1
|
Huang K, Lai J, Ren H, Wu C, Cheng X, Chu HKH. Large-Scale Selective Micropatterning with Robotics nDEP Tweezers and Hydrogel Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49973-49984. [PMID: 39230980 DOI: 10.1021/acsami.4c10675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Creating diverse microparticle patterns on a large scale enhances the performance and efficiency of biochemical analytics. Current techniques exhibit limitations in achieving diverse microparticle patterns on a large scale, primarily focusing on patterning particles of the same type with limited flexibility and accessibility. Moreover, accessibility to patterned particles without a fixed formation poses additional challenges. Herein, in this work, we introduce a novel robotic micropatterning system designed to address these challenges. The system facilitates the selection, batch transferring, patterning, and encapsulation of microparticles using negative dielectrophoresis (nDEP)-tweezers, enabling large-scale microparticle patterning on a hydrogel. A multielectrode chip was mounted on a micromanipulator to serve as the nDEP tweezers, and the microparticles scattering on the substrate could be trapped and displaced to different positions on a substrate with an array of holes for large-scale pattern generation. Photosensitive hydrogel was employed for microparticle pattern encapsulation. The effects of configuring different experimental parameters on the patterning efficiency were evaluated and analyzed. Experiments were conducted to explore the stability and performance of the micropatterns. Various patterns with hydrogel encapsulation were created using different color polystyrene microbeads (orange, blue, and green) with varying sizes (50, 100, and 125 μm) under the adjusted environment. Results demonstrate the successful creation of large-scale microbead patterns in a specified form and their encapsulation into an extractable hydrogel using the proposed nDEP tweezer system. The proposed system can be potentially applied to diverse bioparticles for analysis.
Collapse
Affiliation(s)
- Kaicheng Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Nanoimprint Technology, Southern University of Science and Technology, Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Jiewen Lai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Hongliang Ren
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Chunhui Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Nanoimprint Technology, Southern University of Science and Technology, Xueyuan Avenue, Shenzhen, Guangdong 518055, China
| | - Xing Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Nanoimprint Technology, Southern University of Science and Technology, Xueyuan Avenue, Shenzhen, Guangdong 518055, China
| | - Henry Kar Hang Chu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. BIOSENSORS-BASEL 2021; 11:bios11090328. [PMID: 34562920 PMCID: PMC8467589 DOI: 10.3390/bios11090328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
In the last 10 years, paper-based electrochemical biosensors have gathered attention from the scientific community for their unique advantages and sustainability vision. The use of papers in the design the electrochemical biosensors confers to these analytical tools several interesting features such as the management of the solution flow without external equipment, the fabrication of reagent-free devices exploiting the porosity of the paper to store the reagents, and the unprecedented capability to detect the target analyte in gas phase without any sampling system. Furthermore, cost-effective fabrication using printing technologies, including wax and screen-printing, combined with the use of this eco-friendly substrate and the possibility of reducing waste management after measuring by the incineration of the sensor, designate these type of sensors as eco-designed analytical tools. Additionally, the foldability feature of the paper has been recently exploited to design and fabricate 3D multifarious biosensors, which are able to detect different target analytes by using enzymes, antibodies, DNA, molecularly imprinted polymers, and cells as biocomponents. Interestingly, the 3D structure has recently boosted the self-powered paper-based biosensors, opening new frontiers in origami devices. This review aims to give an overview of the current state origami paper-based biosensors, pointing out how the foldability of the paper allows for the development of sensitive, selective, and easy-to-use smart and sustainable analytical devices.
Collapse
|
3
|
Zhu Q, Mao W, Zhang C, Zhou Y, Tang Z, Yu C. Au@BSA microspheres-luminol and a novel luminescent Zeolitic Imidazolate Framework were used for potential-resolved electrochemiluminescence to detect dual targets. Anal Chim Acta 2020; 1140:89-98. [PMID: 33218493 DOI: 10.1016/j.aca.2020.09.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Here, a novel electrochemiluminescence biosensor based on potential-resolved strategy was firstly prepared for the detection of dual targets α2,3-sialylated glycans and α2,6-sialylated glycans. This is the first time that Au@BSA microsphere was used to connect with luminol to enhance its ECL intensity, and it can generate ECL signals at positive potential. Zeolitic Imidazolate Framework-8 (ZIF-8) and Meso-tetra (4-carboxyphenyl) porphyrin (TCPP) were linked using a one-pot method to synthesize a novel luminescent ZIF (L-ZIF) named TZZ, which can emit ECL signals at negative potential. Moreover, magnetite microspheres were used to construct a sandwich-type biosensor to obtain higher sensitivity and reduce background signals. In addition, the biosensor manufactured directly in solution have a wider linear range than constructed on electrode because it has more available space than the electrode surface. Due to the above advantages, the prepared ECL biosensor exhibited high sensitivity, stability and broader linear range, even for practical analysis. Therefore, the prepared ECL biosensor will become a promising method for determination of α2,3-sialylated glycans and α2,6-sialylated glycans in clinical applications in the future. What is more, it provides a potential method for detection of other multi-targets.
