1
|
Banerjee M, Lykoudi A, Hwang JY, Pan J, Rai SN, Park JW, States JC. Dysregulation of mRNA expression by hsa-miR-186 overexpression in arsenic-induced skin carcinogenesis. Toxicol Appl Pharmacol 2025; 495:117209. [PMID: 39719251 DOI: 10.1016/j.taap.2024.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Dysregulated miRNA expression contributes to development of arsenic-induced cutaneous squamous cell carcinoma (cSCC). hsa-miR-186 (miR-186) is overexpressed in arsenical cSCC tissues as well as in preclinical cell line model of arsenical cSCC. Simultaneous miR-186 overexpression and chronic inorganic trivalent arsenite (iAs; 100 nM) exposure transformed human HaCaT cell line preferentially over miR-186 overexpression or iAs exposure alone. Both iAs and miR-186 regulate the expression of wide range of mRNA targets. However, how their interaction impacts the transcriptome-wide mRNA expression landscape ushering in cancer is unknown. We performed longitudinal RNA-seq analysis in passage-matched HaCaT cell clones (±miR-186 overexpression) with simultaneous chronic iAs exposure (0/100 nM) at 12 and 29 weeks. We determined the impact of each factor and their interaction towards differential gene expression and pathway dysregulation employing two different statistical approaches (t-statistic and 2-factor ANOVA). We show that a core set of pathways are dysregulated deterministically irrespective of the statistical approach chosen, possibly representing necessary changes for transformation. The data suggest that each clonal line could take a unique route to dysregulate this core set of pathways necessary for transformation, highlighting the possible role of stochasticity in cancer development. Evidence is presented to sift the strengths and weaknesses of each statistical methodology in providing biological understanding of events that play crucial roles in carcinogenesis in large datasets with multiple contributing variables.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Jae Y Hwang
- Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Brown Cancer Center, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Jianmin Pan
- Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Biostatistics and Informatics Shared Resources, University of Cincinnati Cancer Center, Cincinnati, OH, USA; Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Bioinformatics and Biostatistics, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Shesh N Rai
- Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Biostatistics and Informatics Shared Resources, University of Cincinnati Cancer Center, Cincinnati, OH, USA; Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Bioinformatics and Biostatistics, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Juw W Park
- Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Brown Cancer Center, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
2
|
Tomlinson MM, Pugh F, Nail AN, Newton JD, Udoh K, Abraham S, Kavalukas S, Guinn B, Tamimi RM, Laden F, Iyer HS, States JC, Ruther M, Ellis CT, DuPré NC. Heavy-metal associated breast cancer and colorectal cancer hot spots and their demographic and socioeconomic characteristics. Cancer Causes Control 2024; 35:1367-1381. [PMID: 38916703 PMCID: PMC11461597 DOI: 10.1007/s10552-024-01894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Cancer registries offer an avenue to identify cancer clusters across large populations and efficiently examine potential environmental harms affecting cancer. The role of known metal carcinogens (i.e., cadmium, arsenic, nickel, chromium(VI)) in breast and colorectal carcinogenesis is largely unknown. Historically marginalized communities are disproportionately exposed to metals, which could explain cancer disparities. We examined area-based metal exposures and odds of residing in breast and colorectal cancer hotspots utilizing state tumor registry data and described the characteristics of those living in heavy metal-associated cancer hotspots. METHODS Breast and colorectal cancer hotspots were mapped across Kentucky, and area-based ambient metal exposure to cadmium, arsenic, nickel, and chromium(VI) were extracted from the 2014 National Air Toxics Assessment for Kentucky census tracts. Among colorectal cancer (n = 56,598) and female breast cancer (n = 77,637) diagnoses in Kentucky, we used logistic regression models to estimate Odds Ratios (ORs) and 95% Confidence Intervals to examine the association between ambient metal concentrations and odds of residing in cancer hotspots, independent of individual-level and neighborhood risk factors. RESULTS Higher ambient metal exposures were associated with higher odds of residing in breast and colorectal cancer hotspots. Populations in breast and colorectal cancer hotspots were disproportionately Black and had markers of lower socioeconomic status. Furthermore, adjusting for age, race, tobacco and neighborhood factors did not significantly change cancer hotspot ORs for ambient metal exposures analyzed. CONCLUSION Ambient metal exposures contribute to higher cancer rates in certain geographic areas that are largely composed of marginalized populations. Individual-level assessments of metal exposures and cancer disparities are needed.
