1
|
de Freitas Araújo KC, de Araújo Costa ECT, de Araújo DM, Santos EV, Martínez-Huitle CA, Castro PS. Probing the Use of Homemade Carbon Fiber Microsensor for Quantifying Caffeine in Soft Beverages. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1928. [PMID: 36903043 PMCID: PMC10004175 DOI: 10.3390/ma16051928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In the development of electrochemical sensors, carbon micro-structured or micro-materials have been widely used as supports/modifiers to improve the performance of bare electrodes. In the case of carbon fibers (CFs), these carbonaceous materials have received extensive attention and their use has been proposed in a variety of fields. However, to the best of our knowledge, no attempts for electroanalytical determination of caffeine with CF microelectrode (µE) have been reported in the literature. Therefore, a homemade CF-µE was fabricated, characterized, and used to determine caffeine in soft beverage samples. From the electrochemical characterization of the CF-µE in K3Fe(CN)6 10 mmol L-1 plus KCl 100 mmol L-1, a radius of about 6 µm was estimated, registering a sigmoidal voltammetric profile that distinguishes a µE indicating that the mass-transport conditions were improved. Voltammetric analysis of the electrochemical response of caffeine at the CF-µE clearly showed that no effects were attained due to the mass transport in solution. Differential pulse voltammetric analysis using the CF-µE was able to determine the detection sensitivity, concentration range (0.3 to 4.5 µmol L-1), limit of detection (0.13 μmol L-1) and linear relationship (I (µA) = (11.6 ± 0.09) × 10-3 [caffeine, μmol L-1] - (0.37 ± 0.24) × 10-3), aiming at the quantification applicability in concentration quality-control for the beverages industry. When the homemade CF-µE was used to quantify the caffeine concentration in the soft beverage samples, the values obtained were satisfactory in comparison with the concentrations reported in the literature. Additionally, the concentrations were analytically determined by high-performance liquid chromatography (HPLC). These results show that these electrodes may be an alternative to the development of new and portable reliable analytical tools at low cost with high efficiency.
Collapse
Affiliation(s)
- Karla Caroline de Freitas Araújo
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Emily Cintia Tossi de Araújo Costa
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Danyelle Medeiros de Araújo
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
| | - Elisama V. Santos
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
- School of Science and Technology, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| | - Carlos A. Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Universidade Estadual Paulista, Araraquara CEP14800-900, SP, Brazil
| | - Pollyana Souza Castro
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal CEP59078-970, RN, Brazil
| |
Collapse
|
2
|
Debalke A, Kassa A, Asmellash T, Beyene Y, Amare M, Tigineh GT, Abebe A. Synthesis of a novel diaquabis(1,10-phenanthroline)copper(II)chloride complex and its voltammetric application for detection of amoxicillin in pharmaceutical and biological samples. Heliyon 2022; 8:e11199. [PMID: 36339986 PMCID: PMC9626942 DOI: 10.1016/j.heliyon.2022.e11199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/08/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
A one step facile synthesis of the novel diaquabis(1,10-phenanthroline)copper(II)chloride (A2P2CuC) complex is demonstrated. Cyclic voltammetric and electrochemical impedance spectroscopic results revealed potentiodynamic deposition of a conductive electroactive poly(A2P2CuC) film on the glassy carbon electrode surface increasing its effective surface area. In contrast to the unmodified glassy carbon electrode, appearance of an oxidative peak at a reduced potential with over two fold current for amoxicillin at poly(A2P2CuC)/GCE demonstrated its electrocatalytic property attributed to reduce charge transfer resistance and the improved surface area of the electrode surface. Better correlation of the oxidative peak current with square root of scan rate (R2 = 0.99779) than with scan rate (R2 = 0.96953) supplemented by slope of 0.58 for log(current) versus log(scan rate) confirmed diffusion controlled irreversible oxidation of amoxicillin. At optimized solution and SWV parameters, current response of poly(A2P2CuC)/GCE showed linear dependence on concentration of amoxicillin (2.0–100.0 μM) with LoD 0.0115 μM. While no amoxicillin was detected in the human blood serum sample, an amount 89.40–100.55% of the nominal level was detected in the analyzed eight tablet brands. Spike recovery in tablet samples (98.90–101.95%) and blood serum sample (102.20–101.37%); interference with an error (%RSD) of 0.00–4.51% in tablet and 0.00–2.10% in serum samples; excellent stability and reproducible results, added with the wide dynamic range and low LoD validated the method for amoxicillin determination in pharmaceutical formulations and human urine samples.