Collapse
Affiliation(s)
- Qihao Zhu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Weiran Mao
- Chongqing University Cancer Hospital, Chongqing, 400016, PR China
| | - Chengli Zhang
- The First People's Hospital of Zigong, Zigong, Sichuan, 643000, PR China
| | - Yuan Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhiyong Tang
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, PR China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
4
|
Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Sci Rep 2019; 9:8745. [PMID: 31217478 PMCID: PMC6584699 DOI: 10.1038/s41598-019-45166-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/28/2019] [Indexed: 11/08/2022] Open
Abstract
Circulating cancer markers are metabolic products found in body fluids of cancer patients, which are specific for a certain type of malignant tumors. Cancer marker detection plays a key role in cancer diagnosis, treatment, and disease monitoring. The growing need for early cancer diagnosis requires quick and sensitive analytical approaches to detection of cancer markers. The approach based on the photonic crystal surface mode (PC SM) detection has been developed as a label-free high-precision biosensing technique. It allows real-time monitoring of molecular and cellular interactions using independent recording of the total internal reflection angle and the excitation angle of the PC surface wave. We used the PC SM technique for simultaneous detection of the ovarian cancer marker cancer antigen 125 and two breast cancer markers, human epidermal growth factor receptor 2 and cancer antigen 15-3. The new assay is based on the real-time flow detection of specific interaction between the antigens and capture antibodies. Its particular advantage is the possibility of multichannel recording with the same chip, which can be used for multiplexed detection of several cancer markers in a single experiment. The developed approach demonstrates high specificity and sensitivity for detection of all three biomarkers.
Collapse
|
5
|
Sugano T, Sasaki Y, Mizutani F, Yasukawa T. Simple Formation of Cell Arrays Embedded in Hydrogel Sheets and Cubes. ANAL SCI 2018; 34:127-130. [PMID: 29434095 DOI: 10.2116/analsci.34.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Arrays with cell aggregations and single-cell arrays embedded in hydrogel sheets were fabricated by negative dielectrophoretic (n-DEP) cell-manipulation techniques and hydrogel gelation. Cells suspended randomly in a prepolymer solution were rapidly manipulated to form an island-like organization of cells through the repulsive force of n-DEP by using a DEP device consisting of grid electrodes. The cell patterns were retained by irradiating ultraviolet (UV) light so as to urge gelation. Moreover, control of the optical transparency of the grid electrode allows for the fabrication of cubes with single cells and cell aggregation.
Collapse
Affiliation(s)
| | - Yui Sasaki
- Graduate School of Material Science, University of Hyogo
| | - Fumio Mizutani
- Graduate School of Material Science, University of Hyogo
| | | |
Collapse
|
6
|
Guo Z, Wu L, Hu Y, Wang S, Li X. Potential-resolved “in-electrode” type electrochemiluminescence immunoassay based on functionalized g-C 3 N 4 nanosheet and Ru-NH 2 for simultaneous determination of dual targets. Biosens Bioelectron 2017; 95:27-33. [DOI: 10.1016/j.bios.2017.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/25/2022]
|
7
|
Teixeira SR, Lloyd C, Yao S, Whitaker IS, Francis L, Conlan RS, Azzopardi E. Polyaniline-graphene based α-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude. Biosens Bioelectron 2016; 85:395-402. [PMID: 27196256 DOI: 10.1016/j.bios.2016.05.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 11/19/2022]
Abstract
α-amylase is an established marker for diagnosis of pancreatic and salivary disease, and recent research has seen a substantial expansion of its use in therapeutic and diagnostic applications for infection, cancer and wound healing. The lack of bedside monitoring devices for α-amylase detection has hitherto restricted the clinical progress of such applications. We have developed a highly sensitive α-amylase immunosensor platform, produced via in situ electropolymerization of aniline onto a screen-printed graphene support (SPE). Covalently binding an α-amylase specific antibody to a polyaniline (PANI) layer and controlling device assembly using electrochemical impedance spectroscopy (EIS), we have achieved a highly linear response against α-amylase concentration. Each stage of the assembly was characterized using a suite of high-resolution topographical, chemical and mechanical techniques. Quantitative, highly sensitive detection was demonstrated using an artificially spiked human blood plasma samples. The device has a remarkably wide limit of quantification (0.025-1000IU/L) compared to α-amylase assays in current clinical use. With potential for simple scale up to volume manufacturing though standard semiconductor production techniques and subsequently clinical application, this biosensor will enable clinical benefit through early disease detection, and better informed administration of correct therapeutic dose of drugs used to treat α-amylase related diseases.