Collapse
Affiliation(s)
- Madeline M Tomlinson
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Felicia Pugh
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
- Louisville Metro Department of Public Health and Wellness, Center for Health Equity, Louisville, KY, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Johnnie D Newton
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Karen Udoh
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Stephie Abraham
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Sandy Kavalukas
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Brian Guinn
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medical, New York, NY, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hari S Iyer
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Matthew Ruther
- Department of Urban and Public Affairs, College of Arts and Sciences, University of Louisville, Louisville, KY, USA
| | - C Tyler Ellis
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Natalie C DuPré
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA.
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Augenstein II, Nail AN, Ferragut Cardoso AP, States JC, Banerjee M. Chronic arsenic exposure suppresses proteasomal and autophagic protein degradation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104398. [PMID: 38403142 PMCID: PMC11465505 DOI: 10.1016/j.etap.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Ubiquitin Proteasomal System (UPS) and autophagy dysregulation initiate cancer. These pathways are regulated by zinc finger proteins. Trivalent inorganic arsenic (iAs) displaces zinc from zinc finger proteins disrupting functions of important cellular proteins. The effect of chronic environmental iAs exposure (100 nM) on UPS has not been studied. We tested the hypothesis that environmental iAs exposure suppresses UPS, activating autophagy as a compensatory mechanism. We exposed skin (HaCaT and Ker-CT; independent quadruplicates) and lung (BEAS-2B; independent triplicates) cell cultures to 0 or 100 nM iAs for 7 or 8 weeks. We quantified ER stress (XBP1 splicing employing Reverse Transcriptase -Polymerase Chain Reaction), proteasomal degradation (immunoblots), and initiation and completion of autophagy (immunoblots). We demonstrate that chronic iAs exposure suppresses UPS, initiates autophagy, but suppresses autophagic protein degradation in skin and lung cell lines. Our data suggest that chronic iAs exposure inhibits autophagy which subsequently suppresses UPS.
Collapse
Affiliation(s)
- Isabell I Augenstein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
4
|
Banerjee M, Srivastava S, Rai SN, States JC. Chronic arsenic exposure induces malignant transformation of human HaCaT cells through both deterministic and stochastic changes in transcriptome expression. Toxicol Appl Pharmacol 2024; 484:116865. [PMID: 38373578 PMCID: PMC10994602 DOI: 10.1016/j.taap.2024.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Biological processes are inherently stochastic, i.e., are partially driven by hard to predict random probabilistic processes. Carcinogenesis is driven both by stochastic and deterministic (predictable non-random) changes. However, very few studies systematically examine the contribution of stochastic events leading to cancer development. In differential gene expression studies, the established data analysis paradigms incentivize expression changes that are uniformly different across the experimental versus control groups, introducing preferential inclusion of deterministic changes at the expense of stochastic processes that might also play a crucial role in the process of carcinogenesis. In this study, we applied simple computational techniques to quantify: (i) The impact of chronic arsenic (iAs) exposure as well as passaging time on stochastic gene expression and (ii) Which genes were expressed deterministically and which were expressed stochastically at each of the three stages of cancer development. Using biological coefficient of variation as an empirical measure of stochasticity we demonstrate that chronic iAs exposure consistently suppressed passaging related stochastic gene expression at multiple time points tested, selecting for a homogenous cell population that undergo transformation. Employing multiple balanced removal of outlier data, we show that chronic iAs exposure induced deterministic and stochastic changes in the expression of unique set of genes, that populate largely unique biological pathways. Together, our data unequivocally demonstrate that both deterministic and stochastic changes in transcriptome-wide expression are critical in driving biological processes, pathways and networks towards clonal selection, carcinogenesis, and tumor heterogeneity.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - Sudhir Srivastava
