's anxiogenic effects and less sensitive to caffeine's stimulant effects. Among socially-exposed individuals, caffeine decreased social approach. Our data illustrate the importance of social context. Understanding how social cues shape pharmacological responses is important for understanding the external validity of studies that investigate drug effects in social species.
Collapse
Affiliation(s)
- Leah C Wilson
- Neuroscience Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Megan Lyttle
- Neuroscience Department, Muhlenberg College, Allentown, PA, 18104, USA
| | - Aya Kanan
- Neuroscience Department, Muhlenberg College, Allentown, PA, 18104, USA
| | - Alissa Le
- Neuroscience Department, Muhlenberg College, Allentown, PA, 18104, USA
| |
Collapse
|
3
|
Zhai W, Fu Y, Liu L, Huang X, Wang S. Metabolomics Reveal Key Metabolic Pathway Responses to Anxiety State Regulated by Serotonin in Portunus trituberculatus. Metabolites 2024; 14:568. [PMID: 39452949 PMCID: PMC11509519 DOI: 10.3390/metabo14100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Anxiety refers to the pathological persistence and intensification of emotional responses to danger, affecting health from psychological and physical aspects. Serotonin is an important neurotransmitter involved in the onset of anxiety. METHODS AND RESULTS To explore the biological changes in the formation of anxiety in crustaceans under the regulation of serotonin, we applied the open field-like test method for assessing anxiety states of larval Portunus trituberculatus, a highly aggressive crustacean species with a more simple neural structure compared with rodents and mammals. Compared with the control group, serotonin treatment resulted in a significant decrease in the time spent by the larvae in the central zone, suggesting anxiety-like behavior. Clonazepam treatment reversed this result and provided further evidence that the behavior of larval P. trituberculatus displayed anxiety. Moreover, a non-targeted metabolomic analysis found a significant alteration in the metabolites involved in tryptophan metabolism pathways associated with anxiety, including L-kynurenine, N-acetyl serotonin, and serotonin. These metabolites are involved in the serotonin pathway, the kynurenine pathway, and other pathways that affect anxiety through tryptophan metabolism. There were no significant differences in tryptophan metabolism levels between the control and clonazepam treatment groups. CONCLUSIONS Our results demonstrate the possible existence of anxiety-like behavior in the larvae of P. trituberculatus from two perspectives. Being a species with a simpler neural structure than that of mammals, the larvae of P. trituberculatus offer a convenient model for studying the mechanisms of anxiety in crustaceans.
Collapse
Affiliation(s)
- Wei Zhai
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo 315832, China;
| | - Lei Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Xinlian Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Sixiang Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| |
Collapse
|
4
|
Diakos E, Chevalier C, Shahjahan M, Hardy A, Lambert S, Kestemont P, Fontaine P, Pasquet A, Lecocq T. Early impact of domestication on aggressiveness, activity, and stress behaviors in zebrafish (Danio rerio) using mirror test and automated videotracking. Sci Rep 2024; 14:21036. [PMID: 39251766 PMCID: PMC11385545 DOI: 10.1038/s41598-024-71451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Fish domestication progresses through five levels: from the initial acclimatization to captivity (Level 1), to the life cycle completion in captivity (Level 4), and even to the implementation of selective breeding programs (Level 5). Domestication leads to phenotypic changes over generations, sometimes from the very first generation. Behavioral traits are among the first to change. However, in fish, potential behavioral changes during early domestication have been little studied. Therefore, we studied potential behavioral changes among early and advanced levels of domestication in a model species, the zebrafish (Danio rerio), using a mirror test experiment, commonly used to assess traits involved in activity, aggressiveness, and stress in this species. We compared these traits between wild zebrafish in captivity (F0; Level 1), the first generation of their captive-born offspring (F1; Level 4), and three laboratory strains (AB, TU, and WIK; Level 5). Each fish was individually filmed and tracked using an automated procedure for 5 min. Nine behavioral traits and one activity-related trait were characterized for each individual based on the movements and positioning of the fish. We applied a principal component analysis (PCA) and tested the significance of potential differences between groups using an analysis of similarities (ANOSIM). We applied an indicator value analysis (IndVal) to determine which traits were most expressed by each group. We detected differences between groups and across domestication levels. More specifically, we highlighted differentiations between different levels of domestication (e.g. between F1, AB, TU, and WIK) as early as the beginning of the domestication process (i.e. F0 vs. F1), but also within the same level of domestication (i.e. AB vs. TU). Based on PCA and IndVal, (i) F0 and F1 tended to show stronger expression of stress-related traits than the other groups, (ii) F0 was more active than others, and (iii) TU was more aggressive than AB. Our results confirmed that domestication can change fish behavior, even in the first generation born in captivity, although these modifications remain limited. In contrast, we did not observe any general trends correlated with domestication levels, given that AB and TU diverged in their aggressiveness levels, and WIK differed only from F1. This result needs to be generalized to other species but also considered for domestication for aquaculture. If future studies confirm that the changes observed at the beginning of the domestication process remain limited and that there is no consistent evolutionary trend across generations in fish, this would highlight the crucial importance of selecting the right species from the outset of domestication. It would also emphasize the need to design selective breeding programs that shape fish stocks with the most desirable characteristics. To our knowledge, this study is one of the few to examine the behavior of wild zebrafish alongside laboratory strains, offering a unique insight into the early stages of domestication.