Collapse
Affiliation(s)
- Ameha Debalke
- Department of Chemistry, College of Science, Bahir Dar University, Ethiopia
| | - Adane Kassa
- Department of Chemistry, College of Science, Bahir Dar University, Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, Ethiopia
- Corresponding author.
| | | | - Yonas Beyene
- Department of Chemistry, College of Science, Bahir Dar University, Ethiopia
| | - Meareg Amare
- Department of Chemistry, College of Science, Bahir Dar University, Ethiopia
| | | | - Atakilt Abebe
- Department of Chemistry, College of Science, Bahir Dar University, Ethiopia
| |
Collapse
|
3
|
Farghal HH, Mansour ST, Khattab S, Zhao C, Farag MA. A comprehensive insight on modern green analyses for quality control determination and processing monitoring in coffee and cocoa seeds. Food Chem 2022; 394:133529. [PMID: 35759838 DOI: 10.1016/j.foodchem.2022.133529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Green analysis is defined as the analysis of chemicals in a manner where sample extraction and analysis are performed with least amounts of steps, low hazardous materials, while maintaining efficiency in terms of analytes detection. Coffee and cocoa represent two of the most popular and valued beverages worldwide in addition to their several products i.e., cocoa butter, chocolates. This study presents a comprehensive overview of green methods used to evaluate cocoa and coffee seeds quality compared to other conventional techniques highlighting advantages and or limitations of each. Green techniques discussed in this review include solid phase microextraction, spectroscopic techniques i.e., infra-red (IR) spectroscopy and nuclear magnetic resonance (NMR) besides, e-tongue and e-nose for detection of flavor. The employment of multivariate data analysis in data interpretation is also highlighted in the context of identifying key components pertinent to specific variety, processing method, and or geographical origin.
Collapse
Affiliation(s)
| | - Somaia T Mansour
- Chemistry Department, American University in Cairo, New Cairo, Egypt
| | - Sondos Khattab
- Chemistry Department, American University in Cairo, New Cairo, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China.
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
4
|
Abd-Elsabour M, Alhamzani AG, Abou-Krisha MM. Fabrication of novel nickel-modified electrodes and their application for methanol oxidation in fuel cell. IONICS 2022; 28:1915-1925. [DOI: 10.1007/s11581-022-04447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Accepted: 01/08/2022] [Indexed: 09/02/2023]
|
5
|
Saravanakumar V, Rajagopal V, Kathiresan M, Suryanarayanan V, Anandan S, Ho KC. Cu-MOF derived CuO nanoparticle decorated amorphous carbon as an electrochemical platform for the sensing of caffeine in real samples. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Shao J, Wang C, Shen Y, Shi J, Ding D. Electrochemical Sensors and Biosensors for the Analysis of Tea Components: A Bibliometric Review. Front Chem 2022; 9:818461. [PMID: 35096777 PMCID: PMC8795770 DOI: 10.3389/fchem.2021.818461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tea is a popular beverage all around the world. Tea composition, quality monitoring, and tea identification have all been the subject of extensive research due to concerns about the nutritional value and safety of tea intake. In the last 2 decades, research into tea employing electrochemical biosensing technologies has received a lot of interest. Despite the fact that electrochemical biosensing is not yet the most widely utilized approach for tea analysis, it has emerged as a promising technology due to its high sensitivity, speed, and low cost. Through bibliometric analysis, we give a systematic survey of the literature on electrochemical analysis of tea from 1994 to 2021 in this study. Electrochemical analysis in the study of tea can be split into three distinct stages, according to the bibliometric analysis. After chromatographic separation of materials, electrochemical techniques were initially used only as a detection tool. Many key components of tea, including as tea polyphenols, gallic acid, caffeic acid, and others, have electrochemical activity, and their electrochemical behavior is being investigated. High-performance electrochemical sensors have steadily become a hot research issue as materials science, particularly nanomaterials, and has progressed. This review not only highlights these processes, but also analyzes and contrasts the relevant literature. This evaluation also provides future views in this area based on the bibliometric findings.
