1
|
Torres-Cobos B, Quintanilla-Casas B, Vicario G, Guardiola F, Tres A, Vichi S. Revealing adulterated olive oils by triacylglycerol screening methods: Beyond the official method. Food Chem 2023; 409:135256. [PMID: 36586257 DOI: 10.1016/j.foodchem.2022.135256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Official control methods to detect olive oil (OO) adulteration fail to provide satisfactory consumer protection. Thus, faster and more sensitive screening tools are needed to increase their effectiveness. Here, the official method for adulterant detection in OO was compared with three untargeted screening methods based on triacylglycerol analysis using high-throughput (FIA-HESI-HRMS; HT-GC-MS; HPLC-RID) and pattern recognition techniques (PLS-DA). They were assayed on a set of genuine and adulterated samples with a high natural variability (n = 143). The sensitivity of the official method was 1 for high linoleic (HL) blends at ≥2 % but only 0.39 for high oleic (HO) blends at ≥5 %, while specificity was 0.96. The sensitivity of the screening methods in external validation was 0.90-0.99 for the detection of HL and 0.82-0.88 for HO blends. Among them, HT-GC-MS offered the highest sensitivity (0.94) and specificity (0.76), proving to be the most suitable screening tool for OO authentication.
Collapse
Affiliation(s)
- Berta Torres-Cobos
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus De l'Alimentació Torribera, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Beatriz Quintanilla-Casas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus De l'Alimentació Torribera, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain.
| | - Giulia Vicario
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus De l'Alimentació Torribera, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Santa Coloma de Gramenet, Spain
| | - Francesc Guardiola
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus De l'Alimentació Torribera, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Alba Tres
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus De l'Alimentació Torribera, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus De l'Alimentació Torribera, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
2
|
Wiedmaier-Czerny N, Vetter W. LC-Orbitrap-HRMS method for analysis of traces of triacylglycerols featuring furan fatty acids. Anal Bioanal Chem 2023; 415:875-885. [PMID: 36538086 PMCID: PMC9883336 DOI: 10.1007/s00216-022-04480-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Furan fatty acids (FuFAs) are valuable antioxidants that are highly relevant for the protection of polyunsaturated fatty acids (PUFAs) in biological systems and food. Despite their low contributions to the total fatty acids, their widespread occurrence has been documented in food and biological samples. Like other fatty acids, FuFAs are also stored esterified, e.g., in triacylglycerols. However, FuFA-containing triacylglycerols had not been detected in lipidomics analyses. Here, we present a screening method that allows for the identification of traces of FuFA-containing triacylglycerols (TAGs) utilizing LC-Orbitrap-HRMS. Initially developed with the help of purposefully synthesized FuFA-containing TAGs, the screening method was successfully applied to the analysis of two fish oil samples and one mushroom extract sample. Several FuFA-containing TAGs could be identified by direct analysis using the method and database developed in this study.
Collapse
Affiliation(s)
- Nina Wiedmaier-Czerny
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70593, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
3
|
Janta P, Wongla B, Phayoonhong W, Intarapanich O, Kokpol S, Mahatheeranont S, Kulsing C. Analysis of low-volatility pesticides in cabbage by high temperature comprehensive two-dimensional gas chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3180-3187. [PMID: 35929731 DOI: 10.1039/d2ay00998f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-temperature comprehensive two-dimensional gas chromatography (HTGC × GC) using a longitudinally modulated cryogenic system (LMCS) was developed for the analysis of low-volatility pesticides in cabbage. The method applied DB-17HT and DB-5HT as the first and second dimensional (1D and 2D) columns, respectively. Twelve pesticides, namely 6 organochlorines (4,4'-DDT, β-endosulfan, endosulfan sulfate, endrin, heptachlor, and dicofol), 4 carbamates (metolcarb, isoprocarb, methiocarb, and carbofuran), 1 organophosphate (chlorpyrifos), and 1 pyrethroid (permethrin), were spiked into cabbage samples and prepared using QuEChERS. The applied oven temperature was up to 340 °C, enabling the elution of all the target pesticides and the matrix. The effects of initial oven temperature program, temperature ramp rate, LMCS trap temperature, and modulation period (PM) on the separation results were investigated, leading to the suitable conditions of 80 °C, 15 °C min-1, 10 °C, and 12 s, respectively. The method detection limits, signal-to-noise ratio, and recoveries of the compounds were within the ranges of 0.01-0.09 mg kg-1, 4.26-32.7, and 78-104%, respectively. Good linearity ranges within the concentration range of 0.1-1 ppm with R2 > 0.9134 were also obtained with the intra and interday precisions of the peak areas of 0.4-9.8% and 1.0-10.2%, respectively.
