1
|
Solomonenko AN, Dorozhko EV, Barek J, Korotkova EI, Semin VO, Erkovich AV, Aseeva NV. Adsorptive stripping voltammetric determination of carbofuran in food using novel type of modified carbon-based electrode with grafted layers of nickel. Talanta 2024; 267:125116. [PMID: 37714038 DOI: 10.1016/j.talanta.2023.125116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
A voltammetric determination of carbofuran (CBF) was developed using a novel type of carbon-containing electrode (CCE) modified with carbon ink (CI) and a chromatographic sorbent (CS) based of chromaton (Ch), polyethylene glycol and nickel acetylacetonate with grafted layers of nickel (NiCS, stands for Ni modified CS) further denoted as CI/NiCS/CCE. The surface morphology of this modified electrode was investigated by scanning electron microscopy (SEM) and by electrochemical impedance spectroscopy (EIS). CBF which is not electrochemically oxidizable was first hydrolyzed in alkaline medium to give anodically active phenolic analogue CBFP. The electrochemical reactions of CBFP at CI/NiCS/CCE were studied in phosphate buffer (PB) by cyclic voltammetry (CV) and linear sweep adsorptive stripping voltammetry (LSAdSV) using linear scan voltammetry in the first derivative mode (LSVFD). Linear concentration dependences in the concentration ranges from 0.1 to 10 μM and from 10 to 100 μM were obtained by the LSAdSV with limit of detection (LOD) and limit of quantification (LOQ) 0.06 and 0.19 μM, respectively. The novel modified CI/NiCS/CCE showed good stability and selectivity and was successfully used to determine CBF in real samples of vegetables and fruits with LOD 0.01 mg kg-1.
Collapse
Affiliation(s)
- A N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - E V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - J Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic.
| | - E I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - V O Semin
- Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Pr. Akademicheskii 2/4, 634055, Tomsk, Russia
| | - A V Erkovich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| | - N V Aseeva
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia
| |
Collapse
|
2
|
Lekshmi CL, Swathy US, Vijayan K, Simimole H, Sumalekshmy S. Graphene Quantum Dots Derived from Honey and Mangostin as Sustainable Materials to Construct Fluorescence Turn‐On Molecular Switches for Pesticide Detection. ChemistrySelect 2023. [DOI: 10.1002/slct.202204869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
| | | | - Keerthi Vijayan
- Post Graduate and Research Department of Chemistry T. K. M. College of Arts and Science Karicode Kollam Kerala India - 691005
| | - Haleema Simimole
- Post Graduate and Research Department of Chemistry T. K. M. College of Arts and Science Karicode Kollam Kerala India - 691005
| | - Sarojiniamma Sumalekshmy
- Post Graduate and Research Department of Chemistry T. K. M. College of Arts and Science Karicode Kollam Kerala India - 691005
| |
Collapse
|
3
|
Pei J, Ren T, Huang Y, Chen R, Jin W, Shang S, Wang J, Liu Z, Liang Y, Abd El-Aty AM. Application of Graphene and its Derivatives in Detecting Hazardous Substances in Food: A Comprehensive Review. Front Chem 2022; 10:894759. [PMID: 35864869 PMCID: PMC9295186 DOI: 10.3389/fchem.2022.894759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Graphene and its derivatives have been a burning issue in the last 10 years. Although many reviews described its application in electrochemical detection, few were focused on food detection. Herein, we reviewed the recent progress in applying graphene and composite materials in food detection during the past 10 years. We pay attention to food coloring materials, pesticides, antibiotics, heavy metal ion residues, and other common hazards. The advantages of graphene composites in electrochemical detection are described in detail. The differences between electrochemical detection involving graphene and traditional inherent food detection are analyzed and compared in depth. The results proved that electrochemical food detection based on graphene composites is more beneficial. The current defects and deficiencies in graphene composite modified electrode development are discussed, and the application prospects and direction of graphene in future food detection are forecasted.
Collapse
Affiliation(s)
- Jinjin Pei
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| | - Ting Ren
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yigang Huang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Rui Chen
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Wengang Jin
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Shufeng Shang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Jinze Wang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhe Liu
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yinku Liang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| |
Collapse
|
4
|
Chen S, Yu Y, Ma J, Wen C, Wang X, Zhou Q. Simultaneous determination of carbofuran and 3-hydroxycarbofuran in duck liver by an UPLC-MS/MS. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2020.00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractCarbofuran is a carbamate pesticide, a broad-spectrum, high-efficiency, low-residue, and highly toxic insecticide, acaricide, and nematicide, widely used in agriculture. Carbofuran is most harmful to birds, and birds or insects killed by furan poisoning can be killed by secondary poisoning after being foraged by raptors, small mammals, or reptiles. In this paper, an UPLC-MS/MS method was developed for the determination of carbofuran and its metabolite, 3-hydroxycarbofuran, in duck liver. Liver tissue was first ground into a homogenate and then passed through ethyl acetate liquid-liquid extraction processing samples. Multiple reaction monitoring (MRM) mode was used for quantitative analysis, m/z 222.1 → 165.1 for carbofuran, m/z 238.1 → 180.9 for 3-hydroxycarbofuran and m/z 290.2 → 198.2 for an internal standard. The standard curves of carbofuran and 3-hydroxycarbofuran in duck liver were within a range of 2–2000 ng/g, where the linearity was good, the lower limit of quantification was 2 ng/g. The intra-day precision of carbofuran and 3-hydroxycarbofuran was <14%, and the inter-day precision was <13%, the accuracy range was between 91.8 and 108.9%, the average extraction efficiency was higher than 75.1% with a matrix effect between 93.4 and 107.7%. The developed method was applied to a situation of suspected duck poisoning at a local farm.
