1
|
Ma X, Ge Y, Xia N. Overview of the Design and Application of Dual-Signal Immunoassays. Molecules 2024; 29:4551. [PMID: 39407482 PMCID: PMC11477509 DOI: 10.3390/molecules29194551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Immunoassays have been widely used for the determination of various analytes in the fields of disease diagnosis, food safety, and environmental monitoring. Dual-signal immunoassays are now advanced and integrated detection technologies with excellent self-correction and self-validation capabilities. In this work, we summarize the recent advances in the development of optical and electrochemical dual-signal immunoassays, including colorimetric, fluorescence, surface-enhanced Raman spectroscopy (SERS), electrochemical, electrochemiluminescence, and photoelectrochemical methods. This review particularly emphasizes the working principle of diverse dual-signal immunoassays and the utilization of dual-functional molecules and nanomaterials. It also outlines the challenges and prospects of future research on dual-signal immunoassays.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Physical and Healthy Education, Nanchang Vocational University, Nanchang 330000, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yijing Ge
- Department of Physical and Healthy Education, Nanchang Vocational University, Nanchang 330000, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
2
|
Yuan W, Yuan H, Li R, Yong R, Mitrovic I, Lim EG, Duan S, Song P. A SERS nanocellulose-paper-based analytical device for ultrasensitive detection of Alzheimer's disease. Anal Chim Acta 2024; 1301:342447. [PMID: 38553119 DOI: 10.1016/j.aca.2024.342447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), one of the most prevalent neurodegenerative diseases, results in severe cognitive decline and irreversible memory loss. Early detection of AD is significant to patients for personalized intervention since effective cure and treatment methods for AD are still lacking. Despite the severity of the disease, existing highly sensitive AD detection methods, including neuroimaging and brain deposit-positive lesion tests, are not suitable for screening purposes due to their high cost and complicated operation. Therefore, these methods are unsuitable for early detection, especially in low-resource settings. Although regular paper-based microfluidics are cost-efficient for AD detection, they are restricted by a poor limit of detection (LOD). RESULTS To address the above limitations, we report the ultrasensitive and low-cost nanocellulose paper (nanopaper)-based analytical microfluidic devices (NanoPADs) for detecting one of the promising AD blood biomarkers (glial fibrillary acidic protein, GFAP) using Surface-enhanced Raman scattering (SERS) immunoassay. Nanopaper offers advantages as a SERS substrate, such as an ultrasmooth surface, high optical transparency, and tunable chemical properties. We detected the target GFAP in artificial serum, achieving a LOD of 150 fg mL-1. SIGNIFICANCE The developed NanoPADs are distinguished by their cost-efficiency and ease of implementation, presenting a promising avenue for effective early detection of AD's GFAP biomarker with ultrahigh sensitivity. More importantly, our work provides the experimental routes for SERS-based immunoassay of biomarkers on NanoPADs for various diseases in the future.
Collapse
Affiliation(s)
- Wenwen Yuan
- School of Advanced Technology, Xi'an Jiaotong - Liverpool University, 215123, Suzhou, China; Department of Electrical Engineering and Electronics, University of Liverpool, L69 7ZX, Liverpool, UK; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Hang Yuan
- School of Advanced Technology, Xi'an Jiaotong - Liverpool University, 215123, Suzhou, China
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Centre, Chinese 301 General Hospital, 100853, Beijing, China
| | - Ruiqi Yong
- School of Advanced Technology, Xi'an Jiaotong - Liverpool University, 215123, Suzhou, China
| | - Ivona Mitrovic
- Department of Electrical Engineering and Electronics, University of Liverpool, L69 7ZX, Liverpool, UK
| | - Eng Gee Lim
- School of Advanced Technology, Xi'an Jiaotong - Liverpool University, 215123, Suzhou, China; Department of Electrical Engineering and Electronics, University of Liverpool, L69 7ZX, Liverpool, UK
| | - Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong - Liverpool University, 215123, Suzhou, China; Department of Electrical Engineering and Electronics, University of Liverpool, L69 7ZX, Liverpool, UK; Key Laboratory of Bionic Engineering, Jilin University, 130022, Changchun, China
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong - Liverpool University, 215123, Suzhou, China; Department of Electrical Engineering and Electronics, University of Liverpool, L69 7ZX, Liverpool, UK.