Collapse
Affiliation(s)
- E Diakos
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - C Chevalier
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - A Hardy
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - S Lambert
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - P Kestemont
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| | - P Fontaine
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - A Pasquet
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - T Lecocq
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France.
| |
Collapse
|
5
|
Bertoncello KT, Rodrigues G, Bonan CD. Berberine and hesperidin prevent the memory consolidation impairment induced by pentylenetetrazole in zebrafish. Behav Brain Res 2024; 466:114981. [PMID: 38580198 DOI: 10.1016/j.bbr.2024.114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
This study verified the effects of the natural compounds berberine and hesperidin on seizure development and cognitive impairment triggered by pentylenetetrazole (PTZ) in zebrafish. Adult animals were submitted to a training session in the inhibitory avoidance test and, after 10 minutes, they received an intraperitoneal injection of 25, 50, or 100 mg/kg berberine or 100 or 200 mg/kg hesperidin. After 30 minutes, the animals were exposed to 7.5 mM PTZ for 10 minutes. Animals were submitted to the test session 24 h after the training session to verify their cognitive performance. Zebrafish larvae were exposed to 100 µM or 500 µM berberine or 10 µM or 50 µM hesperidin for 30 minutes. After, larvae were exposed to PTZ and had the seizure development evaluated by latency to reach the seizure stages I, II, and III. Adult zebrafish pretreated with 50 mg/kg berberine showed a longer latency to reach stage III. Zebrafish larvae pretreated with 500 µM berberine showed a longer latency to reach stages II and III. Hesperidin did not show any effect on seizure development both in larvae and adult zebrafish. Berberine and hesperidin pretreatments prevented the memory consolidation impairment provoked by PTZ-induced seizures. There were no changes in the distance traveled in adult zebrafish pretreated with berberine or hesperidin. In larval stage, berberine caused no changes in the distance traveled; however, hesperidin increased the locomotion. Our results reinforce the need for investigating new therapeutic alternatives for epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rodrigues
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
7
|
Li N, Li H, Xu C, Zhou Z, Rao T, Ji R, Lin S, Du J, Xu S, Lyu S, Li F, Tang J. Synergistic enhanced activation of peroxymonosulfate by heterojunction Co 3O 4-CuO@CN for removal of oxytetracycline: Performance, mechanism, and stability. ENVIRONMENTAL RESEARCH 2023; 234:116517. [PMID: 37414388 DOI: 10.1016/j.envres.2023.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Metal-organic frameworks (MOFs) as precursors for catalysts has drawn growing attentions. In this study, heterojunction Co3O4-CuO doped carbon materials (noted as Co3O4-CuO@CN) were prepared by direct carbonization of CuCo-MOF in air. It was found that the Co3O4-CuO@CN-2 exhibited excellent catalytic activity with the highest Oxytetracycline (OTC) degradation rate of 0.0902 min-1 at 50 mg/L of Co3O4-CuO@CN-2 dosage, 2.0 mM of PMS and 20 mg/L of OTC, which was 4.25 and 4.96 times that of CuO@CN and Co3O4@CN, respectively. Furthermore, Co3O4-CuO@CN-2 was efficient over a wide pH range (pH 1.9-8.4), and possessed good stability and reusability without OTC degradation decrease after five consecutive uses at pH 7.0. In a comprehensive analysis, the rapid regeneration of Cu(II) and Co(II) is responsible for their excellent catalytic performance, and the p-p heterojunction structure formed between Co3O4 and CuO acts as an intermediary of electron transfer to accelerate PMS decomposition. Moreover, it was interesting to find that Cu rather than Co species played a vital role in the PMS activation. The quenching experiments and electron paramagnetic resonance demonstrated that .OH, SO4•-, and 1O2 were the reactive species responsible for oxidation of OTC and the non-radical pathway triggered by 1O2 was dominant.