Collapse
Affiliation(s)
- Pannipa Janta
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Bussaba Wongla
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilai Phayoonhong
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Oraphan Intarapanich
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chadin Kulsing
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Special Task Force for Activating Research (STAR) in Flavor Science, Chulalongkorn University, Phayatai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Mota MFS, Ferreira MJA, Novaes FJM, Marriott PJ, Rezende CM, Freitas SP. Natural crystallisation of tucuma (Astrocaryum vulgare Mart.) pulp olein. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Mota MFS, Waktola HD, Nolvachai Y, Marriott PJ. Gas chromatography ‒ mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Ali AH, Wei W, Khalifa SA, Zhang X, Wang X. Effect of pasteurisation, homogenisation and freeze‐drying on bovine and buffalo milk fat triacylglycerols profile. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abdelmoneim H Ali
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Salah A Khalifa
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
| | - Xinghe Zhang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
7
|
Multidimensional gas chromatographic‒Mass spectrometric method for separation and identification of triacylglycerols in olive oil. J Chromatogr A 2020; 1629:461474. [PMID: 32823012 DOI: 10.1016/j.chroma.2020.461474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
A 'heart-cut' multidimensional gas chromatography‒mass spectrometry (H/C MDGC‒MS) method for separation and identification of triacylglycerols (TAGs) in extra virgin olive oil was developed. A GC configuration, comprising a non-polar first dimension (1D) column (15 m length) and a mid-polarity second dimension (2D) column (9 m length), was employed. Standard TAGs were used to test and demonstrate the H/C MDGC method, for identification of TAG components and to validate the method. Various chromatographic conditions such as column flow and temperature program were evaluated. The 1D separation resulted in overlap of some standard TAG peaks. These overlapped 1D regions of the standard TAGs were H/C to 2D for further separation and resulted in clearly distinguished individual TAG component peaks. The 1D separation of olive oil TAGs displayed three major peaks and four minor peaks. The application of the H/C MDGC method to olive oil TAGs resulted in the separation of each sampled 1D region into two or more TAG peaks. TAG components in olive oil resolved on the 2D column were identified based on characteristic mass fragment ions such as [M-RCO2]+, [RCO+128]+, [RCO+74]+ and RCO+ and comparison of their mass spectra with that of the standard TAGs. Sixteen olive oil TAGs were identified by MS after 2D separation. The repeatability of the H/C method was evaluated in terms of retention time shift and area response in the 2D and found to be <0.02% and <8% RSD respectively.
Collapse
|
8
|
Qian Y, Rudzińska M, Grygier A, Przybylski R. Determination of Triacylglycerols by HTGC-FID as a Sensitive Tool for the Identification of Rapeseed and Olive Oil Adulteration. Molecules 2020; 25:molecules25173881. [PMID: 32858832 PMCID: PMC7504275 DOI: 10.3390/molecules25173881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Triacylglycerols (TGs) are the most common compounds in food lipids, accounting for 95% of the weight of edible oils. The aim of this study was to scrutinize a procedure for quantitatively assessing possible adulteration of olive and rapeseed oil through GC-FID analysis of TGs. The recovery of TG standards ranged from 21% to 148%, and the relative response factor (RRF) ranged from 0.42 to 2.28. The limits of detection were in the range of 0.001 to 0.330 µg/mL, and the limits of quantitation from 0.001 to 1.000 µg/mL. The validated method was used to determine the TGs in olive oil (OO), refined rapeseed oil (RRO), and their blends. Eight TGs were detected in refined rapeseed oil, and 10 in olive oil. The addition of 1% of olive oil to rapeseed oil or vice versa can be detected using this method. Three triacylglycerols were pinpointed as indicators of adulteration of rapeseed oil with olive oil (PPO, PPL, PSO). The method described here can be used for controlling the quality of these oils.