| |
Collapse
|
3
|
Meng Y, Zhang Y, Liu J, Zhao L, Ren Q, Wang F, Li C. Dual-targeting surface-enhancement Raman scattering tags based on silver nanocubes for early diagnosis of pheochromocytoma. Anal Chim Acta 2023; 1256:341148. [PMID: 37037629 DOI: 10.1016/j.aca.2023.341148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Pheochromocytoma (PCC), a rare tumor, often develops distant metastases after diagnosis, delaying early intervention treatment. In order to overcome the limitations of traditional diagnostic methods, dual-targeting Surface-Enhancement Raman Scattering (SERS) cytosensor was developed to identify and detect PCC-CTCs from peripheral blood. Meta-iodobenzylguanidine (MIBG) and octreotide-2,2',2″,2'''- (1,4,7,10 -tetraazacyclododecane-1,4,7,10-tetrayl) tetraacetic acid (DOTA) functionalized magnetic Fe3O4 and Ag-DTNB were prepared as capture probe and signal probe for SERS signal export, respectively. Ag nanocubes (AgNCs) as Raman active substrate offer an enhanced electromagnetic field, which could effectively enhance the signal intensity of DTNB and potentially realize trace analyte detection. The obtained SERS fingerprint spectroscopy possessed the characteristic of high sensitivity and resolution in the concentration range from 3.0-3.0 × 106 cells mL-1, with a detection limit of 1 cell mL-1, which laterally compensated the deficiency of scarce CTCs in peripheral blood. This work provided new insight into PCC-CTCs accurate detection.
Collapse
|
4
|
Afshar SS, Ziarani GM, Mohajer F, Badiei A, Iravani S, Varma RS. Synthesis of Fumed-Pr-Pi-TCT as a Fluorescent Chemosensor for the Detection of Cyanide Ions in Aqueous Media. WATER 2022; 14:4137. [DOI: 10.3390/w14244137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this research, fumed silica scaffolds modified via treatment with (3-chloropropyl)-triethoxysilane, piperazine, and trichlorotriazine groups were deployed for the specific detection of cyanide ions, thus paving the way for the detection of environmental hazards and pollutants with high specificity. Fumed-propyl -piperazine-trichlorotriazine (fumed-Pr-Pi-TCT) was synthesized in three steps starting from fume silica. It was functionalized subsequently using 3-(choloropropyl)-trimethoxysilane, piperazine, and trichlorotriazine, and then, the product was characterized through several methods including Fourier-transform infrared spectroscopy (FTIR) spectrum, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Fumed-Pr-Pi-TCT was exposed as a nanoparticle sensor to a range of different anions in aqueous media. This novel sensor could detect cyanide ions as a hazardous material, with the limit of detection being 0.82 × 10−4 M.