Collapse
Affiliation(s)
- Siyuan Chen
- 1Institute of Forensic Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Yu
- 2Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianshe Ma
- 1Institute of Forensic Science, Wenzhou Medical University, Wenzhou 325000, China
- 2Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Congcong Wen
- 1Institute of Forensic Science, Wenzhou Medical University, Wenzhou 325000, China
- 2Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianqin Wang
- 1Institute of Forensic Science, Wenzhou Medical University, Wenzhou 325000, China
- 2Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Quan Zhou
- 3The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| |
Collapse
|
5
|
Lan J, Wang M, Ding S, Fan Y, Diao X, Li QX, Zhao H. Simultaneous detection of carbofuran and 3-hydroxy-carbofuran in vegetables and fruits by broad-specific monoclonal antibody-based ELISA. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1664997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jianqiang Lan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, Hainan University, Haikou, People’s Republic of China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, People’s Republic of China
| | - Mifang Wang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, People’s Republic of China
| | - Shang Ding
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, People’s Republic of China
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, Hainan University, Haikou, People’s Republic of China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, People’s Republic of China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, USA
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, Hainan University, Haikou, People’s Republic of China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, People’s Republic of China
| |
Collapse
|
6
|
Promising post-consumer PET-derived activated carbon electrode material for non-enzymatic electrochemical determination of carbofuran hydrolysate. Sci Rep 2018; 8:13151. [PMID: 30177713 PMCID: PMC6120898 DOI: 10.1038/s41598-018-31627-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/20/2018] [Indexed: 11/30/2022] Open
Abstract
In this work, activated carbon (AC) materials, prepared from polyethylene terephthalate (PET) waste bottles were used as the sensing platform for the indirect detection of carbofuran. The morphology and surface properties of the PET-derived AC (PET-AC) were characterized by N2 adsorption/desorption isotherm, X-ray diffraction (XRD), field-emission scanning/transmission electron microscopy (FE-SEM/TEM) and Raman spectroscopy. The electrochemical activity of the PET-AC modified glassy carbon electrode (GCE) (PET-AC/GCE) was measured by cyclic voltammetry and amperometry. The enhanced surface area and desirable porosities of PET-AC are attributed for the superior electrocatalytic activity on the detection of carbofuran phenol, where, the proposed sensor shows low detection limit (0.03 µM) and remarkable sensitivity (0.11 µA µM−1 cm−2). The PET-AC/GCE holds high selectivity towards potentially interfering species. It also provides desirable stability, repeatability and reproducibility on detection of carbofuran phenol. Furthermore, the proposed sensor is utilized for the detection of carbofuran phenol in real sample applications. The above mentioned unique properties and desirable electrochemical performances suggest that the PET-derived AC is the most suitable carbonaceous materials for cost-effective and non-enzymatic electrochemical sensor.