Collapse
Affiliation(s)
- Ying Qian
- Poznań University of Life Sciences, Poznań, Wojska Polskiego 28, 60-637 Poznań, Poland; (M.R.); (A.G.)
- Correspondence: ; Tel.: +1-0048-618-487-276
| | - Magdalena Rudzińska
- Poznań University of Life Sciences, Poznań, Wojska Polskiego 28, 60-637 Poznań, Poland; (M.R.); (A.G.)
| | - Anna Grygier
- Poznań University of Life Sciences, Poznań, Wojska Polskiego 28, 60-637 Poznań, Poland; (M.R.); (A.G.)
| | - Roman Przybylski
- University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
9
|
Advanced gas chromatography and mass spectrometry technologies for fatty acids and triacylglycerols analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Jialin Du, Pei X, Zhao H, Gong C, Xu X. Identification of Fatty Acids and Triacylglycerols in Schisandrae chinensis fructus Oil. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820080079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Analysis of triacylglycerols molecular species composition, total fatty acids, and sn-2 fatty acids positional distribution in different types of milk powders. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00182-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Du J, Gong C, Pei X, Zhao H, Xu X. Analysis of Triacylglycerols in Castor Oil Through Liquid Chromatography-Mass Spectrometry Based on Fourier Transform-Ion Cyclotron Resonance-Mass Spectrometry and Gas Chromatography-Mass Spectrometry. J Chromatogr Sci 2019; 57:108-115. [PMID: 30295712 DOI: 10.1093/chromsci/bmy088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Indexed: 11/14/2022]
Abstract
Castor oil is a traditional Chinese medicine containing a chemically complex mixture of triacylglycerols (TAGs). Herein, the TAGs in castor oil were analyzed in detail. First, the fatty acid composition of castor oil was examined via methylated derivatisation followed by gas chromatography-mass spectrometry (GC-MS). Then, using the fatty acid composition data, liquid chromatography-mass spectrometry (LC-MS) was applied to analyze the composition and relative content of TAGs. Nine TAGs were identified, wherein triricinolein (RRR) constituted ~81% of the total TAG content based on the peak areas. However, the TAGs in castor oil contain hydroxyl groups, which are incompatible with the equivalent carbon number (ECN) rule. Thus, an extended-ECN rule was expressed as E-ECN = CN (carbon number)-2·DB (double-bond number)-6·OH (hydroxyl group number) to characterize the retention of hydroxyl-containing TAGs in HPLC using a C18 column. Moreover, hydroxyl-containing TAGs may become dehydrated when analyzed using atmospheric pressure chemical ionization (APCI), which was confirmed via APCI Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). Thus, the TAGs in castor oil were accurately identified through LC-MS together with FT-ICR-MS and GC-MS.