Collapse
|
5
|
Density functional theoretical study, spectroscopic characterization and molecular docking of the diuretic drug, spironolactone, adsorbed on AuNPs surface and in-vitro studies based on anticancer activity studies against A549 lung cancer cell line. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
A novel sensing platform for the determination of alkaline phosphatase based on SERS-fluorescent dual-mode signals. Anal Chim Acta 2021; 1183:338989. [PMID: 34627514 DOI: 10.1016/j.aca.2021.338989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/20/2022]
Abstract
Alkaline phosphatase (ALP), as an important biomarker, is closely associated with various diseases. Multi-mode sensing platforms can combine the advantages of different technologies and solve their inherent or practical limitations. Herein, we developed a sensing platform for the determination of alkaline phosphatase (ALP) in human serum based on SERS-fluorescent dual-mode assay. Based on the fact that ALP can trigger the in-situ reaction between o-phenylenediamine (OPD) and ascorbic acid (AA), we connected gold nanoparticles (AuNPs) to 3,4-diaminobenzene-thiol (OPD(SH)) through an Au-S covalent bond to synthesize a nanoprobe (OPD(S)-AuNPs). The nanoprobe provides a unique interactive ammonium group for the diol group of AA, which was then used to generate an N-heterocyclic compound that can exhibit good SERS and fluorescence signals without adding SERS reporter and fluorophores or quantum dots (QDs). When being excited at different wavelengths as 360 nm and 785 nm, the fluorescence and SERS signals can be separately generated, which can avoid the disturbance from each other. The response of the fluorescence system was linear from 1.0 to 20 mU mL-1 (R2 = 0.994) with a detection limit of 0.3 mU mL-1, while that of the SERS system was linear from 0.5 to 10 mU mL-1 (R2 = 0.998) with a detection limit of 0.2 mU mL-1. The sensing platform developed was further employed in ALP inhibitor evaluation.
Collapse
|
7
|
Chen H, Luo C, Zhang S. Intracellular imaging and concurrent pH sensing of cancer-derived exosomes using surface-enhanced Raman scattering. Anal Bioanal Chem 2021; 413:4091-4101. [PMID: 34014359 DOI: 10.1007/s00216-021-03365-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Exosomes have attracted significant attention as cancer diagnostic targets and therapeutic agents due to their unique biogenesis and structure. To clarify the biological activities of exosomes, it is important to obtain a picture of their intracellular distribution and how they evolve over time. In this work, a new kind of intracellular exosome imaging and concurrent pH sensing method is demonstrated by using the surface-enhanced Raman scattering (SERS) technique. Specifically, 4-mercaptobenzoic acid (4MBA)-tagged silver nanoparticles are attached onto the outer surfaces of exosomes, in which silver nanoparticles are employed as SERS generators. Raman agents 4MBA are susceptible to a specific intracellular stimulus, that is, undergo a protonation or deprotonation in response to intracellular pH variation, which correspondingly exhibit different vibrational spectra features. By using the SERS spectroscopy, tracking of the intracellular distribution of exosomes and the concurrent quantitative sensing of environmental pH were achieved, which demonstrated that, as time prolonged, exosomes first attached with the tumor cell surfaces, and then entered into the cells and accumulated in lysosomes. Such SERS-active hybridized exosomes, that are sensitive to discrete variations in intracellular pH, have proved their capability for the investigation of interactions between exosomes and cells. The spectral diversity and flexible surface modification of these hybridized exosomes are also highly expected in developing multifunctional exosome-based nanoplatforms, which offers great potential to promote the exosome-based therapeutics forward into an advanced stage.
Collapse
Affiliation(s)
- Hui Chen
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Caixia Luo
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shangtao Zhang
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
8
|
V S, D R L, Joseph L, Sajan D. Investigations of Dianhydro-D-glucitol adsorbed on AuNPs surface: In silico and in vitro approach based on anticancer activity studies against A549 lung cancer cell lines. J Mol Recognit 2021; 34:e2899. [PMID: 33783052 DOI: 10.1002/jmr.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 11/06/2022]
Abstract
The adsorption behavior of a lung cancer agent, Dianhydro-D-glucitol (DIS) on gold nanoparticles (AuNPs) was studied using surface-enhanced Raman scattering techniques. The stabilized geometry, inter- and intra-molecular hydrogen bond, and harmonic vibrational wavenumbers of DIS and DIS adsorbed on AuNPs (DISA) surface have been investigated with the help of the density functional theory (DFT) method. The stability of the molecules arising from stereoelectronic interactions, leading to its bioactivity, has been confirmed using natural bond orbital (NBO) analysis, which was further substantiated by the narrow HOMO LUMO energy gap obtained for DISA, from frontier molecular orbital analysis as well as electronic spectral analysis. The molecular electrostatic potential analysis along with local and global reactivity descriptors predicts the reactive site of the molecules. Molecular docking study was performed to obtain information about protein-ligand reactions for DIS and DISA, with different cancer proteins. This study enlightens the potential of SERS agents for targeted drug delivery and photothermal. The in vitro cytotoxic effects of DPH and DPHA molecules on lung cancer cell lines were analyzed using the MTT assay and the SERS method.