- Department of Bioinformatics and Biostatistics, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - Shesh N Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Biostatistics and Informatics Facility Core, Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Liu M, Hong Y, Duan X, Zhou Q, Chen J, Liu S, Su J, Han L, Zhang J, Niu B. Unveiling the metal mutation nexus: Exploring the genomic impacts of heavy metal exposure in lung adenocarcinoma and colorectal cancer. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132590. [PMID: 37769449 DOI: 10.1016/j.jhazmat.2023.132590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Mutations that activate oncogenes and deactivate tumor suppressor genes are widely recognized as significant contributors to cancer development. We investigated relationships between heavy metal exposure and the frequencies and types of gene mutations in patients with lung adenocarcinoma (LUAD) and colorectal cancer (CRC). Plasma concentrations of arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) were measured using inductively coupled plasma mass spectrometry (ICPMS), and next-generation sequencing (NGS) of 1123 cancer-related genes was performed using the tumor tissues. Through Bayesian kernel machine regression (BKMR) analysis, we found associations between the integrated concentrations of the heavy metals and the number of gene mutations, especially insertions/deletions (indels), and Pb, As, and Cd were found to be the most significant contributors to the increased mutation rates. We extracted previously established mutational signatures and observed that they exhibit significant correlations with metal exposure. Moreover, we detected substantial shifts in the mutational landscape when comparing groups with high and low metal exposures. Several frequently mutated genes displayed positive correlations with metal exposure, whereas EGFR indels showed a negative association with Cd exposure. These findings suggest that heavy metal exposure can impact genomic stability in cancer-related genes, underscoring the importance of heavy metal exposure in cancer development.
Collapse
Affiliation(s)
- Mengyuan Liu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; WillingMed Technology (Beijing) Co., Ltd, Beijing 100176, China; Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Yuting Hong
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaohong Duan
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Qiming Zhou
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Jing Chen
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Junyan Su
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Li Han
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Jiali Zhang
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science, University of the Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Silva CS, Kudlyk T, Tryndyak VP, Twaddle NC, Robinson B, Gu Q, Beland FA, Fitzpatrick SC, Kanungo J. Gene expression analyses reveal potential mechanism of inorganic arsenic-induced apoptosis in zebrafish. J Appl Toxicol 2023; 43:1872-1882. [PMID: 37501093 DOI: 10.1002/jat.4520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Our previous study showed that sodium arsenite (200 mg/L) affected the nervous system and induced motor neuron development via the Sonic hedgehog pathway in zebrafish larvae. To gain more insight into the effects of arsenite on other signaling pathways, including apoptosis, we have performed quantitative polymerase chain reaction array-based gene expression analyses. The 96-well array plates contained primers for 84 genes representing 10 signaling pathways that regulate several biological functions, including apoptosis. We exposed eggs at 5 h postfertilization until the 72 h postfertilization larval stage to 200 mg/L sodium arsenite. In the Janus kinase/signal transducers and activators of transcription, nuclear factor κ-light-chain-enhancer of activated B cells, and Wingless/Int-1 signaling pathways, the expression of only one gene in each pathway was significantly altered. The expression of multiple genes was altered in the p53 and oxidative stress pathways. Sodium arsenite induced excessive apoptosis in the larvae. This compelled us to analyze specific genes in the p53 pathway, including cdkn1a, gadd45aa, and gadd45ba. Our data suggest that the p53 pathway is likely responsible for sodium arsenite-induced apoptosis. In addition, sodium arsenite significantly reduced global DNA methylation in the zebrafish larvae, which may indicate that epigenetic factors could be dysregulated after arsenic exposure. Together, these data elucidate potential mechanisms of arsenic toxicity that could improve understanding of arsenic's effects on human health.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tetyana Kudlyk
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Suzanne C Fitzpatrick
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
7
|
Li Y, Zhao Q, Yao J, Lv C, Gao Y, Sun D, Yang Y. MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog. TOXICS 2023; 11:978. [PMID: 38133379 PMCID: PMC10747408 DOI: 10.3390/toxics11120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qiaoshi Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
- Institution of Environmentally Related Diseases, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
8
|
Wang H, Zhang Q, Pi J. Advances in research strategies and approaches for toxicity testing of environmental exposures. Toxicol Appl Pharmacol 2023; 460:116363. [PMID: 36623737 DOI: 10.1016/j.taap.2023.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang 110122, China.
