1
|
Liao Y, You R, Fan M, Feng S, Lu D, Lu Y. Determination of NADH by Surface Enhanced Raman Scattering Using Au@MB@Ag NPs. Aust J Chem 2021. [DOI: 10.1071/ch21178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nicotinamide adenine dinucleotide (NADH) is an important coenzyme involved in various metabolic processes of living cells. As an important biomarker, NADH is associated with breast cancer and Alzheimer’s disease. In this paper, silver plated gold core–shell nanoparticles containing Raman signal molecules were synthesised on the basis of bare gold. Using the Raman peak corresponding to the 4-mercaptobenzonitrile (MB) silent region C≡N vibration for quantification, while avoiding competition with the precious metal surface binding site to be measured, it can also be free from the interference of endogenous biomolecules. On the one hand, it can correct the working curve, on the other hand, it can avoid competing with the binding site. Compared with the core–shell structure prepared here, the limit of detection (LOD) for NADH was only 10−5 M for bare gold and the LOD for the core–shell structure prepared on the basis of bare gold was 3.3 × 10−7 M. In terms of correction, with Rhodamine 6G (R6G) as a Raman signalling molecule, the R2 value before SERS detection and correction is only 0.9405, and the R2 value after correction increases to 0.9853. The unique fingerprint peak of SERS was used to realise the quantitative detection of NADH, which realizes the detection of NADH in complex biological samples of serum and provides the possibility for expanding the early diagnosis of breast cancer.
Collapse
|
2
|
Electrocatalytic determination of NADH by means of electrodes modified with MWCNTs and nitroaromatic compounds. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Tu J, Wang J, Li S, Song WL, Wang M, Zhu H, Jiao S. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. NANOSCALE 2019; 11:12537-12546. [PMID: 31169859 DOI: 10.1039/c9nr03112j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Highly efficient strategies for the transformation of amorphous carbon into graphite with high graphitization and crystallinity features have been significantly pursued in recent years; however, critical issues, including high processing temperature, insufficient graphitization, introduction of catalyst impurities, complicated post-purification procedures, and generation of greenhouse gas, still remain in traditional approaches. For significantly addressing these challenges, herein, a highly efficient catalyst-free, eco-friendly and low-temperature electrochemical transformation strategy was proposed for the preparation of highly graphitized porous graphite nanoflakes. Using inert SnO2 as an anode in CaCl2-LiCl molten salts, the graphitization transformation of amorphous carbon materials could be realized at 700 °C, approaching the record in high-efficiency converting amorphous carbon to graphite; moreover, systematical analysis was performed to understand the electrochemical transformation of amorphous carbon into highly graphitized graphite nanoflakes. For extending their valuable applications, the as-prepared graphite nanoflakes were further utilized as cathodes in aluminum-ion batteries, which exhibited significantly promising energy storage performance; moreover, an initial discharge capacity of 63.6 mA h g-1 at a current density of 200 mA g-1 was achieved, which eventually became 55.5 mA h g-1 with a coulombic efficiency of 95.4% after 1000 cycles; thus, these cathodes exhibited stable long-term cycling performance. The combination of low-temperature electrochemical transformation and the subsequent high-performance applications of these nanoflakes in energy storage indicates that the proposed strategy is highly efficient for the transformation and utilization of abundant amorphous carbon resources for the realization of high value-added applications.
Collapse
Affiliation(s)
- Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Junxiang Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Shijie Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Hongmin Zhu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China. and Department of Metallurgy, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China.