Collapse
Affiliation(s)
- Shyni V
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, India
| | - Leenaraj D R
- Department of Physics, Mar Ivanios College, Thiruvananthapuram, India
| | - Lynnette Joseph
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, India
| | - D Sajan
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, India
| |
Collapse
|
9
|
Chen H, Luo C, Yang M, Li J, Ma P, Zhang X. Intracellular uptake of and sensing with SERS-active hybrid exosomes: insight into a role of metal nanoparticles. Nanomedicine (Lond) 2020; 15:913-926. [PMID: 32216580 DOI: 10.2217/nnm-2019-0419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Exosomes, known as novel biocompatible vesicles, have attracted much interest. This makes it urgent to observe exosomes at the visually cellular or subcellular levels. Methods: Herein, we constructed a new kind of exosome/metal nanohybrid and employed a surface-enhanced Raman scattering technique to study the intracellular behaviors of hybrid exosomes. Results: Experimental results revealed that hybrid exosomes were internalized mainly through clathrin-mediated endocytosis and thereafter transported to lysosomes. The metal nanoparticles in the hybrid were demonstrated to have little effect on exosomal characteristics while serving as surface-enhanced Raman scattering generators. Conclusion: This study is significant for removing the barrier in designing programmable exosome/metal nanohybrids, which will greatly improve the utility of exosomal nanohybrids for therapeutics, such as multifunctional drug-delivery systems.
Collapse
Affiliation(s)
- Hui Chen
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Caixia Luo
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Moyu Yang
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Junying Li
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Pei Ma
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| | - Xuedian Zhang
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, 200093, Shanghai, PR China
| |
Collapse
|
10
|
Maurer V, Frank C, Porsiel JC, Zellmer S, Garnweitner G, Stosch R. Step-by-step monitoring of a magnetic and SERS-active immunosensor assembly for purification and detection of tau protein. JOURNAL OF BIOPHOTONICS 2020; 13:e201960090. [PMID: 31721451 PMCID: PMC7065620 DOI: 10.1002/jbio.201960090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
We report a bottom-up synthesis of iron oxide and gold nanoparticles, which are functionalized and combined to form a nanohybrid serving as an immune sensor, which selectively binds to tau protein, a biomarker for diagnosis of Alzheimer's disease. Detection of the target analyte is achieved by surface-enhanced Raman scattering originating from the diagnostic part of the nanohybrid that was prepared from Au nanoparticles functionalized with 5,5'-dithiobis-(2-nitrobenzoic acid) as a Raman reporter and monoclonal anti-tau antibody. The magnetic part consists of Fex Oy nanoparticles functionalized with polyclonal anti-tau antibody and is capable to separate tau protein from a complex matrix such as cerebrospinal fluid. We further identified and validated a set of analytical tools that allow monitoring the success of both nanoparticle preparation and each functionalization step performed during the assembly of the two binding sites by an immune reaction. By applying UV/Vis spectroscopy, dynamic light scattering, zeta potential measurements, X-ray diffraction, small-angle X-ray scattering, and transmission electron microscopy, we demonstrate a proof-of-concept for a controlled and step-by-step traceable synthesis of a tau protein-specific immune sensor.
