1
|
Thioflavin-modified molecularly imprinted hydrogel for fluorescent-based non-enzymatic glucose detection in wound exudate. Mater Today Bio 2022; 14:100258. [PMID: 35469256 PMCID: PMC9034389 DOI: 10.1016/j.mtbio.2022.100258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The concentration of glucose in the body's fluids is an important parameter that can indicate pathological conditions such as the progress of infected wounds. Several wearables and implantable detection approaches have been developed with high selectivity and sensitivity for glucose. However, all of them have drawbacks such as low stability, limited selectivity, and often require complex technology. In this work, we present a fluorescent-based cost-efficient imprinted hydrogel (MIH_GSH) capable of detecting glucose within 30 min. The imprinting approach allows us to improve the selectivity for glucose, overcoming the low specificity and limited binding efficiency at neutral pH of boronic acid-based detection mechanisms. The binding affinity determined for glucose-MIH_GSH was indeed 6-fold higher than the one determined for the non-imprinted hydrogel with a calculated imprinting factor of 1.7. The limit of detection of MIH_GSH for glucose in artificial wound exudate was calculated as 0.48 mM at pH 7.4 proving the suitability of the proposed approach to diagnose chronic wounds (ca. 1 mM). MIH_GSH was compared with a commercial colorimetric assay for the quantification of glucose in wound exudate specimens collected from hospitalized patients. The results obtained with the two methods were statistically similar confirming the robustness of our approach. Importantly, whereas with the colorimetric assay sample preparation was required to limit the interference of the sample background, the fluorescent signal of MIH_GSH was not affected even when used to measure glucose directly in bloody samples. The sensing mechanism here proposed can pave the way for the development of cost-efficient and wearable point-of-care tools capable of monitoring the glucose level in wound exudate enabling the quick assessment of chronic injuries. Highly sensitive and selective non-enzymatic approach to detect glucose in wound exudate. The fluorescent-based method ensured the detection of glucose in complex biological samples. The imprinting approach allowed overcoming the drawback of boronic acid-based methods. The cost-efficient approach is suitable for the development of point-of-care devices.
Collapse
|
2
|
Wen J, Song Z, Chen X, Li H. Fabrication of Porous Aluminum Coating by Cored Wire Arc Spray for Anchoring Antifouling Hydrogel Layer. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2021; 31:119-129. [PMID: 38624882 PMCID: PMC8373294 DOI: 10.1007/s11666-021-01251-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/18/2023]
Abstract
Biofouling has been persisting as a worldwide problem due to the difficulties in finding efficient environment-friendly antifouling coatings for long-term applications. Developing novel coatings with desired antifouling properties has been one of the research goals for surface coating community. Recently hydrogel coating was proposed to serve as antifouling layer, for it offers the advantages of the ease of incorporating green biocides, and resisting attachment of microorganisms by its soft surface. Yet poor adhesion of the hydrogel on steel surfaces is a big concern. In this study, porous matrix aluminum coatings were fabricated by cored wire arc spray, and the sizes of the pores in the aluminum (Al) coatings were controlled by altering the size of the cored powder of sodium chloride. Silicone hydrogel was further deposited on the porous coating. The hydrogel penetrated into the open pores of the porous Al coatings, and the porous Al structure significantly enhanced the adhesion of the hydrogel. In addition, hydrogel coating exhibited very encouraging antifouling properties.
Collapse
Affiliation(s)
- Jianxin Wen
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Ziheng Song
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Xiuyong Chen
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Hua Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| |
Collapse
|
3
|
Reda A, El-Safty SA, Selim MM, Shenashen MA. Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosens Bioelectron 2021; 185:113237. [PMID: 33932881 DOI: 10.1016/j.bios.2021.113237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/25/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
On-demand screening, real-time monitoring and rapid diagnosis of ubiquitous diseases, such as diabetes, at early stages are indispensable in personalised treatment. Emerging impacts of nano/microscale materials on optical and portable biosensor strips and devices have become increasingly important in the remarkable development of sensitive visualisation (i.e. visible inspection by the human eye) assays, low-cost analyses and personalised home testing of patients with diabetes. With the increasing public attention regarding the self-monitoring of diabetes, the development of visual readout, easy-to-use and wearable biosensors has gained considerable interest. Our comprehensive review bridges the practical assessment gap between optical bio-visualisation assays, disposable test strips, sensor array designs and full integration into flexible skin-based or contact lens devices with the on-site wireless signal transmission of glucose detection in physiological fluids. To date, the fully modulated integration of nano/microscale optical biosensors into wearable electronic devices, such as smartphones, is critical to prolong periods of indoor and outdoor clinical diagnostics. Focus should be given to the improvements of invasive, wireless and portable sensing technologies to improve the applicability and reliability of screen display, continuous monitoring, dynamic data visualisation, online acquisition and self and in-home healthcare management of patients with diabetes.
