1
|
Qureshi IZ, Razzaq A, Naz SS. Testing of acute and sub-acute toxicity profile of novel naproxen sodium nanoformulation in male and female mice. Regul Toxicol Pharmacol 2024; 150:105650. [PMID: 38782233 DOI: 10.1016/j.yrtph.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nanodrugs offer promising alternatives to conventionally used over the counter drugs. Compared to its free form, therapeutic benefits, and gastric tissue safety of naproxen sodium nanoformulation (NpNF) were recently demonstrated. Essential regulatory safety data for this formulation are, however, not available. To address this, male and female BALB/c mice were subjected to acute and 14-day repeated-oral dose assessments. Our data indicate that NpNF was well tolerated up to 2000 mg/kg b.w. A 14-day subacute toxicity testing revealed that the oral administration of low dose (30 mg/kg) NpNF did not produce any adverse effects on blood profile and serum biochemical parameters. Levels of oxidative stress markers and antioxidant enzymes neared normal. Histology of selected tissues also showed no evidence of toxicity. In contrast, a ten-fold increase in NpNF dosage (300 mg/kg), demonstrated, irrespective of gender, mild to moderate toxicity (p < 0.05) in the brain, stomach, and heart tissues, while ROS, LPO, CAT, SOD, POD, and GSH levels remained unaffected in the liver, kidney, spleen, testis, and seminal vesicles. No effect on serum biochemical parameters, overall indicated a no-observed-adverse-effect level (NOAEL) is 300 mg/kg. Further increase in dosage (1000 mg/kg) significantly altered all parameters demonstrating that high dose is toxic.
Collapse
Affiliation(s)
- Irfan Zia Qureshi
- Laboratory of Animal and Human Physiology, Department of Zoology (Animal Sciences), Faculty of Biological Sciences, Quaid-a-Azam University, Islamabad, 45320, Pakistan.
| | - Ayesha Razzaq
- Laboratory of Animal and Human Physiology, Department of Zoology (Animal Sciences), Faculty of Biological Sciences, Quaid-a-Azam University, Islamabad, 45320, Pakistan
| | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for Physics, Quaid-a- Azam University Campus, Islamabad, 44000, Pakistan
| |
Collapse
|
2
|
Valverde TM, dos Santos VMR, Viana PIM, Costa GMJ, de Goes AM, Sousa LRD, Xavier VF, Vieira PMDA, de Lima Silva D, Domingues RZ, Ferreira JMDF, Andrade ÂL. Novel Fe 3O 4 Nanoparticles with Bioactive Glass-Naproxen Coating: Synthesis, Characterization, and In Vitro Evaluation of Bioactivity. Int J Mol Sci 2024; 25:4270. [PMID: 38673856 PMCID: PMC11049812 DOI: 10.3390/ijms25084270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Immune response to biomaterials, which is intimately related to their surface properties, can produce chronic inflammation and fibrosis, leading to implant failure. This study investigated the development of magnetic nanoparticles coated with silica and incorporating the anti-inflammatory drug naproxen, aimed at multifunctional biomedical applications. The synthesized nanoparticles were characterized using various techniques that confirmed the presence of magnetite and the formation of a silica-rich bioactive glass (BG) layer. In vitro studies demonstrated that the nanoparticles exhibited bioactive properties, forming an apatite surface layer when immersed in simulated body fluid, and biocompatibility with bone cells, with good viability and alkaline phosphatase activity. Naproxen, either free or encapsulated, reduced nitric oxide production, an inflammatory marker, while the BG coating alone did not show anti-inflammatory effects in this study. Overall, the magnetic nanoparticles coated with BG and naproxen showed promise for biomedical applications, especially anti-inflammatory activity in macrophages and in the bone field, due to their biocompatibility, bioactivity, and osteogenic potential.
Collapse
Affiliation(s)
- Thalita Marcolan Valverde
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.M.V.); (P.I.M.V.); (G.M.J.C.)
| | - Viviane Martins Rebello dos Santos
- Departamento de Química, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil; (V.M.R.d.S.); (D.d.L.S.)
| | - Pedro Igor Macário Viana
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.M.V.); (P.I.M.V.); (G.M.J.C.)
| | - Guilherme Mattos Jardim Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (T.M.V.); (P.I.M.V.); (G.M.J.C.)
| | - Alfredo Miranda de Goes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Lucas Resende Dutra Sousa
- Laboratório de Fitotecnologia, Escola de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (V.F.X.)
| | - Viviane Flores Xavier
- Laboratório de Fitotecnologia, Escola de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (V.F.X.)
| | - Paula Melo de Abreu Vieira
- Laboratório de Morfopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil;
| | - Daniel de Lima Silva
- Departamento de Química, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil; (V.M.R.d.S.); (D.d.L.S.)
| | - Rosana Zacarias Domingues
- Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - José Maria da Fonte Ferreira
- Departamento de Engenharia de Materiais e Cerâmica, CICECO, Universidade de Aveiro (UA), 3810193 Aveiro, Portugal;
| | - Ângela Leão Andrade
- Departamento de Química, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil; (V.M.R.d.S.); (D.d.L.S.)