Collapse
Affiliation(s)
- Viktor Maurer
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Laboratory for Emerging Nanometrology (LENA)Technische Universität BraunschweigBraunschweigGermany
- Physikalisch‐Technische Bundesanstalt (PTB)BraunschweigGermany
| | - Claudia Frank
- Physikalisch‐Technische Bundesanstalt (PTB)BraunschweigGermany
| | - Julian Cedric Porsiel
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
- Physikalisch‐Technische Bundesanstalt (PTB)BraunschweigGermany
| | - Sabrina Zellmer
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
- Fraunhofer Institute for Surface Engineering and Thin Films (IST)BraunschweigGermany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigBraunschweigGermany
- Laboratory for Emerging Nanometrology (LENA)Technische Universität BraunschweigBraunschweigGermany
| | - Rainer Stosch
- Laboratory for Emerging Nanometrology (LENA)Technische Universität BraunschweigBraunschweigGermany
- Physikalisch‐Technische Bundesanstalt (PTB)BraunschweigGermany
| |
Collapse
|
11
|
Talebzadeh S, Queffélec C, Knight DA. Surface modification of plasmonic noble metal-metal oxide core-shell nanoparticles. NANOSCALE ADVANCES 2019; 1:4578-4591. [PMID: 36133114 PMCID: PMC9443677 DOI: 10.1039/c9na00581a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 05/31/2023]
Abstract
A comprehensive survey on the methods for the surface modification of plasmonic noble metal-metal oxide core-shell nanoparticles is presented. The review highlights various strategies for covalent attachment and electrostatic binding of molecules and molecular ions to core-shell nanoparticles with a focus on plasmonically active silver and gold nanoparticles encapsulated by SiO2 and TiO2 shells.
Collapse
Affiliation(s)
- Somayeh Talebzadeh
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology 150 West University Boulevard Melbourne Florida 32901 USA
| | | | - D Andrew Knight
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology 150 West University Boulevard Melbourne Florida 32901 USA
| |
Collapse
|
12
|
Wang C, Wang C, Wang X, Wang K, Zhu Y, Rong Z, Wang W, Xiao R, Wang S. Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19495-19505. [PMID: 31058488 DOI: 10.1021/acsami.9b03920] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid and early diagnosis of respiratory viruses is key to preventing infections from spreading and guiding treatments. Here, we developed a sensitive and quantitative surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of influenza A H1N1 virus and human adenovirus (HAdV) by using Fe3O4@Ag nanoparticles as magnetic SERS nanotags. The new type of Fe3O4@Ag magnetic tags, which were conjugated with dual-layer Raman dye molecules and target virus-capture antibodies, performs the following functions: specific recognition and magnetic enrichment of target viruses in the solution and SERS detection of the viruses on the strip. Based on this strategy, the magnetic SERS strip can directly be used for real biological samples without any sample pretreatment steps. The limits of detection for H1N1 and HAdV were 50 and 10 pfu/mL, respectively, which were 2000 times more sensitive than those from the standard colloidal gold strip method. Moreover, the proposed strip is easy to operate, rapid, stable, and can achieve high throughput and is thus a potential tool for early detection of virus infection.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Chaoguang Wang
- College of Mechatronics Engineering and Automation , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Xiaolong Wang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| | - Keli Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yanhui Zhu
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Zhen Rong
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | | | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Shengqi Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
13
|
Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens Bioelectron 2019; 130:204-213. [DOI: 10.1016/j.bios.2019.01.039] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 12/19/2022]
|
14
|
Sun J, Zhao Y, Hou Y, Li H, Yang M, Wang Y, Sun B. Multiplexed electrochemical and SERS dual-mode detection of stroke biomarkers: rapid screening with high sensitivity. NEW J CHEM 2019. [DOI: 10.1039/c9nj01598a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this work, a real-time assay for a highly sensitive, label-free, multiplexed electrochemical and surface-enhanced Raman spectroscopic (SERS) detection of stroke biomarkers by neuron-specific enolase (NSE) and S100-β protein was developed using lateral flow devices.