Collapse
Affiliation(s)
- Jialin Du
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Can Gong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Xingli Pei
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Haiyan Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
13
|
Zhang SD, Gong C, Lu Y, Xu X. Separation of Triacylglycerols from Edible Oil Using a Liquid Chromatography-Mass Spectrometry System with a Porous Graphitic Carbon Column and a Toluene-Isopropanol Gradient Mobile Phase. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shi-Ding Zhang
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology, No. 100, Haiquan Road, Fengxian Qu; Shanghai 201418 China
| | - Can Gong
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology, No. 100, Haiquan Road, Fengxian Qu; Shanghai 201418 China
| | - Yan Lu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology, No. 100, Haiquan Road, Fengxian Qu; Shanghai 201418 China
| | - Xu Xu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology, No. 100, Haiquan Road, Fengxian Qu; Shanghai 201418 China
| |
Collapse
|
14
|
Waktola HD, Kulsing C, Nolvachai Y, Marriott PJ. High temperature multidimensional gas chromatographic approach for improved separation of triacylglycerols in olive oil. J Chromatogr A 2018; 1549:77-84. [DOI: 10.1016/j.chroma.2018.03.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
|
15
|
Novaes FJM, Kulsing C, Bizzo HR, de Aquino Neto FR, Rezende CM, Marriott PJ. Analysis of underivatised low volatility compounds by comprehensive two-dimensional gas chromatography with a short primary column. J Chromatogr A 2018; 1536:75-81. [DOI: 10.1016/j.chroma.2017.08.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/21/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
|
16
|
Tu A, Ma Q, Bai H, Du Z. A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS. Food Chem 2017; 221:555-567. [DOI: 10.1016/j.foodchem.2016.11.139] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/27/2016] [Accepted: 11/27/2016] [Indexed: 01/25/2023]
|
17
|
Rapid Quantification of Low-Viscosity Acetyl-Triacylglycerols Using Electrospray Ionization Mass Spectrometry. Lipids 2016; 51:1093-102. [PMID: 27497979 DOI: 10.1007/s11745-016-4179-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
Acetyl-triacylglycerols (acetyl-TAG) possess an sn-3 acetate group, which confers useful chemical and physical properties to these unusual triacylglycerols (TAG). Current methods for quantification of acetyl-TAG are time consuming and do not provide any information on the molecular species profile. Electrospray ionization mass spectrometry (ESI-MS)-based methods can overcome these drawbacks. However, the ESI-MS signal intensity for TAG depends on the aliphatic chain length and unsaturation index of the molecule. Therefore response factors for different molecular species need to be determined before any quantification. The effects of the chain length and the number of double-bonds of the sn-1/2 acyl groups on the signal intensity for the neutral loss of short chain length sn-3 groups were quantified using a series of synthesized sn-3 specific structured TAG. The signal intensity for the neutral loss of the sn-3 acyl group was found to negatively correlated with the aliphatic chain length and unsaturation index of the sn-1/2 acyl groups. The signal intensity of the neutral loss of the sn-3 acyl group was also negatively correlated with the size of that chain. Further, the position of the group undergoing neutral loss was also important, with the signal from an sn-2 acyl group much lower than that from one located at sn-3. Response factors obtained from these analyses were used to develop a method for the absolute quantification of acetyl-TAG. The increased sensitivity of this ESI-MS-based approach allowed successful quantification of acetyl-TAG in various biological settings, including the products of in vitro enzyme activity assays.
Collapse
|
18
|
Greer MS, Zhou T, Weselake RJ. A novel assay of DGAT activity based on high temperature GC/MS of triacylglycerol. Lipids 2014; 49:831-8. [PMID: 24934589 DOI: 10.1007/s11745-014-3921-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/23/2014] [Indexed: 11/25/2022]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG), a high-energy compound composed of three fatty acids esterified to a glycerol backbone. In vitro DGAT assays, which are usually conducted with radiolabeled substrate using microsomal fractions, have been useful in identifying compounds and genetic modifications that affect DGAT activity. Here, we describe a high-temperature gas chromatography (GC)/mass spectrometry (MS)-based method for monitoring molecular species of TAG produced by the catalytic action of microsomal DGAT. This method circumvents the need for radiolabeled or modified substrates, and only requires a simple lipid extraction prior to GC. The utility of the method is demonstrated using a recombinant type-1 Brassica napus DGAT produced in a strain of Saccharomyces cerevisae that is deficient in TAG synthesis. The GC/MS-based assay of DGAT activity was strongly correlated with the typical in vitro assay of the enzyme using [1-(14)C] acyl-CoA as an acyl donor. In addition to determining DGAT activity, the method is also useful for determining substrate specificity and selectivity properties of the enzyme.