Collapse
Affiliation(s)
- Abdullah Reda
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P. O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
4
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
5
|
Liu J, Qu S, Suo Z, Yang W. Functional hydrogel coatings. Natl Sci Rev 2020; 8:nwaa254. [PMID: 34691578 PMCID: PMC8288423 DOI: 10.1093/nsr/nwaa254] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels—natural or synthetic polymer networks that swell in water—can be made mechanically, chemically and electrically compatible with living tissues. There has been intense research and development of hydrogels for medical applications since the invention of hydrogel contact lenses in 1960. More recently, functional hydrogel coatings with controlled thickness and tough adhesion have been achieved on various substrates. Hydrogel-coated substrates combine the advantages of hydrogels, such as lubricity, biocompatibility and anti-biofouling properties, with the advantages of substrates, such as stiffness, toughness and strength. In this review, we focus on three aspects of functional hydrogel coatings: (i) applications and functions enabled by hydrogel coatings, (ii) methods of coating various substrates with different functional hydrogels with tough adhesion, and (iii) tests to evaluate the adhesion between functional hydrogel coatings and substrates. Conclusions and outlook are given at the end of this review.
Collapse
Affiliation(s)
- Junjie Liu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaoxing Qu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
| | - Wei Yang
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Manickam P, Vashist A, Madhu S, Sadasivam M, Sakthivel A, Kaushik A, Nair M. Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H 2O 2. Bioelectrochemistry 2019; 131:107373. [PMID: 31525638 DOI: 10.1016/j.bioelechem.2019.107373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Smart electrochemical biosensors have emerged as a promising alternative analytical diagnostic tool in recent clinical practice. However, improvement in the biocompatibility and electrical conductivity of the biosensor matrix and the immobilization of various bioactive molecules such as enzymes still remain challenging. The present research reports the synthesis of a biocompatible hydrogel network and its integration with gold nanocubes (AuNCs) for developing a novel biosensor with improved functionality. The interpenetrating hydrogel network consist of biopolymers developed using graft co-polymerization of β-cyclodextrin (β-CD) and chitosan (CS). The novelty of this work is in integrating the CS-g-β-CD hydrogel network with conductive AuNCs for improving hydrogel conductivity, biosensor sensitivity and use of the material for a biocompatible sensor. The present protocol advances the state of the art for the utilization of biopolymeric hydrogels system in synergy with an enzymatic biosensing protocol for exclusively detecting hydrogen peroxide (H2O2). Immobilization of the mitochondrial protein, cytochrome c (cyt c) into the hydrogel nanocomposite matrix was performed via thiol cross-linking. This organic-inorganic hybrid nanocomposite hydrogel matrix exhibited high biocompatibility (RAW 264.7 and N2a cell lines), improved electrical conductivity to attain high sensitivity (1.2 mA mM-1 cm-2) and a low detection limit (15 × 10-9 M) for H2O2.
Collapse
Affiliation(s)
- Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India.
| | - Arti Vashist
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Sekar Madhu
- Department of Nanoscience & Technology, Bharathiar University, Coimbatore 641 046, India
| | - Mohanraj Sadasivam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Arunkumar Sakthivel
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ajeet Kaushik
- Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Madhavan Nair
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Deng W, Dai R, You C, Hu P, Sun X, Xiong X, Huang K, Huo F. In Situ Formation of a 3D Amorphous Cobalt- Borate Nanoarray: An Efficient Non-Noble Metal Catalytic Electrode for Non-Enzyme Glucose Detection. ChemistrySelect 2018. [DOI: 10.1002/slct.201800646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenqing Deng
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
- School of Chemical Engineering; Neijiang Normal University, Neijiang; Sichuan 610068, Sichuan China
| | - Rui Dai
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Chao You
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Pingyue Hu
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Xuping Sun
- Institute of Fundamental and Frontier Science; University of Electronic Science and Technology of China; Chendu 610054, Sichuan China
| | - Xiaoli Xiong
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Ke Huang
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Feng Huo
- School of Chemical Engineering; Neijiang Normal University, Neijiang; Sichuan 610068, Sichuan China
| |
Collapse
|
8
|
Malik MI, Shaikh H, Mustafa G, Bhanger MI. Recent Applications of Molecularly Imprinted Polymers in Analytical Chemistry. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1457541] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Ghulam Mustafa
- Sulaiman Bin Abdullah Aba Al-khail Center for Interdisciplinary Research in Basic Sciences (SACIRBS), International Islamic University, Islamabad, Pakistan
| | - Muhammad Iqbal Bhanger
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Giovannini G, Kunc F, Piras CC, Stranik O, Edwards AA, Hall AJ, Gubala V. Stabilizing silica nanoparticles in hydrogels: impact on storage and polydispersity. RSC Adv 2017. [DOI: 10.1039/c7ra02427d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For successful nanomedicine, it is important that the unique, size-dependent physico-chemical properties of the nanomaterial remain predictably constant during both the storage and the manipulation of the material.