Collapse
Affiliation(s)
- Jingyi Sun
- Wonju Severance Christian Hospital
- Yonsei University Wonju College of Medicine
- Wonju
- Republic of Korea
| | - Yi Zhao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong
- Department of Neurology, Second Affiliated Hospital
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian
- China
| | - Yajun Hou
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong
- Department of Neurology, Second Affiliated Hospital
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian
- China
| | - Hanxia Li
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong
- Department of Neurology, Second Affiliated Hospital
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian
- China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong
- Department of Neurology, Second Affiliated Hospital
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian
- China
| | - Ying Wang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong
- Department of Neurology, Second Affiliated Hospital
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian
- China
| | - Baoliang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong
- Department of Neurology, Second Affiliated Hospital
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian
- China
| |
Collapse
|
15
|
Yang M, Liu G, Mehedi HM, Ouyang Q, Chen Q. A universal SERS aptasensor based on DTNB labeled GNTs/Ag core-shell nanotriangle and CS-Fe 3 O 4 magnetic-bead trace detection of Aflatoxin B1. Anal Chim Acta 2017; 986:122-130. [DOI: 10.1016/j.aca.2017.07.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
16
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
17
|
Hyde EDER, Seyfaee A, Neville F, Moreno-Atanasio R. Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways: A Review. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01839] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emily D. E. R. Hyde
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ahmad Seyfaee
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Frances Neville
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Roberto Moreno-Atanasio
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
18
|
Zhang X, Sui H, Wang X, Su H, Cheng W, Wang X, Zhao B. Charge transfer process at the Ag/MPH/TiO2interface by SERS: alignment of the Fermi level. Phys Chem Chem Phys 2016; 18:30053-30060. [DOI: 10.1039/c6cp04370d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A nanoscale metal–molecule–semiconductor assembly (Ag/4-mercaptophenol/TiO2) has been fabricated over Au nanoparticle (NP) films as a model to study the interfacial charge transfer (CT) effects involved in Ag/MPH/TiO2.
Collapse
Affiliation(s)
- Xiaolei Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Huimin Sui
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Hongyang Su
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Weina Cheng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Xu Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
19
|
Affiliation(s)
- Wen Zhou
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xia Gao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Yang J, Zhen L, Ren F, Campbell J, Rorrer GL, Wang AX. Ultra-sensitive immunoassay biosensors using hybrid plasmonic-biosilica nanostructured materials. JOURNAL OF BIOPHOTONICS 2015; 8:659-67. [PMID: 25256544 PMCID: PMC4758816 DOI: 10.1002/jbio.201400070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/12/2014] [Accepted: 09/08/2014] [Indexed: 05/24/2023]
Abstract
We experimentally demonstrate an ultra-sensitive immunoassay biosensor using diatom biosilica with self-assembled plasmonic nanoparticles. As the nature-created photonic crystal structures, diatoms have been adopted to enhance surface plasmon resonances of metal nanoparticles on the surfaces of diatom frustules and to increase the sensitivity of surface-enhanced Raman scattering (SERS). In this study, a sandwich SERS immunoassay is developed based on the hybrid plasmonic-biosilica nanostructured materials that are functionalized with goat anti-mouse IgG. Our experimental results show that diatom frustules improve the detection limit of mouse IgG to 10 pg/mL, which is ˜100× better than conventional colloidal SERS sensors on flat glass. Ultra-sensitive immunoassay biosensor using diatom biosilica with self-assembled plasmonic nanoparticles.
Collapse
Affiliation(s)
- Jing Yang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, 97331, USA
| | - Le Zhen
- School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, 97331, USA
| | - Fanghui Ren
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, 97331, USA
| | - Jeremy Campbell
- School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, 97331, USA
| | - Gregory L Rorrer
- School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, 97331, USA.
| | - Alan X Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, 97331, USA.