Collapse
Affiliation(s)
- Sofia Rodrigues Teixeira
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8QQ, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Catherine Lloyd
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8QQ, UK; Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Seydou Yao
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Iain S Whitaker
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Lewis Francis
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Ernest Azzopardi
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| |
Collapse
|
8
|
Jiang L, Li F, Feng J, Wang P, Liu Q, Li Y, Dong Y, Wei Q. An optionality further amplification of an sandwich-type electrochemical immunosensor based on biotin–streptavidin–biotin strategy for detection of alpha fetoprotein. RSC Adv 2016. [DOI: 10.1039/c6ra01178k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An optionality further amplification of sandwich-type electrochemical immunosensor based on biotin–streptavidin–biotin strategy.
Collapse
Affiliation(s)
- Liping Jiang
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Faying Li
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Jinhui Feng
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Ping Wang
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Qing Liu
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Yueyun Li
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Yunhui Dong
- School of Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| |
Collapse
|
9
|
Wang C, Hou F, Ma Y. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens Bioelectron 2015; 68:156-162. [DOI: 10.1016/j.bios.2014.12.051] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022]
|
10
|
Tao W, Ai Y, Liu S, Lun CW, Yung PT. Determination of Alpha-Fetoprotein by a Microfluidic Miniature Quartz Crystal Microbalance. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.968927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Funano SI, Sugahara M, Henares TG, Sueyoshi K, Endo T, Hisamoto H. A single-step enzyme immunoassay capillary sensor composed of functional multilayer coatings for the diagnosis of marker proteins. Analyst 2015; 140:1459-65. [DOI: 10.1039/c4an01781a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single-step, easy-to-use enzyme immunoassay capillary sensor, composed of substrate-immobilized hydrophobic coating, hydrogel coating, and soluble coating containing an enzyme-labeled antibody, was developed.
Collapse
Affiliation(s)
- Shun-ichi Funano
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Masato Sugahara
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Terence G. Henares
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Kenji Sueyoshi
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Tatsuro Endo
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| | - Hideaki Hisamoto
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai City
- Japan
| |
Collapse
|
12
|
Dielectrophoresis for bioparticle manipulation. Int J Mol Sci 2014; 15:18281-309. [PMID: 25310652 PMCID: PMC4227216 DOI: 10.3390/ijms151018281] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
As an ideal method to manipulate biological particles, the dielectrophoresis (DEP) technique has been widely used in clinical diagnosis, disease treatment, drug development, immunoassays, cell sorting, etc. This review summarizes the research in the field of bioparticle manipulation based on DEP techniques. Firstly, the basic principle of DEP and its classical theories are introduced in brief; Secondly, a detailed introduction on the DEP technique used for bioparticle manipulation is presented, in which the applications are classified into five fields: capturing bioparticles to specific regions, focusing bioparticles in the sample, characterizing biomolecular interaction and detecting microorganism, pairing cells for electrofusion and separating different kinds of bioparticles; Thirdly, the effect of DEP on bioparticle viability is analyzed; Finally, the DEP techniques are summarized and future trends in bioparticle manipulation are suggested.