Collapse
Affiliation(s)
| | - Filip Kunc
- Medway School of Pharmacy
- University of Kent
- Chatham
- UK
| | | | - Ondrej Stranik
- The Leibniz Institute of Photonic Technology (IPHT)
- 07745 Jena
- Germany
| | | | | | | |
Collapse
|
10
|
Usha SP, Shrivastav AM, Gupta BD. FO-SPR based dextrose sensor using Ag/ZnO nanorods/GOx for insulinoma detection. Biosens Bioelectron 2016; 85:986-995. [PMID: 27268014 DOI: 10.1016/j.bios.2016.05.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/22/2016] [Accepted: 05/24/2016] [Indexed: 01/19/2023]
Abstract
In this piece of work, a fiber optic sensor has been fabricated and characterized using surface plasmon resonance for dextrose sensing. The concentration range used in this study is for diagnosing the cases of hypoglycaemia especially in suppression tests of insulinoma. Insulinoma is a medical case in which the person is recognized being hypoglycaemic with the blood dextrose level falling down to 2.2mM or less. Thus, the sensor has been characterized for the dextrose concentration range of 0 mM-10mM including the cases of normal blood dextrose range. Coatings of silver layer and zinc oxide nanorods have been carried out on the bare core fiber with a dual role of zinc oxide followed by immobilization of glucose oxidase. A three stage optimization procedure has been adopted for the best performance of the sensor. Absorbance spectra have been plotted and peak absorbance wavelengths have been extracted for each concentration chosen along with the sensitivities. The results have been made conclusive with control experiments. The probe has also been tested on sample having blood serum to check the reliability of the sensor. The sensor shows better selectivity and response time along with its real time applications, online monitoring, remote sensing and reusability.
Collapse
Affiliation(s)
- Sruthi P Usha
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anand M Shrivastav
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Banshi D Gupta
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
11
|
Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ. Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1400010. [PMID: 27980900 PMCID: PMC5115280 DOI: 10.1002/advs.201400010] [Citation(s) in RCA: 433] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 05/19/2023]
Abstract
New technologies rely on the development of new materials, and these may simply be the innovative combination of known components. The structural combination of a polymer hydrogel network with a nanoparticle (metals, non-metals, metal oxides, and polymeric moieties) holds the promise of providing superior functionality to the composite material with applications in diverse fields, including catalysis, electronics, bio-sensing, drug delivery, nano-medicine, and environmental remediation. This mixing may result in a synergistic property enhancement of each component: for example, the mechanical strength of the hydrogel and concomitantly decrease aggregation of the nanoparticles. These mutual benefits and the associated potential applications have seen a surge of interest in the past decade from multi-disciplinary research groups. Recent advances in nanoparticle-hydrogel composites are herein reviewed with a focus on their synthesis, design, potential applications, and the inherent challenges accompanying these exciting materials.
Collapse
Affiliation(s)
- Praveen Thoniyot
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore
| | - Mein Jin Tan
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore
| | - Anis Abdul Karim
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore
| | - David James Young
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore; School of Science Monash University Malaysia Bandar Sunway 47500 Malaysia
| | - Xian Jun Loh
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore; Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
12
|
Sharma PS, Iskierko Z, Pietrzyk-Le A, D'Souza F, Kutner W. Bioinspired intelligent molecularly imprinted polymers for chemosensing: A mini review. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2014.11.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
13
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
14
|
Khan SA, Smith GT, Seo F, Ellerbee AK. Label-free and non-contact optical biosensing of glucose with quantum dots. Biosens Bioelectron 2014; 64:30-5. [PMID: 25189097 DOI: 10.1016/j.bios.2014.08.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022]
Abstract
We present a label-free, optical sensor for biomedical applications based on changes in the visible photoluminescence (PL) of quantum dots in a thin polymer film. Using glucose as the target molecule, the screening of UV excitation due to pre-absorption by the product of an enzymatic assay leads to quenching of the PL of quantum dots (QDs) in a non-contact scheme. The irradiance changes in QD PL indicate quantitatively the level of glucose present. The non-contact nature of the assay prevents surface degradation of the QDs, which yields an efficient, waste-free, cost-effective, portable, and sustainable biosensor with attractive market features. The limit of detection of the demonstrated biosensor is ~3.5 µm, which is competitive with existing contact-based bioassays. In addition, the biosensor operates over the entire clinically relevant range of glucose concentrations of biological fluids including urine and whole blood. The comparable results achieved across a range of cost-affordable detectors, including a spectrophotometer, portable spectrometer, and iPhone camera, suggest that label-free and visible quantification of glucose with QD films can be applied to low-cost, point-of-care biomedical sensing as well as scientific applications in the laboratory for characterizing glucose or other analytes.
Collapse
Affiliation(s)
- Saara A Khan
- E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gennifer T Smith
- E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Felix Seo
- E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Advanced Center for Laser Science and Spectroscopy, Department of Physics, Hampton University, Hampton, VA 23668, USA
| | - Audrey K Ellerbee
- E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Briand VA, Thilakarathne V, Kasi RM, Kumar CV. Novel surface plasmon resonance sensor for the detection of heme at biological levels via highly selective recognition by apo-hemoglobin. Talanta 2012; 99:113-8. [DOI: 10.1016/j.talanta.2012.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 01/18/2023]
|