| |
Collapse
|
21
|
Guven B, Boyaci IH, Tamer U, Acar-Soykut E, Dogan U. Development of rolling circle amplification based surface-enhanced Raman spectroscopy method for 35S promoter gene detection. Talanta 2015; 136:68-74. [PMID: 25702987 DOI: 10.1016/j.talanta.2014.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/22/2014] [Indexed: 02/03/2023]
Abstract
In this study, we developed the genetically modified organism detection method by using the combination of rolling circle amplification (RCA) and surface-enhanced Raman spectroscopy (SERS). An oligonucleotide probe which is specific for 35S DNA promoter target was immobilised onto the gold slide and a RCA reaction was performed. A self-assembled monolayer was formed on gold nanorods using 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and the second probe of the 35S DNA promoter target was immobilised on the activated gold coated slide surfaces. Probes on the nanoparticles were hybridised with the target oligonucleotide. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. SERS spectra of target molecules were enhanced through the RCA reaction and the detection limit was found to be 6.3fM. The sensitivity of the developed RCA-SERS method was compared with another method which had been performed without using RCA reaction, and the detection limit was found to be 0.1pM. The correlation between the target concentration and the SERS signal was found to be linear, within the range of 1pM to 10nM for the traditional assay and 100fM to 100nM for the RCA assay. For the developed RCA-SERS assay, the specificity tests were performed using the 35S promoter of Bt-176 maize gene. It was found out that the developed RCA-SERS sandwich assay method is quite sensitive, selective and specific for target sequences in model and real systems.
Collapse
Affiliation(s)
- Burcu Guven
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Ismail Hakki Boyaci
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Food Research Center, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
| | - Esra Acar-Soykut
- Food Research Center, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Uzeyir Dogan
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
| |
Collapse
|
22
|
Lu W, Wang Y, Cao X, Li L, Dong J, Qian W. Multiplexing determination of lung cancer biomarkers using electrochemical and surface-enhanced Raman spectroscopic techniques. NEW J CHEM 2015. [DOI: 10.1039/c5nj00445d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reliable immunosensor for simultaneous detection of carcinoembryonic antigen and cytokeratin-19 by complementary advantages of the electrochemical and SERS technologies.
Collapse
Affiliation(s)
- Wenbo Lu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Ying Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Xiaowei Cao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Li Li
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Jian Dong
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
23
|
Yang J, Ren F, Chong X, Fan D, Chakravarty S, Wang Z, Chen RT, Wang AX. Guided-Mode Resonance Grating with Self-Assembled Silver Nanoparticles for Surface-Enhanced Raman Scattering Spectroscopy. PHOTONICS 2014; 1:380-389. [PMID: 26958546 PMCID: PMC4779645 DOI: 10.3390/photonics1040380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We designed and fabricated guided-mode resonance (GMR) gratings on indium-tin-oxide (ITO) thin film to generate a significantly enhanced local electric field for surface-enhanced Raman scattering (SERS) spectroscopy. Ag nanoparticles (NPs) were self-assembled onto the surface of the grating, which can provide a large amount of "hot-spots" for SERS sensing. The ITO gratings also exhibit excellent tolerance to fabrication deviations due to the large refractive index contrast of the ITO grating. Quantitative experimental results of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) demonstrate the best enhancement factor of ~14× on ITO gratings when compared with Ag NPs on a flat ITO film, and the limit of detection (LOD) of DTNB is as low as 10 pM.
Collapse
Affiliation(s)
- Jing Yang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Fanghui Ren
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Xinyuan Chong
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Donglei Fan
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | | | - Zheng Wang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78758, USA
| | - Ray T. Chen
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78758, USA
| | - Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-541-737-4274; Fax: +1-541-737-1300
| |
Collapse
|
24
|
pH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron 2014; 57:10-5. [DOI: 10.1016/j.bios.2014.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
|
25
|
Shu L, Zhou J, Yuan X, Petti L, Chen J, Jia Z, Mormile P. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Talanta 2014; 123:161-8. [DOI: 10.1016/j.talanta.2014.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/27/2014] [Accepted: 02/02/2014] [Indexed: 11/27/2022]
|
26
|
Wang J, Shah ZH, Zhang S, Lu R. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. NANOSCALE 2014; 6:4418-37. [PMID: 24562100 DOI: 10.1039/c3nr06025j] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field.