Collapse
Affiliation(s)
- Jinhua Shao
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Chao Wang
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Yiling Shen
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jinlei Shi
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Dongqing Ding
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
7
|
Kassa A, Abebe A, Tamiru G, Amare M. Synthesis of a Novel [diresorcinate‐1,10‐phenanthrolinecobalt(II)] Complex, and Potentiodynamic Fabrication of Poly(DHRPCo)/GCE for Selective Square Wave Voltammetric Determination of Procaine Penicillin G in Pharmaceutical and Biological Fluid Samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202103458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adane Kassa
- Department of Chemistry College of Natural and Computational Sciences Debre Markos University Ethiopia
- Department of Chemistry College of Science Bahir Dar University Ethiopia
| | - Atakilt Abebe
- Department of Chemistry College of Science Bahir Dar University Ethiopia
| | - Getinet Tamiru
- Department of Chemistry College of Science Bahir Dar University Ethiopia
| | - Meareg Amare
- Department of Chemistry College of Science Bahir Dar University Ethiopia
| |
Collapse
|
8
|
Abo‐bakr AM, Abd‐Elsabour M, Abou‐Krisha MM. An Efficient Novel Electrochemical Sensor for Simultaneous Determination of Vitamin C and Aspirin Based on a PMR/Zn‐Al LDH/GCE. ELECTROANAL 2021. [DOI: 10.1002/elan.202100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. M. Abo‐bakr
- Faculty of Science Chemistry Department South Valley University Qena 83523 Egypt
| | - M. Abd‐Elsabour
- Faculty of Science Chemistry Department South Valley University Qena 83523 Egypt
| | - M. M. Abou‐Krisha
- Faculty of Science Chemistry Department South Valley University Qena 83523 Egypt
- Chemistry Department College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| |
Collapse
|
9
|
Nikpanje E, Bahmaei M, Sharif AM. Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2020.00724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Kassa A, Amare M. Poly(4-amino-3-hydroxynaphthalene-1-sulfonic acid) modified glassy carbon electrode for square wave voltammetric determination of amoxicillin in four tablet brands. BMC Chem 2021; 15:10. [PMID: 33557918 PMCID: PMC7871396 DOI: 10.1186/s13065-021-00739-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Amoxicillin (AMX), which is one of the β-lactam antibiotics used in the treatment of bacterial infections, is known to have a serious mechanism of resistance necessitating continuous monitoring of its level in pharmaceutical and serum samples. RESULTS In this study, we presented selective, accurate, and precise square wave voltammetric method based on poly(4-amino-3-hydroxynaphthalene-1-sulfonic acid) modified glassy carbon electrode (poly(AHNSA/GCE)) for determination of amoxicillin in four selected tablet brands. Appearance of a peak in the oxidative scan direction without a peak in the reductive direction of cyclic voltammograms of both bare GCE and poly(AHNSA/GCE) with four folds current and much reduced potential on the modified electrode showed catalytic property of the modifier towards oxidation of AMX. While cyclic voltammetric studies of effect of scan rate showed predominantly diffusion controlled oxidation of AMX with one electron participation, effect of pH revealed participation of protons and electrons in a 1:1 ratio. The square wave voltammetric peak current response of the modified electrode for AMX showed linear dependence on the concentration of the spiked standard AMX in the range 10-150 µmol L-1 with 9.9 nmol L-1 LOD. The AMX content of the studied tablet brands were found in the range 97.84-100.78% of the labeled value. Spike recovery results of 99.6-100.5%, and interference recovery results of 95.4-100.8% AMX in the presence of 50-200% of ampicillin and cloxicillin validated the applicability of the method for determination of amoxicillin in tablet formulation. CONCLUSION In contrast to the previously reported works on determination of amoxicillin, the present method showed an excellent performance making it a potential method for determination of amoxicillin in real samples including serum samples.
Collapse
Affiliation(s)
- Adane Kassa
- Debremarkos University, Debremarkos, Ethiopia
| | | |
Collapse
|
11
|
Bitew Z, Amare M. Recent reports on electrochemical determination of selected antibiotics in pharmaceutical formulations: A mini review. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
12
|
Masibi KK, Fayemi OE, Adekunle AS, Sherif EM, Ebenso EE. Electrochemical Determination of Caffeine Using Bimetallic Au−Ag Nanoparticles Obtained from Low‐cost Green Synthesis. ELECTROANAL 2020. [DOI: 10.1002/elan.202060198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kgotla K. Masibi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
| | | | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University P.O. Box 800 Al-Riyadh 11421 SaudiArabia
- Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry National Research Centre El-Buhouth St. Dokki 12622 Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Department of Chemistry, College of Science, Engineering and Technology University of South Africa, Florida Roodepoort South Africa 1710
| |
Collapse
|
13
|
Du C, Ma C, Gu J, Li L, Chen G. Fluorescence Sensing of Caffeine in Tea Beverages with 3,5-diaminobenzoic Acid. SENSORS 2020; 20:s20030819. [PMID: 32028737 PMCID: PMC7038766 DOI: 10.3390/s20030819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/05/2023]
Abstract
A rapid, selective and sensitive method for the detection of caffeine in tea infusion and tea beverages are proposed by using 3,5-diaminobenzoic acid as a fluorescent probe. The 3,5-diaminobenzoic acid emits strong fluorescence around 410 nm under the excitation of light at 280 nm. Both the molecular electrostatic potential analysis and fluorescent lifetime measurement proved that the existence of caffeine can quench the fluorescence of 3,5-diaminobenzoic acid. Under the optimal experimental parameters, the 3,5-diaminobenzoic acid was used as a fluorescent probe to detect the caffeine aqueous solution. There exists a good linear relationship between the fluorescence quenching of the fluorescent probe and the concentration of caffeine in the range of 0.1–100 μM, with recovery within 96.0 to 106.2%, while the limit of detection of caffeine is 0.03 μM. This method shows a high selectivity for caffeine. The caffeine content in different tea infusions and tea beverages has been determined and compared with the results from HPLC measurement.