Collapse
Affiliation(s)
- Michael S Greer
- Department of Agricultural, Food and Nutritional Science, Alberta Innovates Phytola Centre, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | | | | |
Collapse
|
19
|
Nováková L, Grand-Guillaume Perrenoud A, Francois I, West C, Lesellier E, Guillarme D. Modern analytical supercritical fluid chromatography using columns packed with sub-2μm particles: A tutorial. Anal Chim Acta 2014; 824:18-35. [DOI: 10.1016/j.aca.2014.03.034] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/16/2022]
|
20
|
Ruiz-Samblás C, González-Casado A, Cuadros-Rodríguez L. Triacylglycerols Determination by High-temperature Gas Chromatography in the Analysis of Vegetable Oils and Foods: A Review of the Past 10 Years. Crit Rev Food Sci Nutr 2013; 55:1618-31. [DOI: 10.1080/10408398.2012.713045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Ruiz-Samblás C, Arrebola-Pascual C, Tres A, van Ruth S, Cuadros-Rodríguez L. Authentication of geographical origin of palm oil by chromatographic fingerprinting of triacylglycerols and partial least square-discriminant analysis. Talanta 2013; 116:788-93. [DOI: 10.1016/j.talanta.2013.07.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
|
22
|
Bernal JL, Martín MT, Toribio L. Supercritical fluid chromatography in food analysis. J Chromatogr A 2013; 1313:24-36. [DOI: 10.1016/j.chroma.2013.07.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 01/05/2023]
|
23
|
Ruiz-Samblás C, Marini F, Cuadros-Rodríguez L, González-Casado A. Quantification of blending of olive oils and edible vegetable oils by triacylglycerol fingerprint gas chromatography and chemometric tools. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 910:71-7. [DOI: 10.1016/j.jchromb.2012.01.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 11/27/2022]
|
24
|
Bamba T, Lee JW, Matsubara A, Fukusaki E. Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J Chromatogr A 2012; 1250:212-9. [PMID: 22709604 DOI: 10.1016/j.chroma.2012.05.068] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
Abstract
This review describes the usefulness of supercritical fluid chromatography (SFC) for the metabolic profiling of lipids. First, non-targeted lipid profiling by SFC/MS is described. The use of SFC/MS allows for high-throughput, exhaustive analysis of diverse lipids, and hence, this technique finds potential applications in lipidomics. Development of a polar lipid profiling method with trimethylsilyl (TMS) derivatization widens the scope of applicability of SFC/MS. SFC is a high-resolution technique that is suitable for non-targeted profiling aimed at the simultaneous analysis of many components. Next, targeted lipid profiling by SFC/MS is described. SFC is useful for the separation of lipids, such as carotenoids and triacylglycerols, which have numerous analogs with similar structures. In addition, SFC/MS shows the maximum efficiency for the target analysis of lipids in a biological sample that includes many matrices. Finally, a high-resolution, high-throughput analytical system based on SFC/MS is stated to be suitable for lipidomics because it is useful not only for the screening of lipid mixtures (as a fingerprint method) but also for the detailed profiling of individual components.
Collapse
Affiliation(s)
- Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
25
|
Combining chromatography and chemometrics for the characterization and authentication of fats and oils from triacylglycerol compositional data—A review. Anal Chim Acta 2012; 724:1-11. [DOI: 10.1016/j.aca.2012.02.041] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 11/21/2022]
|
26
|
Rohman A, Che Man YB. Quantification and classification of corn and sunflower oils as adulterants in olive oil using chemometrics and FTIR spectra. ScientificWorldJournal 2012; 2012:250795. [PMID: 22448127 PMCID: PMC3289865 DOI: 10.1100/2012/250795] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/16/2011] [Indexed: 11/25/2022] Open
Abstract
Commercially, extra virgin olive oil (EVOO) is subjected to be adulterated with low-price oils having similar color to EVOO. Fourier transform infrared (FTIR) spectroscopy combined with chemometrics has been successfully used for classification and quantification of corn (CO) and sunflower oils (SFOs) in EVOO sets. The combined frequency regions of 3027–3000, 1076–860, and 790–698 cm−1 were used for classification and quantification of CO in EVOO; meanwhile, SFO was analyzed using frequency regions of 3025–3000 and 1400–985 cm−1. Discriminant analysis can make classification of pure EVOO and EVOO adulterated with CO and SFO with no misclassification reported. The presence of CO in EVOO was determined with the aid of partial least square calibration using FTIR normal spectra. The calibration and validation errors obtained in CO's quantification are 0.404 and 1.13%, respectively. Meanwhile, the first derivative FTIR spectra and PLS calibration model were preferred for quantification of SFO in EVOO with high coefficient of determination (R2) and low errors, either in calibration or in validation sample sets.