Collapse
Affiliation(s)
- Jiasheng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | | | | | | |
Collapse
|
27
|
Niu X, Chen H, Wang Y, Wang W, Sun X, Chen L. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5152-60. [PMID: 24617579 DOI: 10.1021/am500411m] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorescent-surface enhanced Raman scattering (F-SERS) dual mode tags showed great potential for bioimaging due to the combined advantages of intuitive, fast imaging of fluorescence and multiplex capability of SERS technique. In previously reported F-SERS tags, organic fluorescent dyes or quantum dots were generally selected to generate fluorescence signal. Herein, we reported the first proof-of-concept upconversion fluorescence (UCF)-SERS dual mode tags based on near infrared (NIR) laser (980 nm) excited upconversion nanoparticles (UCNPs) for live-cell and in vivo imaging. Three components involved in this tag: NaYF4:Yb,Er UCNPs@SiO2 serving as the fluorescent core of the tag; silver nanoparticles in situ grown on the surface of UCNPs@SiO2 for generating characteristic Raman signal; and denatured BSA coating rendering the tag's stability and biocompatibility. The UCF-SERS tags integrated the NIR imaging capability of both fluorescent UCNPs and plasmonic SERS nanoprobe, which facilitated dual mode bioimaging investigation, especially for living animals. Ex vivo experiments revealed that with 980 nm and 785 nm NIR laser irradiations, the UCF and SERS signals of the tags could be detected from 3 and 7 mm deep pork tissues, respectively. Furthermore, the in vivo imaging capabilities of UCF-SERS tags were successfully demonstrated on living mice. The developed dual modality tags held great potential for medical diagnostics and therapy.
Collapse
Affiliation(s)
- Xiaojuan Niu
- School of Pharmacy, Yantai University , Yantai 264005, China
| | | | | | | | | | | |
Collapse
|
28
|
Magnetically controllable dual-mode nanoprobes for cell imaging with an onion-liked structure. Talanta 2013; 116:978-84. [PMID: 24148504 DOI: 10.1016/j.talanta.2013.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/04/2013] [Accepted: 08/11/2013] [Indexed: 11/20/2022]
Abstract
A magnetically controllable dual-mode optical probe is demonstrated for cellular imaging with an onion-liked structure, which can exhibit both surface enhanced Raman scattering (SERS) and fluorescence signals. For obtaining such a nanoprobe, Fe3O4 nanoparticles were first encapsulated into an inner layer of silica, which were then coated with a second layer of gold nanoshell (designated as Fe3O4@SiO2@Au). By adjusting the thickness of the gold shell, the surface plasmon resonance (SPR) of Fe3O4@SiO2@Au nanoparticles can be easily tuned from visible to near-infrared (NIR) region. Afterwards, the prepared Fe3O4@SiO2@Au nanoparticles were tagged with a third layer of Raman reporters to exhibit SERS signals and further coated with an outmost layer of dye-doped silica to generate fluorescence. When being excited at different wavelengths as 515nm and 633nm, the distinct fluorescence and SERS signals can be separately observed. More interestingly, an enhanced cellular uptake of the presented nanoprobes was observed in the presence of a magnetic field, which was proved by both fluorescence and SERS images. This onion-liked multi-modal nanoplatform has great potential in bio-imaging, targeted delivery applications and biological separations.
Collapse
|
29
|
Ultrasensitive electrochemiluminescent immunosensor based on dual signal amplification strategy of gold nanoparticles-dotted graphene composites and CdTe quantum dots coated silica nanoparticles. Anal Bioanal Chem 2013; 405:4921-9. [DOI: 10.1007/s00216-013-6885-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 12/16/2022]
|
30
|
Zong S, Wang Z, Zhang R, Wang C, Xu S, Cui Y. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads. Biosens Bioelectron 2013; 41:745-51. [DOI: 10.1016/j.bios.2012.09.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/19/2012] [Accepted: 09/27/2012] [Indexed: 12/12/2022]
|
31
|
Affiliation(s)
- Yunqing Wang
- Key Laboratory of Coastal Zone
Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bing Yan
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan
250100, China
| | - Lingxin Chen
- Key Laboratory of Coastal Zone
Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
32
|
A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core–shell nanorods. Talanta 2012; 97:368-75. [DOI: 10.1016/j.talanta.2012.04.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
|