Collapse
Affiliation(s)
- Chenxu Du
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
- Correspondence: ; Tel.: +86-139-0617-6695
| |
Collapse
|
14
|
Manikandan VS, Adhikari B, Chen A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 2019; 143:4537-4554. [PMID: 30113611 DOI: 10.1039/c8an00497h] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The issue of foodborne related illnesses due to additives and contaminants poses a significant challenge to food processing industries. The efficient, economical and rapid analysis of food additives and contaminants is therefore necessary in order to minimize the risk of public health issues. Electrochemistry offers facile and robust analytical methods, which are desirable for food safety and quality assessment over conventional analytical techniques. The development of a wide array of nanomaterials has paved the way for their applicability in the design of high-performance electrochemical sensing devices for medical diagnostics and environment and food safety. The design of nanomaterial based electrochemical sensors has garnered enormous attention due to their high sensitivity and selectivity, real-time monitoring and ease of use. This review article focuses predominantly on the synthesis and applications of different nanomaterials for the electrochemical determination of some common additives and contaminants, including hydrazine (N2H4), malachite green (MG), bisphenol A (BPA), ascorbic acid (AA), caffeine, caffeic acid (CA), sulfite (SO32-) and nitrite (NO2-), which are widely found in food and beverages. Important aspects, such as the design, fabrication and characterization of graphene-based materials, gold nanoparticles, mono- and bimetallic nanoparticles and metal nanocomposites, sensitivity and selectivity for electrochemical sensor development are addressed. High-performance nanomaterial based electrochemical sensors have and will continue to have myriad prospects in the research and development of advanced analytical devices for the safety and quality control of food and beverages.
Collapse
Affiliation(s)
- Venkatesh S Manikandan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
15
|
Novel cork-graphite electrochemical sensor for voltammetric determination of caffeine. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Azab SM, Shehata M, Fekry AM. A novel electrochemical analysis of the legal psychoactive drug caffeine using a zeolite/MWCNT modified carbon paste sensor. NEW J CHEM 2019. [DOI: 10.1039/c9nj04070f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Caffeine (Caf) is a natural central nervous system stimulant categorized by the US Food and Drug Administration as a safe drug and its maximal amount in soft drinks has been approximately determined to be lower than 200 mg L−1.
Collapse
Affiliation(s)
- Shereen M. Azab
- Pharmaceutical Chemistry Dept
- National Organization for Drug Control and Research [NODCAR]
- 6 Abu Hazem Street
- Pyramids Ave, 29
- Giza
| | - M. Shehata
- Chemistry Department
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | - Amany M. Fekry
- Chemistry Department
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| |
Collapse
|
17
|
Tajeu KY, Ymele E, Zambou Jiokeng SL, Tonle IK. Electrochemical Sensor for Caffeine Based on a Glassy Carbon Electrode Modified with an Attapulgite/nafion Film. ELECTROANAL 2018. [DOI: 10.1002/elan.201800621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kevin Yemele Tajeu
- Electrochemistry and Chemistry of Materials, Department of ChemistryUniversity of Dschang Dschang Cameroon
| | - Ervice Ymele
- Electrochemistry and Chemistry of Materials, Department of ChemistryUniversity of Dschang Dschang Cameroon
| | | | - Ignas Kenfack Tonle
- Electrochemistry and Chemistry of Materials, Department of ChemistryUniversity of Dschang Dschang Cameroon
| |
Collapse
|
18
|
Antunes RS, Garcia LF, Somerset VS, Gil EDS, Lopes FM. The Use of a Polyphenoloxidase Biosensor Obtained from the Fruit of Jurubeba (Solanum paniculatum L.) in the Determination of Paracetamol and Other Phenolic Drugs. BIOSENSORS 2018; 8:E36. [PMID: 29614829 PMCID: PMC6023012 DOI: 10.3390/bios8020036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
The vegetable kingdom is a wide source of a diverse variety of enzymes with broad biotechnological applications. Among the main classes of plant enzymes, the polyphenol oxidases, which convert phenolic compounds to the related quinones, have been successfully used for biosensor development. The oxidation products from such enzymes can be electrochemically reduced, and the sensing is easily achieved by amperometric transducers. In this work, the polyphenoloxidases were extracted from jurubeba (Solanum paniculatum L.) fruits, and the extract was used to construct a carbon paste-based biosensor for pharmaceutical analysis and applications. The assay optimization was performed using a 0.1 mM catechol probe, taking into account the amount of enzymatic extract (50 or 200 μL) and the optimum pH (3.0 to 9.0) as well as some electrochemical differential pulse voltammetric (DPV) parameters (e.g., pulse amplitude, pulse range, pulse width, scan rate). Under optimized conditions, the biosensor was evaluated for the quantitative determination of acetaminophen, acetylsalicylic acid, methyldopa, and ascorbic acid. The best performance was obtained for acetaminophen, which responded linearly in the range between 5 and 245 μM (R = 0.9994), presenting a limit of detection of 3 μM and suitable repeatability ranging between 1.52% and 1.74% relative standard deviation (RSD).
