1
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
2
|
Zhang M, Qin H, Xiang L, An L, Zhang X, Li K, Wu K, Fei X, Fan W, Xu X, Xu P, Wu Y, Mu D. Camellia sinensis polysaccharide attenuates inflammatory responses via the ROS-mediated pathway by endocytosis. Int J Biol Macromol 2024; 267:131674. [PMID: 38641285 DOI: 10.1016/j.ijbiomac.2024.131674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Polysaccharide CSTPs extracted from Camellia sinensis tea-leaves possessed unique against oxidative damage by scavenging ROS. Herein, acid tea polysaccharide CSTPs-2 with tightly packed molecular structure was isolated, purified and characterized in this research. Furthermore, the effects of CSTPs-2 on ROS-involved inflammatory responses and its underlying mechanisms were investigated. The results suggest that CSTPs-2 dramatically reduced the inflammatory cytokines overexpression and LPS-stimulated cell damage. CSTPs-2 could trigger the dephosphorylation of downstream AKT/MAPK/NF-κB signaling proteins and inhibit nuclear transfer of p-NF-κB to regulate the synthesis and release of inflammatory mediators in LPS-stimulated cells by ROS scavenging. Importantly, the impact of CSTPs-2 in downregulating pro-inflammatory cytokines and mitigating ROS overproduction is associated with clathrin- or caveolae-mediated endocytosis uptake mechanisms, rather than TLR-4 receptor-mediated endocytosis. This study presents a novel perspective for investigating the cellular uptake mechanism of polysaccharides in the context of anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Mingzhu Zhang
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Huaguang Qin
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Lijun Xiang
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Lujing An
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Xiaoling Zhang
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Kexin Li
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Kai Wu
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Xinyao Fei
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Wenhui Fan
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Xinyun Xu
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Pengfei Xu
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Yan Wu
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China.
| | - Dan Mu
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Science, Anqing Normal University, Anqing 246011, China.
| |
Collapse
|
3
|
Caldarelli M, Rezzi SJ, Colombo N, Pirali T, Papeo G. Photocatalytic Radical Coupling of Organoborates with α-Halogenated Electron-Poor Olefins. J Org Chem 2024; 89:633-643. [PMID: 38079578 DOI: 10.1021/acs.joc.3c02386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Herein, we report the visible-light-mediated addition of organoborates to α-halogenated electron-poor olefins enabled by an environmentally benign metal-free catalyst. The method accommodates a variety of boronic acid derivatives as well as alkenes and delivers the corresponding saturated α-halo-derivatives in up to 90% yields. The obtained products are high-value building blocks in organic synthesis, allowing for a variety of follow-up transformations.
Collapse
Affiliation(s)
- Marina Caldarelli
- Nerviano Medical Sciences Srl, viale Pasteur 10, 20014 Nerviano, Milano, Italy
| | - Sarah Jane Rezzi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Gianluca Papeo
- Nerviano Medical Sciences Srl, viale Pasteur 10, 20014 Nerviano, Milano, Italy
| |
Collapse
|
4
|
Falbo F, Gemma S, Koch A, Mazzotta S, Carullo G, Ramunno A, Butini S, Schneider-Stock R, Campiani G, Aiello F. Synthetic derivatives of natural cinnamic acids as potential anti-colorectal cancer agents. Chem Biol Drug Des 2024; 103:e14415. [PMID: 38230797 DOI: 10.1111/cbdd.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 01/18/2024]
Abstract
Cinnamic acid and its derivatives represent attractive building blocks for the development of pharmacological tools. A series of piperoniloyl and cinnamoyl-based amides (6-9 a-f) have been synthesized and assayed against a wide panel of colorectal cancer (CRC) cells, with the aim of finding promising anticancer agents. Among all twenty-four synthesized molecules, 7a, 7e-f, 9c, and 9f displayed the best antiproliferative activity. The induced G1 cell cycle arrest and the increase in apoptotic cell death was seen in FACS analysis and western Blotting in the colon tumor cell lines HCT116, SW480, LoVo, and HT29, but not in the nontumor cell line HCEC. In particular, 9f overcame the resistance of HT29 cells, which have a mutant p53 and BRAF. Furthermore, 9f, amide of piperonilic acid with the 3,4-dichlorobenzyl substituent upregulated p21, which is involved in cell cycle arrest as well as in apoptosis induction. Cinnamic acid derivatives might be potential anticancer compounds, useful for the development of promising anti-CRC agents.
Collapse
Affiliation(s)
- Federica Falbo
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende, Cosenza, Italy
| | - Sandra Gemma
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Adrian Koch
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah Mazzotta
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Gabriele Carullo
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Anna Ramunno
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Salerno, Italy
| | - Stefania Butini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Giuseppe Campiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Francesca Aiello
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende, Cosenza, Italy
| |
Collapse
|