Collapse
Affiliation(s)
- Ning Li
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Huanxuan Li
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Ningbo Wanglong Tech co., ltd, Ningbo, 315400, PR China.
| | - Chen Xu
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Zhong Zhou
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Tao Rao
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Ran Ji
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Sihang Lin
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Jia Du
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Shaodan Xu
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Shuguang Lyu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Feng Li
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Junhong Tang
- College Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China.
| |
Collapse
|
8
|
Hyun J, Kang SI, Lee SW, Amarasiri RPGSK, Nagahawatta DP, Roh Y, Wang L, Ryu B, Jeon YJ. Exploring the Potential of Olive Flounder Processing By-Products as a Source of Functional Ingredients for Muscle Enhancement. Antioxidants (Basel) 2023; 12:1755. [PMID: 37760060 PMCID: PMC10526038 DOI: 10.3390/antiox12091755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Olive flounder (OF) is a widely aqua-cultivated and recognized socioeconomic resource in Korea. However, more than 50% of by-products are generated when processing one OF, and there is no proper way to utilize them. With rising awareness and interest in eco-friendly bio-materialization recycling, this research investigates the potential of enzymatic hydrolysis of OF by-products (OFB) to produce functional ingredients. Various enzymatic hydrolysates of OFB (OFBEs) were generated using 11 commercial enzymes. Among them, Prozyme 2000P-assisted OFBE (OFBP) exhibited the highest protein content and yield, as well as low molecularization. The muscle regenerative potential of OFBEs was evaluated using C2C12 myoblasts, revealing that OFBP positively regulated myoblast differentiation. In an in vitro Dex-induced myotube atrophy model, OFBP protected against muscle atrophy and restored myotube differentiation and Dex-induced reactive oxygen species (ROS) production. Furthermore, zebrafish treated with OFBEs showed improved locomotor activity and body weight, with OFBP exhibiting outstanding restoration in the Dex-induced muscle atrophy zebrafish in vivo model. In conclusion, OFBEs, particularly OFBP, produce hydrolysates with enhanced physiological usability and muscle regenerative potential. Further research on its industrial application and mechanistic insights is needed to realize its potential as a high-quality protein food ingredient derived from OF processing by-products.
Collapse
Affiliation(s)
- Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (J.H.)
| | - Sang-In Kang
- Seafood Research Center, Silla University, Busan 49277, Republic of Korea;
| | - Sang-Woon Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (J.H.)
| | - R. P. G. S. K. Amarasiri
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (J.H.)
| | - D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (J.H.)
| | - Yujin Roh
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (J.H.)
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bomi Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (J.H.)
| |
Collapse
|
9
|
Vasconcelos RO, Gordillo-Martinez F, Ramos A, Lau IH. Effects of Noise Exposure and Ageing on Anxiety and Social Behaviour in Zebrafish. BIOLOGY 2023; 12:1165. [PMID: 37759565 PMCID: PMC10525370 DOI: 10.3390/biology12091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023]
Abstract
Noise pollution is creating a wide range of health problems related to physiological stress and anxiety that impact the social life of vertebrates, including humans. Ageing is known to be associated with changes in susceptibility to acoustic stimuli; however, the interaction between noise effects and senescence is not well understood. We tested the effects of 24 h continuous white noise (150 dB re 1 Pa) on both young adults and old zebrafish in terms of anxiety (novel tank diving test), social interactions (with mirror/conspecific attraction), and shoaling behaviour. Both noise and ageing induced higher anxiety responses in a novel environment. Since the old zebrafish showed longer bottom dwelling, acoustic treatment induced the opposite pattern with an initial increase in vertical exploration in the aged individuals. Both noise- and age-related anxiety responses were lowered when individuals were tested within a group. Regarding social interactions, both noise and ageing seemed to cause an increase in their proximity to a mirror. Although the results were not statistically significant, noise exposure seemed to further enhance conspecific attraction. Moreover, the interindividual distance within a shoal decreased with noise treatment in the aged individuals. This study is a first attempt to investigate the effects of both noise and ageing on zebrafish behaviour, suggesting the age-dependent physiological coping mechanisms associated with environmental stress.