Collapse
|
13
|
Zhang X, Ren X, Cao W, Li Y, Du B, Wei Q. Simultaneous electrochemical immunosensor based on water-soluble polythiophene derivative and functionalized magnetic material. Anal Chim Acta 2014; 845:85-91. [DOI: 10.1016/j.aca.2014.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/10/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022]
|
14
|
Ge L, Wang Y, Yang H, Yang P, Cheng X, Yan M, Yu J. A photoelectrochemical biosensor using ruthenium complex-reduced graphene oxide hybrid as the photocurrent signal reporter assembled on rhombic TiO2 nanocrystals driven by visible light. Anal Chim Acta 2014; 828:27-33. [DOI: 10.1016/j.aca.2014.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/01/2023]
|
15
|
Teixeira S, Conlan RS, Guy OJ, Sales MGF. Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. J Mater Chem B 2014; 2:1852-1865. [DOI: 10.1039/c3tb21235a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Yasukawa T, Yoshida Y, Hatanaka H, Mizutani F. Line Patterning with Microparticles at Different Positions in a Single Device Based on Negative Dielectrophoresis. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on control of line pattern positioning with particles fabricated by negative dielectrophoresis (n-DEP) using the applied intensity and phase of an AC electric field. Line patterns were fabricated in a microfluidic device consisting of upper conductive indium-tin-oxide (ITO) substrates and lower ITOinterdigitated microband array (IDA) electrodes used as the template. A 6-µm-diameter polystyrene particles suspension was introduced into the device between upper ITO and the bottom ITO-IDA substrate. An AC electric signal of a typically 20 peak-to-peak voltage and 1.0 MHz was then applied to upper ITO and bands on lower IDA, resulting in the formation of line patterns with low electric-field gradient regions. AC voltage was applied to bands A and B on lower IDA with the opposite phase and the same frequency and intensity. When the signal identical to band A was applied to upper ITO, particles were aligned above band A because relatively lower electric fields were produced in these regions. In contrast, the application of a signal identical to band B formed line patterns with particles aligned above band B due to the generation of a strong electric field between band A and upper ITO and the disappearance of the strong electric field between band B and upper ITO. The decrease in applied intensity to upper ITO shifted the accumulated position of particles to the center between bands A and B because of the balance of electric fields generated between band A or B and upper ITO. We thus fabricated line patterns with particles at desired positions in the fluidic device.
Collapse
|
17
|
Rajan NK, Duan X, Reed MA. Performance limitations for nanowire/nanoribbon biosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:629-45. [PMID: 23897672 DOI: 10.1002/wnan.1235] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/12/2013] [Indexed: 01/30/2023]
Abstract
Field-effect transistor-based biosensors (bioFETs) have shown great promise in the field of fast, ultra-sensitive, label-free detection of biomolecules. Reliability and accuracy, when trying to measure small concentrations, is of paramount importance for the translation of these research devices into the clinical setting. Our knowledge and experience with these sensors has reached a stage where we are able to identify three main aspects of bioFET sensing that currently limit their applications. By considering the intrinsic device noise as a limitation to the smallest measurable signal, we show how various parameters, processing steps and surface modifications, affect the limit of detection. We also introduce the signal-to-noise ratio of bioFETs as a universal performance metric, which allows us to gain better insight into the design of more sensitive devices. Another aspect that places a limit on the performance of bioFETs is screening by the electrolyte environment, which reduces the signal that could be potentially measured. Alternative functionalization and detection schemes that could enable the use of these charge-based sensors in physiological conditions are highlighted. Finally, the binding kinetics of the receptor-analyte system are considered, both in the context of extracting information about molecular interactions using the bioFET sensor platform and as a fundamental limitation to the number of molecules that bind to the sensor surface at steady-state conditions and to the signal that is generated. Some strategies to overcome these limitations are also proposed. Taken together, these performance-limiting issues, if solved, would bring bioFET sensors closer to clinical applications.
Collapse
Affiliation(s)
- Nitin K Rajan
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
18
|
Guo Z, Hao T, Du S, Chen B, Wang Z, Li X, Wang S. Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene asconductingbridge. Biosens Bioelectron 2013; 44:101-7. [DOI: 10.1016/j.bios.2013.01.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/20/2012] [Accepted: 01/11/2013] [Indexed: 01/04/2023]
|
19
|
Guo A, Wu D, Ma H, Zhang Y, Li H, Du B, Wei Q. An ultrasensitive enzyme-free electrochemical immunosensor for CA125 using Au@Pd core–shell nanoparticles as labels and platforms for signal amplification. J Mater Chem B 2013; 1:4052-4058. [DOI: 10.1039/c3tb20574f] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
|
21
|
Lai W, Tang D, Que X, Zhuang J, Fu L, Chen G. Enzyme-catalyzed silver deposition on irregular-shaped gold nanoparticles for electrochemical immunoassay of alpha-fetoprotein. Anal Chim Acta 2012; 755:62-8. [DOI: 10.1016/j.aca.2012.10.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/14/2012] [Accepted: 10/16/2012] [Indexed: 12/18/2022]
|
22
|
Yamamoto M, Yasukawa T, Suzuki M, Kosuge S, Shiku H, Matsue T, Mizutani F. Patterning with particles using three-dimensional interdigitated array electrodes with negative dielectrophoresis and its application to simple immunosensing. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.02.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Yasukawa T, Hatanaka H, Mizutani F. Simple Detection of Surface Antigens on Living Cells by Applying Distinct Cell Positioning with Negative Dielectrophoresis. Anal Chem 2012; 84:8830-6. [DOI: 10.1021/ac302239k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tomoyuki Yasukawa
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo
678-1297, Japan
- JST-CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075,
Japan
| | - Hironobu Hatanaka
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo
678-1297, Japan
| | - Fumio Mizutani
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo
678-1297, Japan
| |
Collapse
|
24
|
Kiba Y, Otani Y, Yasukawa T, Mizutani F. Electrochemical detection of redox species flowing in a nitrocellulose membrane and application to quantitative immunochromatography. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.07.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Ahadian S, Ramón-Azcón J, Ostrovidov S, Camci-Unal G, Hosseini V, Kaji H, Ino K, Shiku H, Khademhosseini A, Matsue T. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. LAB ON A CHIP 2012; 12:3491-503. [PMID: 22847280 DOI: 10.1039/c2lc40479f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.