Collapse
Affiliation(s)
- Rafael Souza Antunes
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO 74605-170, Brazil.
| | - Luane Ferreira Garcia
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO 74605-170, Brazil.
| | - Vernon Sydwill Somerset
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Eric de Souza Gil
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO 74605-170, Brazil.
| | - Flavio Marques Lopes
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO 74605-170, Brazil.
| |
Collapse
|
19
|
Simultaneous determination of theophylline and caffeine on novel [Tetra-(5-chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode. Talanta 2018; 184:452-460. [PMID: 29674068 DOI: 10.1016/j.talanta.2018.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/05/2023]
Abstract
This work reports the synthesis of new symmetrically substituted manganese(III) phthalocyanine (2eOHMnPc) (2) containing tetra 5-chloroquinolin-8-yloxy group at the peripheral position for the first time. Manganese(III) phthalocyanine (2) was synthesized by cyclotetramerization of 4-(5-chloroquinolin-8-yloxy)phthalonitrile (1) in the presence of corresponding metal salt (manganese(II) chloride). This peripherally substituted phthalocyanine complex (2) was purified by column chromatography and characterized by several techniques such as IR, mass and UV-Visible spectral data. This novel synthesized phthalocyanine was mixed with multiwalled carbon nanotubes in order to prepare the novel catalytic surface on glassy carbon electrode for theophylline and caffeine detection in acidic medium. The novel composite electrode surfaces were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Individual and simultaneous determination of theophylline and caffeine were studied by differential pulse voltammetry. The detection limits were individually calculated for theophylline and caffeine as 6.6 × 10-9 M and 5.0 × 10-8 M, respectively. In simultaneous determination, LODs were calculated for theophylline and caffeine as 8.1 × 10-9 M and 3.0 × 10-7 M, respectively. The practical applicability of the proposed modified electrode was tested for the determination of theophylline and caffeine in green tea, cola and theophylline serum.
Collapse
|
20
|
Filik H, Aslıhan Avan A. Conducting polymer modified screen-printed carbon electrode coupled with magnetic solid phase microextraction for determination of caffeine. Food Chem 2018; 242:301-307. [DOI: 10.1016/j.foodchem.2017.09.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
|
21
|
Differential pulse voltammetric determination of salbutamol sulfate in syrup pharmaceutical formulation using poly(4-amino-3-hydroxynaphthalene sulfonic acid) modified glassy carbon electrode. Heliyon 2017; 3:e00417. [PMID: 29022009 PMCID: PMC5633154 DOI: 10.1016/j.heliyon.2017.e00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/29/2017] [Accepted: 09/18/2017] [Indexed: 11/23/2022] Open
Abstract
A new method for determination of salbutamol sulfate has been developed using poly(4-amino-3-hydroxynaphthalene sulfonic acid/GCE. Cyclic voltammetric investigation of the electrochemical behavior of salbutamol sulfate at the polymer modified glassy carbon unveiled electrocatalytic activity of the modifier towards irreversible oxidation of salbutamol sulfate. Dependence of peak current predominantly on scan rate than on square root of scan rate, and peak potential shift with pH demonstrated that oxidation of salbutamol sulfate at the polymer modified electrode follows adsorption reaction kinetics with proton participation. Under optimized solution and differential pulse voltammetric parameters, the oxidative peak current showed linear dependence on salbutamol sulfate concentration in the range 0.2 to 8 μM with method detection limit (3s/m) and determination coefficient (R2) of 6.8 × 10−8 M and 0.99786, respectively. Low method detection limit, relatively wide linear range, and recovery results of spiked standard salbutamol sulfate in syrup samples in the range 96.7–98.9% validated the method for determination of salbutamol sulfate in pharmaceutical formulations. Differential pulse voltammetric analysis of salbutamol sulfate syrup formulation for its salbutamol sulfate content revealed 98.8 to 99.3% of the labeled value confirming the applicability of the developed method for determination of salbutamol sulfate in real samples.