- Departamento de Engenharia de Materiais e Cerâmica, CICECO, Universidade de Aveiro (UA), 3810193 Aveiro, Portugal;
| |
Collapse
|
3
|
Zhang G, Yin ZZ, Zuo X, Chen H, Chen G, Gao J, Kong Y. Carboxymethyl potato starch hydrogels encapsulated cyclodextrin metal-organic frameworks for enantioselective loading of S-naproxen and its programmed release. Int J Biol Macromol 2024; 262:130013. [PMID: 38340930 DOI: 10.1016/j.ijbiomac.2024.130013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
A natural polysaccharide-based vehicle is facilely prepared for enantioselective loading of S-naproxen (S-NPX) and its programmed release. Cyclodextrin metal-organic frameworks (CD-MOF) are synthesized through the coordination of K+ with γ-cyclodextrin (γ-CD). Compared with R-NPX, the CD-MOF preferably combines with S-NPX, which can be confirmed by the thermodynamic calculations. The S-NPX loaded CD-MOF (CD-MOF-S-NPX) is grafted with disulfide bond (-S-S-) to improve its hydrophobicity, and the loaded S-NPX is further encapsulated in the chiral cavity of γ-CD by carboxymethyl potato starch (CPS) hydrogels. The intermolecular hydrogen bonding of the CPS hydrogels is prone to be destroyed in mildly basic media (∼pH 8.0), resulting in the swelling of the hydrogels; the -S-S- linkage in the vehicle can be cleaved in the presence of glutathione (GSH), leading to the collapse of the CD-MOF. Therefore, the programmed release of S-NPX can be achieved. Also in this work, the release kinetics is investigated, and the results indicate that the release of S-NPX is controlled by the Higuchi model.
Collapse
Affiliation(s)
- Guodong Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoming Zuo
- Department of Pharmacy, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Haiying Chen
- Department of Pharmacy, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Guochun Chen
- Department of Infection, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Jun Gao
- Department of Orthopedics, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Pauna AMR, Mititelu Tartau L, Bogdan M, Meca AD, Popa GE, Pelin AM, Drochioi CI, Pricop DA, Pavel LL. Synthesis, Characterization and Biocompatibility Evaluation of Novel Chitosan Lipid Micro-Systems for Modified Release of Diclofenac Sodium. Biomedicines 2023; 11:biomedicines11020453. [PMID: 36830989 PMCID: PMC9953466 DOI: 10.3390/biomedicines11020453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The purpose of our study was the obtaining, characterization and biocompatibility estimation of novel carrier systems for diclofenac. Diclofenac is a potent nonsteroidal anti-inflammatory drug with frequent gastrointestinal side effects, impairing the quality of the patient's life. Original diclofenac-loaded micro-vesicles coated with chitosan were prepared and physico-chemical analyzed. We investigated their in vitro hemocompatibility and in vivo biocompatibility in rats. The animals were treated orally as follows: group 1 (Control): distilled water 0.3 mL/100 g body weight; Group 2 (CHIT): 0.3 mL/100 g body weight 0.5% chitosan solution; Group 3 (DCF): 15 mg/kg body weight diclofenac; Group 4 (DCF-ves): lipid vesicles loaded with diclofenac 15 mg/kg body weight. Blood samples were collected for assessing: red blood cells, hemoglobin, hematocrit and leukocyte formula. A series of specific parameters of the liver and kidney function, some markers of immune defense, as well as the activity of some enzymes involved in oxidative processes, were also investigated. At the end of the experiment, the animals were sacrificed and fragments of liver, kidney and stomach were collected for histopathological examination. No blood hemolysis was evidenced by the in vitro test with the administration of diclofenac vesicles. The animals treated with diclofenac lipid vesicles stabilized with chitosan did not display any notable differences in their hematological and biochemical profile compared to control animals. These data correlated with the histological results, which showed the absence of architectural changes in the examined tissues. Biological in vitro and in vivo evaluation revealed that the microvesicles containing diclofenac are biocompatible, with potential to be used as delivery systems to modify the drug release, thus making them an attractive candidate for biomedical applications.
Collapse
Affiliation(s)
- Ana-Maria Raluca Pauna
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Mititelu Tartau
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: Correspondence: (L.M.T.); (M.B.)
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Correspondence: Correspondence: (L.M.T.); (M.B.)
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Gratiela Eliza Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galați, Romania
| | - Cristian Ilie Drochioi
- Surgical Department, Faculty of Dental Medicine, University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galați, Romania
| |
Collapse
|