| |
Collapse
|
4
|
Kamali AR. Scalable fabrication of highly conductive 3D graphene by electrochemical exfoliation of graphite in molten NaCl under Ar/H2 atmosphere. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Eguílaz M, Gutierrez F, González-Domínguez JM, Martínez MT, Rivas G. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors. Biosens Bioelectron 2016; 86:308-314. [PMID: 27387261 DOI: 10.1016/j.bios.2016.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/28/2022]
Abstract
We report for the first time the use of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr) (SWCNT-Polytyr) as a new electrode material for the development of nicotinamide adenine dinucleotide (NADH)-based biosensors. The oxidation of glassy carbon electrodes (GCE) modified with SWCNT-Polytyr at potentials high enough to oxidize the tyrosine residues have allowed the electrooxidation of NADH at low potentials due to the catalytic activity of the quinones generated from the primary oxidation of tyrosine without any additional redox mediator. The amperometric detection of NADH at 0.200V showed a sensitivity of (217±3)µAmM(-1)cm(-2) and a detection limit of 7.9nM. The excellent electrocatalytic activity of SWCNT-Polytyr towards NADH oxidation has also made possible the development of a sensitive ethanol biosensor through the immobilization of alcohol dehydrogenase (ADH) via Nafion entrapment, with excellent analytical characteristics (sensitivity of (5.8±0.1)µAmM(-1)cm(-2), detection limit of 0.67µM) and very successful application for the quantification of ethanol in different commercial beverages.
Collapse
Affiliation(s)
- Marcos Eguílaz
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fabiana Gutierrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Jose Miguel González-Domínguez
- Grupo de nanoestructuras de carbono y Nanotecnología, Departamento de Nanotecnología, Instituto de Carboquímica (CSIC), 50018 Zaragoza, Spain
| | - María T Martínez
- Grupo de nanoestructuras de carbono y Nanotecnología, Departamento de Nanotecnología, Instituto de Carboquímica (CSIC), 50018 Zaragoza, Spain.
| | - Gustavo Rivas
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
6
|
Kamali AR, Fray DJ. Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite. NANOSCALE 2015; 7:11310-11320. [PMID: 26053881 DOI: 10.1039/c5nr01132a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Experimental evidence for high temperature diffusion of hydrogen into the interlayer space of graphite is provided. This process is discussed as a possible method for the rapid production of high-quality, inexpensive graphene in large quantities, which could lead to the widespread application of graphene. It was found that hydrogen cations, dissolved in molten LiCl, can be discharged on cathodically polarized graphite rods, which then intercalate into the graphite structure, leading to the peeling of graphite to produce graphene. The graphene nanosheets produced displayed a single-crystalline structure with a lateral size of several hundred nanometers and a high degree of crystallinity and thermal stability. The method introduced could be scaled up to produce industrial quantities of high-quality graphene.
Collapse
Affiliation(s)
- Ali Reza Kamali
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | | |
Collapse
|
7
|
Fan H, Shen W. Carbon Nanosheets: Synthesis and Application. CHEMSUSCHEM 2015; 8:2004-2027. [PMID: 26036331 DOI: 10.1002/cssc.201500141] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Carbon nanosheets (CNSs) with tunable sizes, morphologies, and pore structures have been synthesized through several chemical routes. Graphitized CNSs have been synthesized through exfoliation, chemical vapor deposition, or high-temperature carbonization. Porous CNSs have been synthesized by using various methods, including pyrolysis, self-assembly, or a solvothermal method in connection with carbonization. These CNSs have successfully been used as detectors for metal ions, as cathodes for field electron emissions, as electrodes for supercapacitors and fuel cells, and as supports for photocatalytic and catalytic oxygen reduction. Therefore, the synthesis and application of CNSs are receiving increasing levels of interest, particularly as application benefits, in the context of future energy/chemical industry, are becoming recognized. This review provides a summary of the most recent and important progress in the production of CNSs and highlights their application in environmental and energy-related fields.
Collapse
Affiliation(s)
- Huailin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 (P.R. China), Fax: (+86) 351-4041153
- University of Chinese Academy of Sciences, Beijing, 100049 (P.R. China)
| | - Wenzhong Shen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 (P.R. China), Fax: (+86) 351-4041153.
| |
Collapse
|
8
|
Synthesis of polyaniline/Au composite nanotubes and their high performance in the detection of NADH. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2407-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|