• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4681887)   Today's Articles (608)
For: Ensafi AA, Jafari–Asl M, Rezaei B. A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide–Co3O4 nanocomposite. Talanta 2013. [DOI: 10.1016/j.talanta.2012.10.063] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Number Cited by Other Article(s)
1
Sengar MS, Kumari P, Sengar N, Satsangee SP, Jain R. Co3O4/fluoro-copolymer nanocomposite modified boron-doped diamond electrode non-enzymatic sensor for the determination of skeletal muscle relaxant drug cyclobenzaprine in biological fluids. Talanta 2025;287:127636. [PMID: 40033639 DOI: 10.1016/j.talanta.2025.127636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/05/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
2
Vokoun D, Samal S, Stachiv I. Impact of Initial Cyclic Loading on Mechanical Properties and Performance of Nafion. SENSORS (BASEL, SWITZERLAND) 2023;23:1488. [PMID: 36772526 PMCID: PMC9920180 DOI: 10.3390/s23031488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
3
Recent Advances in Electrochemical Sensing of Hydrogen Peroxide (H2O2) Released from Cancer Cells. NANOMATERIALS 2022;12:nano12091475. [PMID: 35564184 PMCID: PMC9103167 DOI: 10.3390/nano12091475] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
4
Michalkiewicz S, Skorupa A, Jakubczyk M. Carbon Materials in Electroanalysis of Preservatives: A Review. MATERIALS (BASEL, SWITZERLAND) 2021;14:7630. [PMID: 34947225 PMCID: PMC8709479 DOI: 10.3390/ma14247630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
5
Yan T, Chen Q, Wang Y, Long Y, Jiang Y, Fan G. An Ultrahigh Performance Enzyme‐Free Electrochemical H 2 O 2 Sensor Based on Carbon Nanopores Encapsulated Ultrasmall Cobalt Oxide Nanoparticles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
6
Khadhraoui H, Othmani A, Kouki A, Zouaoui M. A Highly Sensitive and Selective Non‐enzymatic Hydrogen Peroxide Sensor Based on Nanostructured Co 3 O 4 Thin Films Using the Sol‐gel Method. ELECTROANAL 2021. [DOI: 10.1002/elan.202060052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
7
Chen S, Huang H, Zhao D, Zhou J, Yu J, Qu B, Liu Q, Sun H, Zhao J. Direct Growth of Polycrystalline GaN Porous Layer with Rich Nitrogen Vacancies: Application to Catalyst-Free Electrochemical Detection. ACS APPLIED MATERIALS & INTERFACES 2020;12:53807-53815. [PMID: 33206499 DOI: 10.1021/acsami.0c15824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
8
Chang YS, Li JH, Chen YC, Ho WH, Song YD, Kung CW. Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
9
Tavakkoli H, Akhond M, Ghorbankhani GA, Absalan G. Electrochemical sensing of hydrogen peroxide using a glassy carbon electrode modified with multiwalled carbon nanotubes and zein nanoparticle composites: application to HepG2 cancer cell detection. Mikrochim Acta 2020;187:105. [PMID: 31916024 DOI: 10.1007/s00604-019-4064-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/06/2019] [Indexed: 11/29/2022]
10
Determination of Heavy Metals in Herbal Food Supplements using Bismuth/Multi-walled Carbon Nanotubes/Nafion modified Graphite Electrodes sourced from Waste Batteries. Sci Rep 2019;9:18491. [PMID: 31811219 PMCID: PMC6898606 DOI: 10.1038/s41598-019-54589-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 11/15/2019] [Indexed: 11/28/2022]  Open
11
A Storage-Dependent Platinum Functionalization with a Commercial Pre-Polymer Useful for Hydrogen Peroxide and Ascorbic Acid Detection. SENSORS 2019;19:s19112435. [PMID: 31141953 PMCID: PMC6603770 DOI: 10.3390/s19112435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022]
12
Liu L, Yang M, Zhao H, Xu Y, Cheng X, Zhang X, Gao S, Song H, Huo L. Co3O4/carbon hollow nanospheres for resistive monitoring of gaseous hydrogen sulfide and for nonenzymatic amperometric sensing of dissolved hydrogen peroxide. Mikrochim Acta 2019;186:184. [DOI: 10.1007/s00604-019-3253-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
13
Hexagonal cobalt oxyhydroxide nanoflakes/reduced graphene oxide for hydrogen peroxide detection in biological samples. Anal Bioanal Chem 2018;410:7523-7535. [DOI: 10.1007/s00216-018-1370-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
14
Allahnouri F, Farhadi K, Eskandari H, Abarghoui MM, Molaei R. Cobalt nanoparticles anchored to porous silicon as a novel modifier for the construction of enzyme-free hydrogen peroxide screen-printed sensor. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
15
Ni Y, Xu J, Liu H, Shao S. Fabrication of RGO-NiCo2O4 nanorods composite from deep eutectic solvents for nonenzymatic amperometric sensing of glucose. Talanta 2018;185:335-343. [PMID: 29759209 DOI: 10.1016/j.talanta.2018.03.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/06/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
16
Zhu D, Ma H, Pang H, Tan L, Jiao J, Chen T. Facile fabrication of a non-enzymatic nanocomposite of heteropolyacids and CeO2@Pt alloy nanoparticles doped reduced graphene oxide and its application towards the simultaneous determination of xanthine and uric acid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
17
Ni Y, Liao Y, Zheng M, Shao S. In-situ growth of Co3O4 nanoparticles on mesoporous carbon nanofibers: a new nanocomposite for nonenzymatic amperometric sensing of H2O2. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2395-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
18
Liu Y, Wang L, Yang L, Zhan Y, Zou L, Ye B. Nonenzymatic H2 O2 Electrochemical Sensor Based on SnO2 -NPs Coated Polyethylenimine Functionalized Graphene. ELECTROANAL 2017. [DOI: 10.1002/elan.201700175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
19
Zheng W, Chen W, Weng W, Liu L, Li G, Wang J, Sun W. Direct electron transfer of horseradish peroxidase at Co3O4–graphene nanocomposite modified electrode and electrocatalysis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-016-1042-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
20