Collapse
|
7
|
Li S, Li J, Luo J, Xu Z, Ma X. A microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran. Mikrochim Acta 2018; 185:295. [PMID: 29752543 DOI: 10.1007/s00604-018-2835-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 10/16/2022]
Abstract
An electrochemical microfluidic chip is described for the determination of the insecticide carbofuran. It is making use of a molecularly imprinted film (MIP) and a DNA aptamer as dual recognition units. The analyte (carbofuran) is transported to the MIP and captured at the identification site in the channel. Then, carbofuran is eluted with carbinol-acetic acid and transported to the DNA aptamer on the testing position of the chip. It is captured again, this time by the aptamer, and detected by differential pulse voltammetry (DPV). The dual recognition (by aptamer and MIP) results in outstanding selectivity. Additionally, graphene oxide-supported gold nanoparticles (GO-AuNPs) were used to improve the sensitivity of electrochemical detector. DPV response is linear in the 0.2 to 50 nM carbofuran concentration range at a potential of -1.2 V, with a 67 pM detection limit. The method has attractive features such as its potential for high throughput, high degree of automation, and high integration. Conceivably, the method may be extended to other analytes for which appropriate MIPs and aptamers are available. Graphical abstract Schematic of an electrochemical microfluidic chip for carbofuran detection based on a molecularly imprinted film (MIP) and a DNA aptamer as dual recognition units. In the chip, targets were recognized by MIP and aptamer, respectively. It shows promising potential for the design of electrochemical devices with high throughput, high automation, and high integration.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, GuilinUniversity of Technology, Guilin, 541004, China
| | - Jinhui Luo
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Zhi Xu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Xionghui Ma
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| |
Collapse
|
8
|
Zhang XH, Deng Y, Zhao MZ, Zhou YL, Zhang XX. Highly-sensitive detection of eight typical fluoroquinolone antibiotics by capillary electrophoresis-mass spectroscopy coupled with immunoaffinity extraction. RSC Adv 2018. [DOI: 10.1039/c7ra12557g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An off-line procedure, immunoaffinity extraction (IAE), followed by capillary electrophoresis-mass spectroscopy (CE-MS) has been developed for the simultaneous determination of eight typical FQs in environmental water samples.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yan Deng
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Ming-Zhe Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
9
|
Jirasirichote A, Punrat E, Suea-Ngam A, Chailapakul O, Chuanuwatanakul S. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta 2017; 175:331-337. [DOI: 10.1016/j.talanta.2017.07.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
10
|
Highly sensitive microcantilever-based immunosensor for the detection of carbofuran in soil and vegetable samples. Food Chem 2017; 229:432-438. [DOI: 10.1016/j.foodchem.2017.02.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
|
11
|
A novel miniaturized zinc oxide/hydroxylated multiwalled carbon nanotubes as a stir-brush microextractor device for carbamate pesticides analysis. Anal Chim Acta 2016; 917:27-36. [DOI: 10.1016/j.aca.2016.02.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022]
|
12
|
Salisaeng P, Arnnok P, Patdhanagul N, Burakham R. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2145-2152. [PMID: 26915268 DOI: 10.1021/acs.jafc.5b05437] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.
Collapse
Affiliation(s)
- Pawina Salisaeng
- Materials Chemistry Research Center, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University , Khon Kaen 40002, Thailand
| | - Prapha Arnnok
- Materials Chemistry Research Center, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University , Khon Kaen 40002, Thailand
| | - Nopbhasinthu Patdhanagul
- Center for Advanced Studies for Industrial Technology, Kasetsart University , Bangkok 10900, Thailand
- Department of General Science, Faculty of Science and Engineering, Kasetsart University , Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University , Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Jin T, Li F, Cheng J, Wu S, Zhou H, Cheng M. Polymer monolithic column containing embedded graphene oxide sheets for sensitive determination of carbamate insecticides by HPLC. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1637-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Wong A, Materon EM, Sotomayor MDPT. DEVELOPMENT OF A BIOMIMETIC SENSOR MODIFIED WITH HEMIN AND GRAPHENE OXIDE FOR MONITORING OF CARBOFURAN IN FOOD. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.09.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Determination of carbofuran and diuron in FIA system using electrochemical sensor modified with organometallic complexes and graphene oxide. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Electrochemical biosensor for carbofuran pesticide based on esterases from Eupenicillium shearii FREI-39 endophytic fungus. Biosens Bioelectron 2014; 63:407-413. [PMID: 25127475 DOI: 10.1016/j.bios.2014.07.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/16/2022]
Abstract
In this work, a biosensor was constructed by physical adsorption of the isolated endophytic fungus Eupenicillium shearii FREI-39 esterase on halloysite, using graphite powder, multi-walled carbon nanotubes and mineral oil for the determination of carbofuran pesticide by inhibition of the esterase using square-wave voltammetry (SWV). Specific esterase activities were determined each 2 days over a period of 15 days of growth in four different inoculation media. The highest specific activity was found on 6th day, with 33.08 U on PDA broth. The best performance of the proposed biosensor was obtained using 0.5 U esterase activity. The carbofuran concentration response was linear in the range from 5.0 to 100.0 µg L(-1) (r=0.9986) with detection and quantification limits of 1.69 µg L(-1) and 5.13 µg L(-1), respectively. A recovery study of carbofuran in spiked water samples showed values ranging from 103.8±6.7% to 106.7±9.7%. The biosensor showed good repeatability and reproducibility and remained stable for a period of 20 weeks. The determination of carbofuran in spiked water samples using the proposed biosensor was satisfactory when compared to the chromatographic reference method. The results showed no significant difference at the 95% confidence level with t-test statistics. The application of enzymes from endophytic fungi in constructing biosensors broadens the biotechnological importance of these microorganisms.
Collapse
|
17
|
Núñez O, Gallart-Ayala H, Martins CP, Lucci P, Busquets R. State-of-the-art in fast liquid chromatography–mass spectrometry for bio-analytical applications. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:3-21. [DOI: 10.1016/j.jchromb.2012.12.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 11/29/2022]
|