Collapse
|
22
|
Ali HS, Abdullah AA, Pınar PT, Yardım Y, Şentürk Z. Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: Its comparison with HPLC-DAD. Talanta 2017; 170:384-391. [DOI: 10.1016/j.talanta.2017.04.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 11/29/2022]
|
23
|
Jagadish R, Yellappa S, Mahanthappa M, Chandrasekhar KB. Zinc Oxide Nanoparticle-modified Glassy Carbon Electrode as a Highly Sensitive Electrochemical Sensor for the Detection of Caffeine. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600817] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramu Jagadish
- Department of Chemistry; Government Science College; Bangalore India
- Department of Chemistry; Government First Grade College; Chickballapur India
- Department of Chemistry; Jawaharlal Nehru Technological University; Ananthapuramu India
| | - Shivaraj Yellappa
- Department of Chemistry; Government Science College; Bangalore India
| | | | | |
Collapse
|
24
|
Kant R, Tabassum R, Gupta BD. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection. NANOTECHNOLOGY 2017; 28:195502. [PMID: 28422746 DOI: 10.1088/1361-6528/aa6a9c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.
Collapse
Affiliation(s)
- Ravi Kant
- Physics Department, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | | |
Collapse
|
25
|
Amare M, Aklog S. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:3979068. [PMID: 28512593 PMCID: PMC5420419 DOI: 10.1155/2017/3979068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/05/2017] [Indexed: 05/04/2023]
Abstract
Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10-6 to 100 × 10-6 mol L-1 with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10-7 mol L-1, respectively, supplemented by recovery results of 93.79-102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users' highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.
Collapse
Affiliation(s)
- Meareg Amare
- Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
- *Meareg Amare:
| | - Senait Aklog
- Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| |
Collapse
|
26
|
Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode. Food Chem 2016; 210:156-62. [DOI: 10.1016/j.foodchem.2016.04.106] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/22/2016] [Accepted: 04/21/2016] [Indexed: 11/19/2022]
|
27
|
Reskety AA, Chamjangali MA, Boujnane M, Brajter-Toth A. High Sensitivity and Fast Oxidation of Caffeine in Coffee and Theophylline at Nanostructured Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Atiye Ahmadi Reskety
- Department of Chemistry; University of Florida; Gainesville FL, 32611 USA
- College of Chemistry; Shahrood University of Technology; Shahrood 36155-316 Iran
| | | | - Mehdi Boujnane
- Department of Chemistry; University of Florida; Gainesville FL, 32611 USA
- Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace; Mulhouse 68093 France
| | - Anna Brajter-Toth
- Department of Chemistry; University of Florida; Gainesville FL, 32611 USA
- Department of Chemistry; University of Florida, Gainesville; FL, 32611-7200 USA
| |
Collapse
|
28
|
Bonazzola C, Gordillo G. Advanced analysis for electrode kinetic studies of surface reactions by applying square-wave voltammetry. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Filik H, Avan AA, Mümin Y. Simultaneous Electrochemical Determination of Caffeine and Vanillin by Using Poly(Alizarin Red S) Modified Glassy Carbon Electrode. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0545-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Grujić-Letić N, Rakić B, Šefer E, Milanović M, Nikšić M, Vujić I, Milić N. Quantitative determination of caffeine in different matrices. MAKEDONSKO FARMACEVTSKI BILTEN 2016. [DOI: 10.33320/maced.pharm.bull.2016.62.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caffeine is odorless, bitter taste substance which can be naturally found in coffee, cocoa, tea leaves, and is intentionally added in food and pharmaceutical products. It can also be found in surface water in small concentrations where is often used as an excellent indicator of human waste. The aim of the work is determination of caffeine content in food, beverages, analgesics and surface water using solidphase extraction followed by high-performance liquid chromatography (HPLC). Caffeine content was determined in 12 commercial tea and coffee products, non-alcoholic energy drinks and food, 5 combined preparations of analgesics and the Danube samples collected from
7 representative locations. The results showed that caffeine content in food ranged 5,6-158 mg/100 g, tea samples 24,71-30,81 mg/100 ml, coffee samples 1328-3594 mg/100 g, energy drinks 9,69-30,79 mg/100 ml and in the Danube samples 15,91-306,12 ng/l. Caffeine content in combined commercial formulations of non-narcotic analgesics of all brands did meet specifications. The data suggested that the proposed HPLC method can be used for routine determination and control of caffeine content in different matrices.