Collapse
Affiliation(s)
- Raquel O. Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao, China
- MARE–Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- EPCV–Department of Life Sciences, Lusófona University, 1749-024 Lisbon, Portugal
| | | | - Andreia Ramos
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| |
Collapse
|
10
|
Yu K, Qiu Y, Shi Y, Yu X, Zhou B, Sun T, Wu Y, Xu S, Chen L, Shu Q, Huang L. Early environmental exposure to oxytetracycline in Danio rerio may contribute to neurobehavioral abnormalities in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163482. [PMID: 37062325 DOI: 10.1016/j.scitotenv.2023.163482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
The common antibiotic oxytetracycline (OTC) is nowadays commonly found in natural aquatic environments. However, the underlying mechanisms of low-dose OTC exposure and its neurotoxic effects on aquatic animals remain unknown. In this study, we exposed zebrafish larvae to environmental concentrations of OTC in early life and performed neurobehavioral, 16S rRNA gene sequencing, and transcriptomic analyses. OTC exposure resulted in hyperactivity of larvae and a significant reduction in the number of neurons in the midbrain. The expression levels of 15 genes related to neural function changed. Additionally, the composition of 65 genera of the gut microbiota of larvae was altered, which may be one of the reasons for the abnormal neural development. We further studied the long-term outcomes among adult fish long after cessation of OTC exposure. OTC treatment caused adult fish to be depressive and impulsive, symbolizing bipolar disorder. Adult fish exposed to OTC had significantly fewer neurons and their gut bacteria composition did not recover 104 days after terminating OTC exposure. Finally, we analyzed the correlation between the gut microbiota of larvae, genes related to neural function, and metabolites of adult fish brain tissue. The results showed that the abundance of several members of the biome in larvae was related to the transcription levels of genes related to neural function, which were related to the metabolic levels in the adult brain. In conclusion, our study showed that early-life exposure to environmental concentrations of OTC can lead to persistent neurobehavioral abnormalities until adulthood through dysbiosis in the gut microbiota.
Collapse
Affiliation(s)
- Kan Yu
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yushu Qiu
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yi Shi
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Baosong Zhou
- School of Data Science, Fudan University, Shanghai 200433, China.
| | - Tong Sun
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yuhang Wu
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Shanshan Xu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Lei Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Lisu Huang
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
11
|
Araújo AM, Ringeard H, Nunes B. Do microplastics influence the long-term effects of ciprofloxacin on the polychaete Hediste diversicolor? An integrated behavioral and biochemical approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104088. [PMID: 36841270 DOI: 10.1016/j.etap.2023.104088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Ciprofloxacin (CPX), the most commonly used fluoroquinolone antibiotic, and microplastics (MPs) are two classes of emerging contaminants with severe adverse impacts on aquatic organisms. Previous studies suggest that both CPX and MPs induce deleterious changes in exposed aquatic biota, but the characterization of a chronic and combined ecotoxicological response is not well known, especially in organisms from estuarine ecosystems. Thus, in this study, we investigated the behavioral and biochemical effects of environmentally relevant levels of CPX alone and in combination with polyethylene terephthalate (PET) microplastics over 28 days of exposure, using the polychaete Hediste diversicolor as a model. In addition to behavioral parameters, different biochemical endpoints were also evaluated, namely the levels of metabolic enzymes of phase I (7-ethoxy-resorufin-O-deethylase, EROD), and phase II (glutathione-S-transferase, GSTs), antioxidant defense (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), oxidative damage (lipid peroxidation, by means of levels of thiobarbituric acid reactive substances [TBARS]) and acetylcholinesterase (AChE). Chronic exposure to ciprofloxacin caused a decrease in burrowing time and a significant increase in SOD activity. In animals exposed to the combination of CPX and PET MPs, effects on behavioral traits were also observed, with higher concentrations of MPs leading to a marked delay in the animals' burrowing time. In addition, these animals showed changes in their antioxidant defenses, namely, a significant increase in SOD activity, while GPx activity was severely compromised. For none of the experimental groups, significant alterations were observed in the metabolic enzymes, TBARS or AChE. These findings provide the first insights into the responses of H. diversicolor when exposed to the combination of CPX and PET MPs, highlighting that, although the here studied conditions, there was no evidence of oxidative damage or neurotoxicity, these organisms are not risk-free in co-exposure scenarios, even at low environmental relevant concentrations.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Henri Ringeard
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics (Basel) 2023; 12:antibiotics12030440. [PMID: 36978308 PMCID: PMC10044355 DOI: 10.3390/antibiotics12030440] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Antibacterial drugs are among the most commonly used medications in the world. Tetracycline is a widely used antibiotic for human and animal therapy due to its broad-spectrum activity, high effectiveness, and reasonable cost. The indications for treatment with tetracycline include pneumonia, bone and joint infections, infectious disorders of the skin, sexually transmitted and gastrointestinal infections. However, tetracycline has become a serious threat to the environment because of its overuse by humans and veterinarians and weak ability to degrade. Tetracycline is capable of accumulating along the food chain, causing toxicity to the microbial community, encouraging the development and spread of antibiotic resistance, creating threats to drinking and irrigation water, and disrupting microbial flora in the human intestine. It is essential to address the negative impact of tetracycline on the environment, as it causes ecological imbalance. Ineffective wastewater systems are among the main reasons for the increased antibiotic concentrations in aquatic sources. It is possible to degrade tetracycline by breaking it down into small molecules with less harmful or nonhazardous effects. A range of methods for physical, chemical, and biological degradation exists. The review will discuss the negative effects of tetracycline consumption on the aquatic environment and describe available removal methods.
Collapse
|
13
|
Bertoncello KT, Bonan CD. The Effect of Adenosine Signaling on Memory Impairment Induced by Pentylenetetrazole in Zebrafish. Neurochem Res 2023; 48:1889-1899. [PMID: 36729312 DOI: 10.1007/s11064-023-03867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
Epilepsy is characterized by the manifestation of spontaneous and recurrent seizures. The high prevalence of comorbidities associated with epilepsy, such as cognitive dysfunction, affects the patients quality of life. Adenosine signaling modulation might be an effective alternative to control seizures and epilepsy-associated comorbidities. This study aimed to verify the role of adenosine modulation on the seizure development and cognitive impairment induced by pentylenetetrazole (PTZ) in zebrafish. At first, animals were submitted to a training session in the inhibitory avoidance test and, after 10 min, they received an intraperitoneal injection of valproate, adenosine A1 receptor agonist cyclopentyladenosine (CPA), adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), adenosine A2A receptor antagonist ZM 241385, adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nony1)-adenine hydrochloride (EHNA) or the nucleoside transporter inhibitor dipyridamole. Thirty min after the intraperitoneal injection, the animals were exposed to 7.5 mM PTZ for 10 min, where they were evaluated for latency to reach the seizure stages (I, II, and III). Finally, 24 h after the training session, the animals were submitted to the inhibitory avoidance test to verify their cognitive performance during the test session. Valproate, CPA, and EHNA showed antiseizure effects and prevented the memory impairment induced by PTZ exposure. DPCPX, ZM 241385, and dipyridamole pretreatments caused no changes in seizure development; however, these drugs prevented memory impairment without altering locomotion. Our results reinforce the antiseizure effects of adenosine signaling and support the idea that the involvement of adenosine in memory processes may be a target for preventive strategies against cognitive impairment associated with epilepsy.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Understanding CNS Effects of Antimicrobial Drugs Using Zebrafish Models. Vet Sci 2023; 10:vetsci10020096. [PMID: 36851400 PMCID: PMC9964482 DOI: 10.3390/vetsci10020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial drugs represent a diverse group of widely utilized antibiotic, antifungal, antiparasitic and antiviral agents. Their growing use and clinical importance necessitate our improved understanding of physiological effects of antimicrobial drugs, including their potential effects on the central nervous system (CNS), at molecular, cellular, and behavioral levels. In addition, antimicrobial drugs can alter the composition of gut microbiota, and hence affect the gut-microbiota-brain axis, further modulating brain and behavioral processes. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a powerful model system for screening various antimicrobial drugs, including probing their putative CNS effects. Here, we critically discuss recent evidence on the effects of antimicrobial drugs on brain and behavior in zebrafish, and outline future related lines of research using this aquatic model organism.
Collapse
|
15
|
Li D, Sun W, Lei H, Li X, Hou L, Wang Y, Chen H, Schlenk D, Ying GG, Mu J, Xie L. Cyclophosphamide alters the behaviors of adult Zebrafish via neurotransmitters and gut microbiota. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106246. [PMID: 35917676 DOI: 10.1016/j.aquatox.2022.106246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Cyclophosphamide, one of the earliest prescribed alkylating anticancer drugs, has been frequently detected in aquatic environments. However, its effects on fish behavior and associated mechanisms remain largely unknown. In this study, the behaviors, neurochemicals, and gut microbiota of adult zebrafish were investigated after 2 months of exposure to CP at 0.05, 0.5, 5, and 50 µg/L. Behavioral assays revealed that CP increased locomotion and anxiety, and decreased the cognition of zebrafish. The alteration of neurotransmitters and related gene expressions in the dopamine and gamma-aminobutyric acid pathways induced by CP may be responsible for the observed changes in locomotion and cognition of adult zebrafish. Meanwhile, CP increased the anxiety of adult zebrafish through the serotonin, acetylcholine, and histamine pathways in the brain. In addition, increased abundances of Fusobacteriales, Reyanellales, Staphylococcales, Rhodobacterals, and Patescibateria in the intestine at the CP-50 treatment were observed. The study has demonstrated that CP affects the locomotion, anxiety, and cognition in zebrafish, which might be linked with the dysfunction of neurochemicals in the brain. This study further suggests that the gut-brain axis might interact to modulate fish behaviors upon exposure to CP (maybe other organic pollutants). Further research is warranted to test this hypothesis.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yongzhuang Wang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Ministry of Education, Nanning 530001, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jingli Mu
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
16
|
Role of the nucleoside-metabolizing enzymes on pain responses in zebrafish larvae. Neurotoxicol Teratol 2022; 93:107109. [PMID: 35777679 DOI: 10.1016/j.ntt.2022.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Purinergic signaling is a pathway related to pain underlying mechanisms. Adenosine is a neuromodulator responsible for the regulation of multiple physiological and pathological conditions. Extensive advances have been made to understand the role of adenosine in pain regulation. Here we investigated the effects of purinergic compounds able to modulate adenosine production or catabolism on pain responses induced by Acetic Acid (AA) in zebrafish larvae. We investigated the preventive role of the ecto-5'-nucleotidase inhibitor adenosine 5'-(α,β-methylene)diphosphate (AMPCP) and adenosine deaminase inhibitor erythro-9-(2-Hydroxy-3-nonyl)-adenine (EHNA) on the AA-pain induced model. The pain responses were evaluated through exploratory and aversive behaviors in zebrafish larvae. The exploratory behavior showed a reduction in the distance covered by animals exposed to 0.0025% and 0.050% AA. The movement and acceleration were reduced when compared to control. The treatment with AMPCP or EHNA followed by AA exposure did not prevent behavioral changes induced by AA for any parameter tested. There were no changes in aversive behavior after the AA-induced pain model. After AA-induced pain, the AMP hydrolysis increased on zebrafish larvae. However, the AMPCP or EHNA exposure did not prevent changes in AMP hydrolysis induced by the AA-induced pain model in zebrafish larvae. Although AMPCP or EHNA did not show differences in the AA-induced pain model, our results revealed changes in AMP hydrolysis, suggesting the involvement of the purinergic system in zebrafish larvae pain responses.
Collapse
|
17
|
Bertoncello KT, Zanandrea R, Bonan CD. Pentylenetetrazole-induced seizures cause impairment of memory acquisition and consolidation in zebrafish (Danio rerio). Behav Brain Res 2022; 432:113974. [PMID: 35738339 DOI: 10.1016/j.bbr.2022.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Epilepsy is characterized by the occurrence seizures, and the high prevalence of epilepsy-associated comorbidities affects the quality of patients' life. We investigated the effects of pentylenetetrazole (PTZ) exposure in zebrafish cognitive performance on inhibitory avoidance test. The animals were exposed to the 7.5mM PTZ for 10minutes, in the acquisition (before training) and in the consolidation memory phases (after training). In the acquisition phase, the animals were submitted to PTZ-induced seizures and trained in periods of 1, 24, or 48hours after exposure, and 24hours after training were tested. In the consolidation phase, animals were trained and exposed to PTZ 10minutes after training and were tested 24hours later. Control groups in periods of 1, 24, or 48hours before or 10minutes after training showed a significantly increased latency to enter the dark compartment. The latencies between training and test sessions did not differ in PTZ groups of animals exposed and trained 1 and 24hours or exposed to PTZ 10minutes after training. At 48hours, animals exposed to PTZ showed an increased latency to enter the dark compartment. Animals exposed to PTZ and trained 1h after increased the traveled distance, when compared to the control group. Traveled distance did not differ in animals that were exposed to PTZ and trained 24 and 48hours, or 10minutes after training. Our findings indicate that PTZ causes a cognitive deficit in the pre-and post-training phase, allowing us to explore the influence of seizures at different memory phases.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Zhang G, Xu Y, Xia Y, Wang G, Zhao H. Transcriptomic Analysis of Hepatotoxicology of Adult Zebrafish (Danio rerio) Exposed to Environmentally Relevant Oxytetracycline. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:539-550. [PMID: 35460351 DOI: 10.1007/s00244-022-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The extensive use of the broad-spectrum antibiotics like oxytetracycline (OTC) has become a serious environmental issue globally. OTC has profound negative effects on aquatic organisms including fishes. In this study, RNA-Seq analysis was employed to examine the possible molecular mechanism of hepatotoxicology in zebrafish induced by OTC exposure. Adult male zebrafish was exposed to 0, 5, 90, and 450 μg/L OTC for 3 weeks. The results showed the decrease in body weight and tail length but the increase in total length of zebrafish under OTC exposure in a dose-dependent way. In addition, severe histopathological damages were featured by increasing tissue vacuolization in the livers of 450 μg/L OTC group. Moreover, RNA-Seq analysis revealed that molecular signaling and functional pathways in the liver were disrupted by OTC exposure. Furthermore, the down-regulation of gene expression after OTC exposure was found on both the genes related to fatty acid degradation and the genes related to lipid synthesis. The present study implied that OTC induced liver malfunction and fish health risks through growth retard, histopathological damages, molecular signaling disruption, genetic expression alteration, and lipid metabolism disturbance.
Collapse
Affiliation(s)
- Gaixia Zhang
- Collge of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, China
| | - Yifan Xu
- AP Center, Changzhou Senior High School of Jiangsu Province, No. 8, Luohan Road, Tianning District, Changzhou, 213004, Jiangsu, China
| | - Youran Xia
- Changzhou No. 2 High School, No. 32, Xiheng Street, Zhonglou District, Changzhou, 213001, Jiangsu, China
| | - Gang Wang
- AP Center, Changzhou Senior High School of Jiangsu Province, No. 8, Luohan Road, Tianning District, Changzhou, 213004, Jiangsu, China
| | - Hongfeng Zhao
- Collge of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
19
|
Zaluski AB, Wiprich MT, de Almeida LF, de Azevedo AP, Bonan CD, Vianna MRM. Atrazine and Diuron Effects on Survival, Embryo Development, and Behavior in Larvae and Adult Zebrafish. Front Pharmacol 2022; 13:841826. [PMID: 35444550 PMCID: PMC9014172 DOI: 10.3389/fphar.2022.841826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Atrazine and Diuron are widely used herbicides. The use of pesticides contaminates the aquatic environment, threatening biodiversity and non-target organisms such as fish. In this study, we investigated the effects of acute exposure for 96 h hours to atrazine and diuron commercial formulations in zebrafish (Danio rerio, wild-type AB) embryos and larvae and adult stages. We observed a significant concentration-dependent survival decrease and hatching delays in animals exposed to both herbicides and in the frequency of malformations compared to the control groups. Morphological defects included cardiac