Collapse
Affiliation(s)
- Abdul Rohman
- Laboratory of Analytical Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281, Indonesia.
| | | |
Collapse
|
27
|
Lee JW, Yamamoto T, Uchikata T, Matsubara A, Fukusaki E, Bamba T. Development of a polar lipid profiling method by supercritical fluid chromatography/mass spectrometry. J Sep Sci 2011; 34:3553-60. [DOI: 10.1002/jssc.201100539] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Hellmuth C, Uhl O, Segura-Moreno M, Demmelmair H, Koletzko B. Determination of acylglycerols from biological samples with chromatography-based methods. J Sep Sci 2011; 34:3470-83. [DOI: 10.1002/jssc.201100556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/15/2022]
|
29
|
Murphy RC, Leiker TJ, Barkley RM. Glycerolipid and cholesterol ester analyses in biological samples by mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:776-83. [PMID: 21757029 DOI: 10.1016/j.bbalip.2011.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Neutral lipids are a diverse family of hydrophobic biomolecules that have important roles in cellular biochemistry of all living species but have in common the property of charge neutrality. A large component of neutral lipids is the glycerolipids composed of triacylglycerols, diacylglycerols, and monoacylglycerols that can serve as cellular energy stores as well as signaling molecules. Another abundant lipid class in many cells is the cholesterol esters that are on one hand sterols and the other fatty acyl lipids, but in either case are neutral lipids involved in cholesterol homeostasis and transport in the blood. The analysis of these molecules in the context of lipidomics remains challenging because of their charge neutrality and the complex mixtures of molecular species present in cells. Various techniques have been used to ionize these neutral lipids prior to mass spectrometric analysis including electron ionization, atmospheric chemical ionization, electrospray ionization and matrix assisted laser desorption/ionization. Various approaches to deal with the complex mixture of molecular species have been developed including shotgun lipidomics and chromatographic-based separations such as gas chromatography, reversed phase liquid chromatography, and normal phase liquid chromatography. Several applications of these approaches are discussed. .
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado, Denver, CO, USA.
| | | | | |
Collapse
|
30
|
Aiello D, De Luca D, Gionfriddo E, Naccarato A, Napoli A, Romano E, Russo A, Sindona G, Tagarelli A. Review: multistage mass spectrometry in quality, safety and origin of foods. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:1-31. [PMID: 21625027 DOI: 10.1255/ejms.1114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Quality and safety control and the validation of origin are hot issues in the production of food and its distribution, and are of primary concern to food and agriculture organization. Modern mass spectrometry (MS) provides unique, reliable and affordable methodologies to approach with a high degree of scientificity any problem which may be posed in this field. In this review the contribution of mass spectrometry to food analysis is presented aiming at providing clues on the fundamental role of the basic principles of gas-phase ion chemistry in applied research fields. Applications in proteomics, allergonomics, glycomics, metabolomics, lipidomics, food safety and traceability have been surveyed. The high level of specificity and sensitivity of the MS approach allows the characterization of food components and contaminants present at ultra-trace levels, providing a distinctive and safe validation of the products.
Collapse
Affiliation(s)
- Donatella Aiello
- Dipartimento di Chimica, Università della Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Multivariate analysis of HT/GC-(IT)MS chromatographic profiles of triacylglycerol for classification of olive oil varieties. Anal Bioanal Chem 2010; 399:2093-103. [DOI: 10.1007/s00216-010-4423-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/28/2010] [Accepted: 11/04/2010] [Indexed: 11/26/2022]
|