Collapse
Affiliation(s)
- Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosens Bioelectron 2012; 33:29-35. [PMID: 22265320 DOI: 10.1016/j.bios.2011.11.054] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022]
Abstract
A facile and sensitive electrochemical immunosensor for detection of human chorionic gonadotrophin (hCG) was designed by using functionalized mesoporous nanoparticles as bionanolabels. To construct high-performance electrochemical immunosensor, Au nanoparticles (AuNPs) dotted carbon nanotubes (MWCNTs)-graphene composite was immobilized on the working electrode, which can increase the surface area to capture a large amount of primary antibodies (Ab(1)) as well as improve the electronic transmission rate. The as-prepared bionanolabels. composed of mesoporous silica nanoparticles (MCM-41) coated with AuNPs through thionine linking, showed good adsorption of horseradish peroxidase-labeled secondary anti-hCG antibody. Interlayer thionine was not only a bridging agent between MCM-41 and AuNPs but also an excellent electron mediator. The approach provided a good linear response range from 0.005 to 500 mIU mL(-1) with a low detection limit of 0.0026 mIU mL(-1). The immunosensor showed good precision, acceptable stability and reproducibility. Satisfactory results were obtained for determination of hCG in human serum samples. The proposed method provides a new promising platform of clinical immunoassay for other biomolecules.
Collapse
|
27
|
SASAKI N. Recent Applications of AC Electrokinetics in Biomolecular Analysis on Microfluidic Devices. ANAL SCI 2012; 28:3-8. [DOI: 10.2116/analsci.28.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Naoki SASAKI
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University
| |
Collapse
|
28
|
Immunodevice for simultaneous detection of two relevant tumor markers based on separation of different microparticles by dielectrophoresis. Biosens Bioelectron 2011; 28:443-9. [DOI: 10.1016/j.bios.2011.07.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/21/2011] [Accepted: 07/29/2011] [Indexed: 11/20/2022]
|
29
|
Silver nanowire–graphene hybrid nanocomposites as label for sensitive electrochemical immunoassay of alpha-fetoprotein. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.05.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Hatanaka H, Yasukawa T, Mizutani F. Detection of Surface Antigens on Living Cells through Incorporation of Immunorecognition into the Distinct Positioning of Cells with Positive and Negative Dielectrophoresis. Anal Chem 2011; 83:7207-12. [DOI: 10.1021/ac201789m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hironobu Hatanaka
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Tomoyuki Yasukawa
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
- JST-CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Fumio Mizutani
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
31
|
Tang J, Tang D, Su B, Li Q, Qiu B, Chen G. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.02.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Tang J, Tang D, Su B, Huang J, Qiu B, Chen G. Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts. Biosens Bioelectron 2011; 26:3219-26. [DOI: 10.1016/j.bios.2010.12.029] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/11/2010] [Accepted: 12/16/2010] [Indexed: 01/31/2023]
|
33
|
Rapid whole-cell sensing chip for low-level arsenite detection. Biosens Bioelectron 2011; 26:2484-8. [DOI: 10.1016/j.bios.2010.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 11/24/2022]
|
34
|
Ramón-Azcón J, Yasukawa T, Mizutani F. Sensitive and Spatially Multiplexed Detection System Based on Dielectrophoretic Manipulation of DNA-Encoded Particles Used as Immunoreactions Platform. Anal Chem 2010; 83:1053-60. [DOI: 10.1021/ac102854z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javier Ramón-Azcón
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Tomoyuki Yasukawa
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST-CREST), 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Fumio Mizutani
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|