Collapse
|
31
|
Electrochemical behavior and determination of major phenolic antioxidants in selected coffee samples. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.05.104] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly(Alizarin Violet 3B), multiwalled carbon nanotubes and graphene. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1688-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Al-Hinaai M, Khudaish EA, Al-Harthy S, Suliman FO. A solid-state electrochemiluminescence composite modified electrode based on Ru(bpy)32+/PAHNSA: Characterization and pharmaceutical applications. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Chan KK, Webster RD. Solid Phase Extraction - Voltammetric Coupled Detection of Caffeine in Acetonitrile. ELECTROANAL 2015. [DOI: 10.1002/elan.201500383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Gupta P, Goyal RN. Graphene and Co-polymer composite based molecularly imprinted sensor for ultratrace determination of melatonin in human biological fluids. RSC Adv 2015. [DOI: 10.1039/c5ra04942c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A novel molecularly imprinted polymer (MIP) sensor based on a composite of graphene (GR) and a co-polymer of 4-amino-3-hydroxy-1-naphthalenesulfonic acid (AHNSA) and melamine (MM) has been fabricated for detecting melatonin.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Rajendra N. Goyal
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
36
|
Vasilescu I, Eremia SAV, Penu R, Albu C, Radoi A, Litescu SC, Radu GL. Disposable dual sensor array for simultaneous determination of chlorogenic acid and caffeine from coffee. RSC Adv 2015. [DOI: 10.1039/c4ra14464c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of the developed disposable dual sensor array.
Collapse
Affiliation(s)
- Ioana Vasilescu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Sandra A. V. Eremia
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Ramona Penu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Camelia Albu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnology (IMT-Bucharest)
- 077190 Bucharest
- Romania
| | - Simona C. Litescu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Gabriel-Lucian Radu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| |
Collapse
|
37
|
Rezaei B, Khalili Boroujeni M, Ensafi AA. Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode. Biosens Bioelectron 2014; 60:77-83. [DOI: 10.1016/j.bios.2014.03.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
|
38
|
Yang G, Zhao F, Zeng B. Facile fabrication of a novel anisotropic gold nanoparticle–chitosan–ionic liquid/graphene modified electrode for the determination of theophylline and caffeine. Talanta 2014; 127:116-22. [DOI: 10.1016/j.talanta.2014.03.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
39
|
Electrochemically reduced graphene nanoribbons: Interference from inherent electrochemistry of the material in DPV studies. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Jiang L, Ding Y, Jiang F, Li L, Mo F. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Anal Chim Acta 2014; 833:22-8. [DOI: 10.1016/j.aca.2014.05.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 11/12/2022]
|
41
|
Carolina Torres A, Barsan MM, Brett CM. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chem 2014; 149:215-20. [DOI: 10.1016/j.foodchem.2013.10.114] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 11/25/2022]
|
42
|
Nuhu AA. Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN NUTRITION 2014; 2014:384230. [PMID: 24967266 PMCID: PMC4045301 DOI: 10.1155/2014/384230] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
Production of coffee beans is an important lifeline for the economy of several countries in Latin America, Africa, and Asia. The brew from this well sought for cash crop is readily consumed due to its good sensory qualities owing to the presence of many micronutrients. Some of these chemical compounds possess biological activities, including antiproliferative, antioxidant, and antimicrobial effects. Four representative groups of these micronutrients, namely, caffeine, chlorogenic acid, diterpenes, and trigonelline, play key roles in these bioactive effects of coffee. In order to guarantee the quality of coffee products and to protect consumer interest and safeguard their well-being, it is extremely important to employ sensitive and accurate analytical methods in the characterization and quantitative determination of these bioactive constituents. This review aims to present recent applications in this regard.