Mutyala S, Mathiyarasu J. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016;69:398-406. [DOI: 10.1016/j.msec.2016.06.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
21
Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2007-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
22
Asif SAB, Khan SB, Asiri AM. Electrochemical sensor for H2O2 using a glassy carbon electrode modified with a nanocomposite consisting of graphene oxide, cobalt(III) oxide, horseradish peroxidase and nafion. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1942-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
23
Nonenzymatic amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with a sandwich-structured nanocomposite consisting of silver nanoparticles, Co3O4 and reduced graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1829-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
24
Devasenathipathy R, Kohilarani K, Chen SM, Wang SF, Wang SC, Chen CK. Electrochemical preparation of biomolecule stabilized copper nanoparticles decorated reduced graphene oxide for the sensitive and selective determination of hydrogen peroxide. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Zhang R, Chen W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens Bioelectron 2016;89:249-268. [PMID: 26852831 DOI: 10.1016/j.bios.2016.01.080] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 12/30/2022]
26
Ensafi AA, Alinajafi HA, Jafari-Asl M, Rezaei B, Ghazaei F. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015;60:276-284. [PMID: 26706531 DOI: 10.1016/j.msec.2015.11.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/01/2015] [Accepted: 11/20/2015] [Indexed: 11/30/2022]
27
Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.08.116] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
28
Yeh MH, Li YS, Chen GL, Lin LY, Li TJ, Chuang HM, Hsieh CY, Lo SC, Chiang WH, Ho KC. Facile Synthesis of Boron-doped Graphene Nanosheets with Hierarchical Microstructure at Atmosphere Pressure for Metal-free Electrochemical Detection of Hydrogen Peroxide. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.210] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
29
Ensafi AA, Khoddami E, Rezaei B, Jafari-Asl M. A supported liquid membrane for microextraction of insulin, and its determination with a pencil graphite electrode modified with RuO2-graphene oxide. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1478-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
30
Parnell CM, Watanabe F, Nasini UB, Berry BC, Mitchell T, Shaikh AU, Ghosh A. Electrochemical sensing of hydrogen peroxide using a cobalt(III) complex supported on carbonaceous nanomaterials. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
31
Synthesis of new copper nanoparticle-decorated anchored type ligands: Applications as non-enzymatic electrochemical sensors for hydrogen peroxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015;47:290-7. [DOI: 10.1016/j.msec.2014.11.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/02/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
32
Ensafi AA, Jafari-Asl M, Rezaei B. Graphene/nano-porous silicon and graphene/bimetallic silicon nanostructures (Pt–M, M: Pd, Ru, Rh), efficient electrocatalysts for the hydrogen evolution reaction. Phys Chem Chem Phys 2015;17:23770-82. [DOI: 10.1039/c5cp04361a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Ujjain SK, Ahuja P, Sharma RK. Facile preparation of graphene nanoribbon/cobalt coordination polymer nanohybrid for non-enzymatic H2O2 sensing by dual transduction: electrochemical and fluorescence. J Mater Chem B 2015;3:7614-7622. [DOI: 10.1039/c5tb00857c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Long M, Tan L, Liu H, He Z, Tang A. Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. Biosens Bioelectron 2014;59:243-50. [DOI: 10.1016/j.bios.2014.03.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
35
Chaturvedi P, Vanegas D, Taguchi M, Burrs S, Sharma P, McLamore E. A nanoceria–platinum–graphene nanocomposite for electrochemical biosensing. Biosens Bioelectron 2014;58:179-85. [DOI: 10.1016/j.bios.2014.02.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 11/15/2022]
36
Mohd Yazid SNA, Md Isa I, Abu Bakar S, Hashim N, Ab Ghani S. A Review of Glucose Biosensors Based on Graphene/Metal Oxide Nanomaterials. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.888731] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
37
Ambrosi A, Chua CK, Bonanni A, Pumera M. Electrochemistry of Graphene and Related Materials. Chem Rev 2014;114:7150-88. [DOI: 10.1021/cr500023c] [Citation(s) in RCA: 826] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
38
Dong S, Peng L, Liu D, Yang Q, Huang T. Design synthesis of polypyrrole-Co3O4 hybrid material for the direct electrochemistry of Hemoglobin and Glucose Oxidase. Bioelectrochemistry 2014;98:87-93. [PMID: 24768801 DOI: 10.1016/j.bioelechem.2014.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/25/2022]
39
Sanghavi BJ, Kalambate PK, Karna SP, Srivastava AK. Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta 2014;120:1-9. [DOI: 10.1016/j.talanta.2013.11.077] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
40
Gnana kumar G, Justice Babu K, Nahm KS, Hwang YJ. A facile one-pot green synthesis of reduced graphene oxide and its composites for non-enzymatic hydrogen peroxide sensor applications. RSC Adv 2014. [DOI: 10.1039/c3ra45596c] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
41
Ensafi AA, Jafari-Asl M, Dorostkar N, Ghiaci M, Martínez-Huerta MV, Fierro JLG. The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J Mater Chem B 2014;2:706-717. [DOI: 10.1039/c3tb21434f] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Wang Q, Li M, Szunerits S, Boukherroub R. Environmentally Friendly Reduction of Graphene Oxide Using Tyrosine for Nonenzymatic Amperometric H2O2Detection. ELECTROANAL 2013. [DOI: 10.1002/elan.201300356] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA