1
|
Fan S, Bai Y, Li Q, Liu L, Wang Y, Xie F, Dong Y, Wang Z, Lv K, Zhu H, Bi H, Zhou X. Novel antibody-antibiotic conjugate using KRM-1657 as payload eliminates intracellular MRSA in vitro and in vivo. Bioorg Chem 2024; 150:107532. [PMID: 38852312 DOI: 10.1016/j.bioorg.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S.aureus within host cells may cause long-term colonization and clinical failure. Current treatments have poor efficacy in clearing intracellular bacteria. Antibody-antibiotic conjugates (AACs) is a novel strategy for eliminating intracellular bacteria. Herein, we use KRM-1657 as payload of AAC for the first time, and we conjugate it with anti S. aureus antibody via a dipeptide linker (Valine-Alanine) to obtain a novel AAC (ASAK-22). The ASAK-22 exhibits good in vitro pharmacokinetic properties and inhibitory activity against intracellular MRSA, with 100 μg/mL of ASAK-22 capable of eliminating intracellular MRSA to the detection limit. Furthermore, the in vivo results demonstrate that a single administration of ASAK-22 significantly reduces the bacterial burden in the bacteremia model, which is superior to the vancomycin treatment.
Collapse
Affiliation(s)
- Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuefan Bai
- Department of Pathogenic Biology, Nanjing Medical University, Nanjing 210029, China
| | - Qilong Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuchao Dong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zihao Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Hongkai Bi
- Department of Pathogenic Biology, Nanjing Medical University, Nanjing 210029, China.
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
2
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024; 22:262-275. [PMID: 38082064 DOI: 10.1038/s41579-023-00993-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Resistance threatens to render antibiotics - which are essential for modern medicine - ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
3
|
Chen Y, Jiang Y, Xue T, Cheng J. Strategies for the eradication of intracellular bacterial pathogens. Biomater Sci 2024; 12:1115-1130. [PMID: 38284808 DOI: 10.1039/d3bm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Intracellular pathogens affect a significant portion of world population and cause millions of deaths each year. They can invade host cells and survive inside them and are extremely resistant to immune systems and antibiotics. Current treatments have limitations, and therefore, new effective therapies are needed to combat this ongoing health challenge. Active research efforts have been made to develop many new strategies to eradicate these intracellular pathogens. In this review, we focus on the intracellular bacterial pathogens and first introduce several representative intracellular bacteria and the diseases they cause. We then discuss the challenges in eradicating these bacteria and summarize the current therapeutics for intracellular bacteria. Finally, recent advances in intracellular bacteria eradication are highlighted.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Yunjiang Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518071, China
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou 310024, China
| |
Collapse
|
4
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
5
|
Pal LB, Bule P, Khan W, Chella N. An Overview of the Development and Preclinical Evaluation of Antibody-Drug Conjugates for Non-Oncological Applications. Pharmaceutics 2023; 15:1807. [PMID: 37513995 PMCID: PMC10385119 DOI: 10.3390/pharmaceutics15071807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Typically, antibody-drug conjugates (ADCs) are made up of a humanized antibody and a small-molecule medication connected by a chemical linker. ADCs' ability to deliver cytotoxic agents to the specific site with reduced side effects showed promising results in oncology. To date, fourteen ADCs have been approved by the US Food and Drug Administration, and approximately 297 ADCs are in pre-clinical/clinical stages in the oncology area. Inspired by these outcomes, a few scientists explored the potential of antibody-drug conjugates in non-oncological conditions such as arthritis, myasthenia gravis, immunological disorders, and kidney failure. However, there are limited data available on the non-oncological applications of antibody-drug conjugates. This current review focuses on the non-oncological applications of antibody-drug conjugates, their developmental studies, testing procedures, in vitro evaluations, and pre-clinical testing. Additionally, a summary of the restrictions, difficulties, and prospects for ADCs in non-oncological applications is provided.
Collapse
Affiliation(s)
- Lal Bahadur Pal
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Prajakta Bule
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Wahid Khan
- Natco Research Centre, Natco Pharma Ltd., Hyderabad 500018, Telangana, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| |
Collapse
|