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - Jingbo Pi
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang 110122, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China..
| |
Collapse
|
9
|
Nail AN, Ferragut Cardoso AP, Montero LK, States JC. miRNAs and arsenic-induced carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:203-240. [PMID: 36858773 PMCID: PMC10184182 DOI: 10.1016/bs.apha.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arsenic-induced carcinogenesis is a worldwide health problem. Identifying the molecular mechanisms responsible for the induction of arsenic-induced cancers is important for developing treatment strategies. MicroRNA (miRNA) dysregulation is known to affect development and progression of human cancer. Several studies have identified an association between altered miRNA expression in cancers from individuals chronically exposed to arsenic and in cell models for arsenic-induced carcinogenesis. This chapter provides a comprehensive review for miRNA dysregulation in arsenic-induced cancer.
Collapse
Affiliation(s)
- Alexandra N Nail
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Lakyn K Montero
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
10
|
Banerjee M, Yaddanapudi K, States JC. Zinc supplementation prevents mitotic accumulation in human keratinocyte cell lines upon environmentally relevant arsenic exposure. Toxicol Appl Pharmacol 2022; 454:116255. [PMID: 36162444 PMCID: PMC9683715 DOI: 10.1016/j.taap.2022.116255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
Disrupted cell cycle progression underlies the molecular pathogenesis of multiple diseases. Chronic exposure to inorganic arsenic (iAs) is a global health issue leading to multi-organ cancerous and non-cancerous diseases. Exposure to supratherapeutic concentrations of iAs causes cellular accumulation in G2 or M phase of the cell cycle in multiple cell lines by inducing cyclin B1 expression. It is not clear if iAs exposure at doses corresponding to serum levels of chronically exposed populations (∼100 nM) has any effect on cell cycle distribution. In the present study we investigated if environmentally relevant iAs exposure induced cell cycle disruption and mechanisms thereof employing two human keratinocyte cell lines (HaCaT and Ker-CT), flow cytometry, immunoblots and quantitative real-time PCR (qRT-PCR). iAs exposure (100 nM; 24 h) led to mitotic accumulation of cells in both cell lines, along with the stabilization of ANAPC11 ubiquitination targets cyclin B1 and securin, without affecting their steady state mRNA levels. This result suggested that induction of cyclin B1 and securin is modulated at the level of protein degradation. Moreover, zinc supplementation successfully prevented iAs-induced mitotic accumulation and stabilization of cyclin B1 and securin without affecting their mRNA levels. Together, these data suggest that environmentally relevant iAs exposure leads to mitotic accumulation possibly by displacing zinc from the RING finger subunit of anaphase promoting complex/cyclosome (ANAPC11), the cell cycle regulating E3 ubiquitin ligase. This early cell cycle disruptive effect of environmentally relevant iAs concentration could underpin the molecular pathogenesis of multiple diseases associated with chronic iAs exposure.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA; Department of Microbiology/Immunology, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|