edema, tail reduction, and head malformation. At 7 days post-fertilization (dpf), atrazine exposure resulted in a reduction in the head length at 2, 2.5, and 5 mg/L and increased the ocular distance at 1, 2, 2.5, and 5 mg/L atrazine when compared to controls. At the same age, diuron increased the ocular distance in animals exposed to diuron (1.0 and 1.5 mg/L) and no effects were observed on the head length. We also evaluated a behavioral repertoire in larvae at 7 dpf, and there were no significant differences in distance traveled, mean speed, time in movement, and thigmotaxis for atrazine and diuron when animals were individually placed in a new environment. The cognitive ability of the larvae was tested at 7 dpf for avoidance and optomotor responses, and neither atrazine nor diuron had significant impacts when treated groups were compared to their corresponding controls. Adults’ behavior was evaluated 7 and 8 days after the end of the acute herbicide exposure. Exploration of a new environment and associated anxiety-like parameters, social interaction, and aggressiveness were not altered. Our results highlight the need for further studies on the sublethal effects of both herbicides and the consideration of the effects of commercial formulas vs. isolated active ingredients. It also emphasizes the need to take sublethal effects into consideration when establishing the environmental limits of residues.
Collapse
Affiliation(s)
- Amanda B Zaluski
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Melissa T Wiprich
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza F de Almeida
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa P de Azevedo
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Monica R M Vianna
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
20
|
Wang Z, Yin S, Chou Q, Zhou D, Jeppesen E, Wang L, Zhang W. Community-level and function response of photoautotrophic periphyton exposed to oxytetracycline hydrochloride. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118593. [PMID: 34864100 DOI: 10.1016/j.envpol.2021.118593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Periphyton is considered important for removal of organic pollutants from water bodies, but knowledge of the impacts of antibiotics on the community structure and ecological function of waterbodies remains limited. In this study, the effects of oxytetracycline hydrochloride (OTC) on the communities of photoautotrophic epilithon and epipelon and its effect on nitrogen and phosphorus concentrations in the water column were studied in a 12-day mesocosm experiment. The dynamics of nitrogen and phosphorus concentrations in the epipelon and epilithon experiment showed similar patterns. The concentrations of total nitrogen, dissolved total nitrogen, ammonium nitrogen, total phosphorus and dissolved total phosphorus in the water column increased rapidly during the initial days of exposure, after which a downward trend occurred. In the epilithon experiment, we found that the photosynthesis (Fv/Fm) and biomass of epilithon were significantly (P < 0.05) stimulated in the low concentration group. Contrarily, growth and photosynthesis (Fv/Fm) were significantly (P < 0.05) reduced in the medium and high concentration group. We further found that the photosynthetic efficiency of photoautotrophic epilithon was negatively correlated with the concentrations of nitrogen and phosphorus in the water column (P < 0.05). Principal coordinate analysis (PCoA) showed that the communities of epilithic algae in the control group and in the low concentration group were significantly (P < 0.05) different from that of the high concentration group during the initial 4 days. After 8 days' exposure, all groups tended to be similar, indicating that epilithon showed rapid adaptability and/or resilience. Similar results were found for the relative abundance of some epilithic algae. Our findings indicate that the biofilm system has strong tolerance and adaptability to OTC as it recovered fast after an initial suppression, thus showing the important role of periphyton in maintaining the dynamic balance of nutrients with other processes in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhenfang Wang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Sicheng Yin
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dong Zhou
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai National Engineering Center of Urban Water Resources CO., LTD, Shanghai, 201306, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg, 8600, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, 100049, China; Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, 33731, Turkey
| | - Liqing Wang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
21
|
Gusso D, Cruz FF, Fritsch PM, da Silva Gobbo MO, Morrone FB, Bonan CD. Pannexin channel 1, P2X7 receptors, and Dimethyl Sulfoxide mediate pain responses in zebrafish. Behav Brain Res 2022; 423:113786. [DOI: 10.1016/j.bbr.2022.113786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
|