Collapse
Affiliation(s)
- Abdulmumin A. Nuhu
- Department of Chemistry, Ahmadu Bello University, PMB 1069, Zaria, Kaduna 2222, Nigeria
| |
Collapse
|
43
|
Šimánek V, Zatloukalová M, Vacek J. Electrochemical Behaviour of Alkaloids: Detection and Interaction with DNA and Proteins. HETEROCYCLES 2014. [DOI: 10.3987/rev-13-sr(s)6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Yadav SK, Agrawal B, Chandra P, Goyal RN. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosens Bioelectron 2013; 55:337-42. [PMID: 24412768 DOI: 10.1016/j.bios.2013.12.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/22/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
A sensitive and selective electrochemical biosensor is developed for the determination of chloramphenicol (CAP) exploring its direct electron transfer processes in in-vitro model and pharmaceutical samples. This biosensor exploits a selective binding of CAP with aptamer, immobilized onto the poly-(4-amino-3-hydroxynapthalene sulfonic acid) (p-AHNSA) modified edge plane pyrolytic graphite. The electrochemical reduction of CAP was observed in a well-defined peak. A quartz crystal microbalance (QCM) study is performed to confirm the interaction between the polymer film and the aptamer. Cyclic voltammetry (CV) and square wave voltammetry (SWV) were used to detect CAP. The in-vitro CAP detection is performed using the bacterial strain of Haemophilus influenza. A significant accumulation of CAP by the drug sensitive H. influenza strain is observed for the first time in this study using a biosensor. Various parameters affecting the CAP detection in standard solution and in in vitro detection are optimized. The detection of CAP is linear in the range of 0.1-2500 nM with the detection limit and sensitivity of 0.02 nM and 0.102 µA/nM, respectively. CAP is also detected in the presence of other common antibiotics and proteins present in the real sample matrix, and negligible interference is observed.
Collapse
Affiliation(s)
- Saurabh K Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Bharati Agrawal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranjal Chandra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Gautam Buddha Nagar, Noida 201303, Uttar Pradesh, India
| | - Rajendra N Goyal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
45
|
Khoo WYH, Pumera M, Bonanni A. Graphene platforms for the detection of caffeine in real samples. Anal Chim Acta 2013; 804:92-7. [DOI: 10.1016/j.aca.2013.09.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 01/27/2023]
|
46
|
Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hoth M. Square-Wave Voltammetry: A Review on the Recent Progress. ELECTROANAL 2013. [DOI: 10.1002/elan.201300369] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Simultaneous determination of theophylline and caffeine by large mesoporous carbon/Nafion modified electrode. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.07.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
de Souza Lucas FW, do Nascimento JM, Nogueira Freire V, Melo Camelo AL, Longhinotti E, de Lima-Neto P, Nunes Correia A. Dimethomorph electrooxidation: Analytical determination in grape-derived samples and mechanistic aspects. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.06.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
A modified single-walled carbon nanotubes/carbon-ceramic electrode for simultaneous voltammetric determination of paracetamol and caffeine. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2013. [DOI: 10.1007/s13738-013-0324-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Mirceski V, Laborda E, Guziejewski D, Compton RG. New approach to electrode kinetic measurements in square-wave voltammetry: amplitude-based quasireversible maximum. Anal Chem 2013; 85:5586-94. [PMID: 23642036 DOI: 10.1021/ac4008573] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of the potential pulse height of square-wave voltammetry (SWV) (i.e., the SW amplitude) is studied for a variety of quasireversible electrode mechanisms, including a simple solution-phase electrode reaction at a planar or spherical electrode, a solution phase electrode reaction coupled with a reversible follow-up chemical reaction, and a diffusionless surface confined electrode reaction. The electrode kinetics of all the electrode mechanisms depends critically on the SW amplitude, and the quasireversible kinetic region is a function of both frequency-related electrode kinetic parameters and the SW amplitude. Thus, a novel methodology for electrode kinetics measurements is proposed by altering the SW amplitude only, at a fixed frequency of the SW potential modulation, that is, at a constant scan rate of the voltammetric experiment. Electrode kinetic measurements at a constant SW frequency are of exceptional importance especially when complex electrode mechanisms are studied, which depend on several frequency-related kinetic parameters. The electrode kinetic measurements are based on a novel feature termed the "amplitude-based quasireversible maximum", manifested as a parabolic dependence of the amplitude-normalized net SW peak current versus the SW amplitude. The position of the amplitude-based quasireversible maximum depends on the standard rate constant of the electrode reaction, enabling estimation of this important kinetic parameter in a simple and fast procedure. The novel quasireversible maximum is attributed to all studied electrode mechanisms, implying that it is a general feature of most electrode mechanisms under conditions of SWV.
Collapse
Affiliation(s)
- Valentin Mirceski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, P.O. Box 162, 1000 Skopje, Republic of Macedonia.
| | | | | | | |
Collapse
|